Stochastic Process (ENPC) Monday, 27th of January 2020 (2h30)

Vocabulary (english/français) : random walk=marche aléatoire ; distribution =loi; positive $=$ strictement positif ; interwining relationship =relation d'entrelacement.

We shall assume that all the random variables are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
Exercise 1 (Mean of some exit time). Let $B=\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a standard Brownian motion.

1. Prove that $M=\left(M_{t}=B_{t}^{2}-t, t \geq 0\right)$ is a martingale.
2. Let $a>0$ and set $\tau_{a}=\inf \left\{t \geq 0 ; B_{t} \notin[-a, a]\right\}$.
(a) Prove that $\mathbb{E}\left[t \wedge \tau_{a}\right]=\mathbb{E}\left[B_{t \wedge \tau_{a}}^{2}\right]$.
(b) Deduce that $\mathbb{E}\left[\tau_{a}\right]$ is finite and then compute $\mathbb{E}\left[\tau_{a}\right]$.
3. Let $a>0$ and $b>0$ and set $\tau_{a, b}=\inf \left\{t \geq 0 ; B_{t} \notin[-a, b]\right\}$.
(a) Check that $\tau_{a, b}$ is a.s. finite. Using that B is a martingale, compute $\mathbb{P}\left(B_{\tau_{a, b}}=-a\right)$.
(b) Deduce the value of $\mathbb{E}\left[\tau_{a, b}\right]$.

We write $\mathbb{N}^{*}=\mathbb{Z} \cap[1,+\infty)$ and $\mathbb{N}=\mathbb{N}^{*} \bigcup\{0\}$. For $x \in \mathbb{R}$, we set $x_{+}=\max (x, 0)$ for the positive part of x. We recall the notation $\mathbb{P}(A \mid \mathcal{G})=\mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{G}\right]$ for any $A \in \mathcal{F}$ and $\mathcal{G} \subset \mathcal{F}$ a σ-field.

Exercise 2 (When is a functional of a Markov chain again a Markov chain?). Let $p \in(0,1)$ and $q=1-p$. Let ζ be a $\{-1,1\}$-valued random variable such that:

$$
\mathbb{P}(\zeta=1)=p \quad \text { and } \quad \mathbb{P}(\zeta=-1)=1-p=q .
$$

Let $\left(\zeta_{n}, n \in \mathbb{N}^{*}\right)$ be independent random variables distributed as ζ. We define the simple random walk $S=\left(S_{n}, n \in \mathbb{N}\right)$ by $S_{0}=0$ and $S_{n}=S_{n-1}+\zeta_{n}$ for $n \in \mathbb{N}^{*}$. The process S is a Markov chain on \mathbb{Z} with transition matrix $P=(P(s, t) ; s, t \in \mathbb{Z})$, see Figure 1, given by :

$$
P(s, t)=p \mathbf{1}_{\{t=s+1\}}+q \mathbf{1}_{\{t=s-1\}} .
$$

Figure 1 - Transition graph for the simple random walk S on \mathbb{Z}.
We consider the natural filtration $\mathbb{F}=\left(\mathcal{F}_{n}=\sigma\left(S_{0}, \ldots, S_{n}\right), n \in \mathbb{N}\right)$ of S. We define the infimum process $\left(I_{n}, n \in \mathbb{N}\right)$ associated to S by, for $n \in \mathbb{N}$:

$$
I_{n}=\min \left\{S_{k}, 0 \leq k \leq n\right\} .
$$

We define the processes $U=\left(U_{n}=S_{n}-I_{n}, n \in \mathbb{N}\right)$ and $\tilde{S}=\left(\tilde{S}_{n}=\left(S_{n}, I_{n}\right), n \in \mathbb{N}\right)$ the random walk completed with its infimum process taking values in \mathbb{N}. Notice that \tilde{S} takes values in $E=\left\{(s, i) \in \mathbb{Z}^{2}, s \geq i\right.$ and $\left.0 \geq i\right\}$. Figure 2 represents a simulation of the processes S, I and $U=S-I$.

Figure 2 - A path simulation of S (black), I (red) and $U=S-I$ (blue) up to time $n=150$ for $p=0.55$.

I Some Markov chains related to S

1. Prove that \tilde{S} is a E-valued Markov chain with respect to (w.r.t.) the filtration \mathbb{F} and with transition matrix $\tilde{P}=(\tilde{P}((s, i),(t, j)) ;(s, i),(t, j) \in E)$ given by :

$$
\tilde{P}((s, i),(t, j))=p \mathbf{1}_{\{t=s+1, j=i\}}+q\left(\mathbf{1}_{\{s>i, t=s-1, j=i\}}+\mathbf{1}_{\{s=i, t=s-1, j=i-1\}}\right) .
$$

2. Compute $\mathbb{P}\left(U_{n+1}=u \mid \mathcal{F}_{n}\right)$ for $u \in \mathbb{N}$.
3. Deduce U is a Markov chain w.r.t. the filtration \mathbb{F} and give its transition matrix R.
4. Prove that \mathbb{F} is also the natural filtration of U.
5. Prove that U is distributed as the reflected simple random walk $S^{\text {refl }}=\left(S_{n}^{\text {refl }}, n \in \mathbb{N}\right)$ defined by $S_{0}^{\text {refl }}=0$ and $S_{n}^{\text {refl }}=\left(S_{n-1}^{\text {refl }}+\zeta_{n}\right)_{+}$for $n \in \mathbb{N}^{*}$.
6. (Dynkin's criterion ${ }^{1}$). For this question only : let $\tilde{S}=\left(\tilde{S}_{n}, n \in \mathbb{N}\right)$ be a general Markov chain on a discrete state space E with transition matrix \tilde{P}; and φ be a function from E to $F=\varphi(E)$. Set $\Phi=(\Phi(\tilde{s}, x) ; \tilde{s} \in E, x \in F)$ with $\Phi(\tilde{s}, x)=\mathbf{1}_{\{\varphi(\tilde{s})=x\}}$. Assume the intertwining relation $\tilde{P} \Phi=\Phi R$ holds for some stochastic matrix R on F.
(a) Prove that $\varphi(\tilde{S})$ is a Markov chain w.r.t. the natural filtration of \tilde{S} and with transition matrix R. (Hint : check $\tilde{P} \tilde{g}=\tilde{P} \Phi g$, with g non-negative defined on F and $\tilde{g}=g \circ \varphi$.)
(b) Explain how this result generalises Question 3.

II Infimum and excursion

We define the hitting time $\tau_{a}=\inf \left\{k \in \mathbb{N}, S_{k}=-a\right\}$ of $-a$ for $a \geq 1$ (with the convention that $\inf \emptyset=+\infty)$ and the infimum $I_{\infty}=\inf \left\{S_{k}, k \in \mathbb{N}\right\}$ of S. We set $\varphi(\lambda)=\mathbb{E}\left[\mathrm{e}^{-\lambda \tau_{1}}\right]$ for $\lambda>0$.

1. Prove that τ_{2} is distributed as $\tau_{1}+\tau_{1}^{\prime}$, where τ_{1}^{\prime} is distributed as τ_{1} and independent of τ_{1}.
2. Prove that $\varphi(\lambda)=p \mathrm{e}^{-\lambda} \varphi(\lambda)^{2}+q \mathrm{e}^{-\lambda}$.
3. Compute $\varphi(\lambda)$ and deduce that $\mathbb{P}\left(\tau_{1}<+\infty\right)=\min \left(1, \frac{q}{p}\right)$.
4. Check that $\left\{n \in \mathbb{N}^{*}, I_{n}=I_{n-1}-1\right\}=\left\{n \in \mathbb{N}^{*},\left(U_{n-1}, U_{n}\right)=(0,0)\right\}$. Using that U is a Markov chain, prove that $\left|I_{\infty}\right|+1$ is geometric with parameter $\mathbb{P}\left(\tau_{1}=+\infty\right)$ (with the convention that a geometric random variable with parameter 0 is a.s. infinite).
5. We write $\mathbb{P}_{(p)}$ for \mathbb{P} to stress out that $\mathbb{P}(\zeta=1)=p$. On $\left\{\tau_{1}<+\infty\right\}$, we define $\mathcal{E}=$ $\left(S_{0}, \ldots, S_{\tau_{1}-1}\right)$ the finite excursion of S strictly above -1 . Prove that \mathcal{E} conditionally on $\left\{\tau_{1}<+\infty\right\}$ has the same distribution under $\mathbb{P}_{(p)}$ and under $\mathbb{P}_{(q)}$.
6. E. Dynkin. Markov processes. Vol. I. Springer, 1965. (See Section X.6.)

Correction

Exercise 1 Let $\mathbb{F}=\left(\mathcal{F}_{t}, t \geq 0\right)$ denote the Brownian filtration of B.

1. We have clearly that M is \mathbb{F}-adapted. Since $\mathbb{E}\left[B_{t}^{2}\right]=t$, we deduce that M_{t} is integrable that for all $t \geq 0$. We have for all $t \geq 0, s \geq 0$:

$$
\begin{aligned}
\mathbb{E}\left[B_{t+s}^{2} \mid \mathcal{F}_{t}\right] & =\mathbb{E}\left[\left(B_{t+s}-B_{t}\right)^{2}+B_{t}^{2}+2 B_{t}\left(B_{t+s}-B_{t}\right) \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}\left[B_{s}^{2}\right]+B_{t}^{2}+2 B_{t} \mathbb{E}\left[\left(B_{t+s}-B_{t}\right) \mid \mathcal{F}_{t}\right] \\
& =s+B_{t}^{2},
\end{aligned}
$$

where we used that $B_{t+s}-B_{t}$ is independent of \mathcal{F}_{t} and distributed as B_{s} for the second and third equalities. We deduce that $\mathbb{E}\left[M_{t+s} \mid \mathcal{F}_{t}\right]=M_{t}$. This gives that M is a martingale.
2. (a) Since $\left\{\tau_{a}>t\right\}=\bigcap_{s \in \mathbb{Q} \cap[0, t]}\left\{B_{s} \in[-a, a]\right\}$, we deduce that τ_{a} is a stopping time. By the optional stopping theorem, we get that $\mathbb{E}\left[M_{t \wedge \tau_{a}}\right]=\mathbb{E}\left[M_{0}\right]=0$. This implies that for all $t \geq 0$:

$$
\mathbb{E}\left[t \wedge \tau_{a}\right]=\mathbb{E}\left[B_{t \wedge \tau_{a}}^{2}\right]
$$

(b) Since $B_{t \wedge \tau_{a}}^{2} \leq a^{2}$, we get that $\mathbb{E}\left[t \wedge \tau_{a}\right] \leq a^{2}$. By monotone convergence, we deduce that $\mathbb{E}\left[\tau_{a}\right] \leq a^{2}$. In particular τ_{a} is a.s. finite. This implies that a.s. $\lim _{t \rightarrow+\infty} B_{t \wedge \tau_{a}}^{2}=B_{\tau_{a}}^{2}=$ a^{2}. By dominated convergence, we get that $\lim _{t \rightarrow+\infty} \mathbb{E}\left[B_{t \wedge \tau_{a}}^{2}\right]=a^{2}$. By monotone convergence, we deduce that :

$$
\mathbb{E}\left[\tau_{a}\right]=\lim _{t \rightarrow+\infty} \mathbb{E}\left[t \wedge \tau_{a}\right]=\lim _{t \rightarrow+\infty} \mathbb{E}\left[B_{t \wedge \tau_{a}}^{2}\right]=a^{2}
$$

3. (a) Since $\left\{\tau_{a, b}>t\right\}=\bigcap_{s \in \mathbb{Q} \cap[0, t]}\left\{B_{s} \in[-a, b]\right\}$, we deduce that $\tau_{a, b}$ is a stopping time. Since $\tau_{a, b} \leq \tau_{a}+\tau_{b}$, we deduce from the answer to Question 2 that $\tau_{a, b}$ is a.s. finite. Since B is a martingale, by the optional stopping theorem, we get $\mathbb{E}\left[B_{t \wedge \tau_{a, b}}\right]=0$ for all $t \geq 0$. Then use that a.s. $\lim _{t \rightarrow+\infty} B_{t \wedge \tau_{a, b}}=B_{\tau_{a, b}}$ and that $\left|B_{t \wedge \tau_{a, b}}\right| \leq a+b$ to get by dominated convergence that $\mathbb{E}\left[B_{\tau_{a, b}}\right]=0$. Since $B_{\tau_{a, b}} \in\{-a, b\}$, we deduce that :

$$
-a \mathbb{P}\left(B_{\tau_{a, b}}=-a\right)+b \mathbb{P}\left(B_{\tau_{a, b}}=b\right)=0 \quad \text { and } \quad \mathbb{P}\left(B_{\tau_{a, b}}=-a\right)+\mathbb{P}\left(B_{\tau_{a, b}}=b\right)=1
$$

This gives:

$$
\mathbb{P}\left(B_{\tau_{a, b}}=-a\right)=\frac{b}{a+b} \quad \text { and } \quad \mathbb{P}\left(B_{\tau_{a, b}}=b\right)=\frac{a}{a+b}
$$

(b) Arguing as in the answer to Question 2, we get :

$$
\mathbb{E}\left[\tau_{a, b}\right]=\lim _{t \rightarrow+\infty} \mathbb{E}\left[t \wedge \tau_{a, b}\right]=\lim _{t \rightarrow+\infty} \mathbb{E}\left[B_{t \wedge \tau_{a, b}}^{2}\right]=\mathbb{E}\left[B_{\tau_{a, b}}^{2}\right.
$$

We deduce that :

$$
\mathbb{E}\left[\tau_{a, b}\right]=\mathbb{E}\left[B_{\tau_{a, b}}^{2}\right]=a^{2} \mathbb{P}\left(B_{\tau_{a, b}}=-a\right)+b^{2} \mathbb{P}\left(B_{\tau_{a, b}}=b\right)=a b
$$

Exercise 2 I Some Markov chains related to S

1. We have that $I_{n+1}=I_{n}-\mathbf{1}_{\left\{\zeta_{n+1}=-1, S_{n}=I_{n}\right\}}$. We deduce that

$$
\begin{equation*}
\tilde{S}_{n+1}=\left(S_{n+1}, I_{n+1}\right)=\left(S_{n}+\zeta_{n+1}, I_{n}-\mathbf{1}_{\left\{\zeta_{n+1}=-1, S_{n}=I_{n}\right\}}\right)=f\left(\tilde{S}_{n}, \zeta_{n+1}\right), \tag{1}
\end{equation*}
$$

for some function f. Since $\left(\zeta_{n}, n \in \mathbb{N}^{*}\right)$ are independent identically distributed random variables independent of \tilde{S}_{0}, the process \tilde{S} is a stochastic dynamical system and thus a Markov chain. Clearly \tilde{S} takes values in E. The transition matrix is easily computed from (1) and the fact that $\mathbb{P}\left(\zeta_{n+1}=1\right)=1-\mathbb{P}\left(\zeta_{n+1}=-1\right)=p$.
2. We have for $u \in \mathbb{N}^{*}$:

$$
\left\{U_{n+1}=u\right\}=\left\{S_{n}-I_{n}=u-1, \zeta_{n+1}=1\right\} \cup\left\{S_{n}-I_{n}=u+1, \zeta_{n+1}=-1\right\}
$$

and for $u=0$:

$$
\left\{U_{n+1}=0\right\}=\left\{S_{n}-I_{n}=0, \zeta_{n+1}=-1\right\} \cup\left\{S_{n}-I_{n}=1, \zeta_{n+1}=-1\right\}
$$

where the unions are between disjoint sets. Since $\left(S_{n}, I_{n}\right)$ is \mathcal{F}_{n}-measurable and ζ_{n+1} is independent from \mathcal{F}_{n}, we deduce that for $u \in \mathbb{N}^{*}$:

$$
\mathbb{P}\left(U_{n+1}=u \mid \mathcal{F}_{n}\right)=p \mathbf{1}_{\left\{S_{n}-I_{n}=u-1\right\}}+q \mathbf{1}_{\left\{S_{n}-I_{n}=u+1\right\}}=p \mathbf{1}_{\left\{U_{n}=u-1\right\}}+q \mathbf{1}_{\left\{U_{n}=u+1\right\}},
$$

and for $u=0$:

$$
\mathbb{P}\left(U_{n+1}=0 \mid \mathcal{F}_{n}\right)=q \mathbf{1}_{\left\{S_{n}-I_{n} \in\{0,1\}\right\}}=q \mathbf{1}_{\left\{U_{n} \in\{0,1\}\right\}} .
$$

3. For $u \in \mathbb{N}$, we get that $\mathbb{P}\left(U_{n+1}=u \mid \mathcal{F}_{n}\right)=R\left(U_{n}, u\right)$, where for $w \in \mathbb{N}$:

$$
\begin{equation*}
R(w, u)=p \mathbf{1}_{\{u \geq 1\}} \mathbf{1}_{\{w=u-1\}}+q \mathbf{1}_{\{w=u+1\}}+q \mathbf{1}_{\{u=0\}} \mathbf{1}_{\{w=0\}} . \tag{2}
\end{equation*}
$$

This implies that U is a \mathbb{N}-valued Markov chain with respect to the filtration \mathbb{F} and with transition matrix R.
4. Let $\mathbb{G}=\left(\mathcal{G}_{n}=\sigma\left(U_{0}, \ldots, U_{n}\right),, \in \mathbb{N}\right)$ be the natural filtration of U. Since U is \mathbb{F}-adapted, we have $\mathcal{G}_{n} \subset \mathcal{F}_{n}$. For $n \in \mathbb{N}$, we have :

$$
\zeta_{n}=\left(U_{n}-U_{n-1}\right) \mathbf{1}_{\left\{U_{n} \neq U_{n-1}\right\}}-\mathbf{1}_{\left\{U_{n}=U_{n-1}\right\}} .
$$

Thus the random variable ζ_{n} is \mathcal{G}_{n}-measurable. This implies that $\sigma\left(\zeta_{1}, \ldots, \zeta_{n}\right) \subset \mathcal{G}_{n}$. Then use that $\mathcal{F}_{n}=\sigma\left(S_{0}, \ldots, S_{n}\right)=\sigma\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ to conclude that $\mathcal{G}_{n}=\mathcal{F}_{n}$.
5. Notice from the definition of R that $R(w, w+1)=p$ for $w \in \mathbb{N} ; R(w, w-1)=q$ for $w \in \mathbb{N}^{*}$; and $R(0,0)=q$. It is clear from the definition of $S^{\text {refl }}$ that $S^{\text {refl }}$ is a Markov chain with transition matrix R.
6. Recall that functions are seen as column vectors. If M is a matrix (with non-negative entries) and v a column vectors (with non-negative entries), then we may also write $M[v]$ for the column vector $M v$.
(a) We have, for $n \in \mathbb{N}$ and g a non-negative function defined on F :

$$
\mathbb{E}\left[g \circ \varphi\left(\tilde{S}_{n+1}\right) \mid \mathcal{F}_{n}\right]=\tilde{P}[g \circ \varphi]\left(\tilde{S}_{n}\right)=\tilde{P} \Phi[g]\left(\tilde{S}_{n}\right)=\Phi R[g]\left(\tilde{S}_{n}\right)=R[g]\left(\varphi\left(\tilde{S}_{n}\right)\right),
$$

where we used that \tilde{S} is a Markov chain with respect to the filtration \mathbb{F} for the first equality. This readily implies that $\varphi(\tilde{S})$ is a Markov chain with respect to the filtration \mathbb{F} and with transition matrix R.
(b) In the setting of Question 3, for $\tilde{s}=(s, i)$, we set $\varphi(\tilde{s})=s-i$, so that $U=\left(U_{n}=\right.$ $\left.\varphi\left(\tilde{S}_{n}\right), n \in \mathbb{N}\right)$. We have $F=\mathbb{N}$. Let $(s, i) \in E$ and $u \in \mathbb{N}$. On the one hand, we have by definition of R given in (2) that :

$$
\begin{aligned}
\Phi R((s, i), u) & =\sum_{w \in F} \Phi((s, i), w) R(w, u) \\
& =R(s-i, u) \\
& =p \mathbf{1}_{\{u \geq 1\}} \mathbf{1}_{\{s-i=u-1\}}+q \mathbf{1}_{\{s-i=u+1\}}+q \mathbf{1}_{\{u=0\}} \mathbf{1}_{\{s-i=0\}} .
\end{aligned}
$$

On the other hand, we have :

$$
\begin{aligned}
\tilde{P} \Phi((s, i), u) & =\sum_{(t, j) \in E} \tilde{P}((s, i),(t, j)) \Phi((t, j), u) \\
& =\sum_{(t, j) \in E}\left[p \mathbf{1}_{\{t=s+1, j=i\}}+q\left(\mathbf{1}_{\{s>i, t=s-1, j=i\}}+\mathbf{1}_{\{s=i, t=s-1, j=i-1\}}\right)\right] \mathbf{1}_{\{t-j=u\}} \\
& =p \mathbf{1}_{\{s-i=u-1\}}+q \mathbf{1}_{\{s>i, s-i=u+1\}}+q \mathbf{1}_{\{u=0\}} \mathbf{1}_{\{s-i=0\}} .
\end{aligned}
$$

Use that $s-i \geq 0$ and $u \geq 0$ to get that the intertwining relation relation $\tilde{P} \Phi=\Phi R$ holds. Since R is a stochastic matrix, Question 3 is a particular case of the Dynkin's criterion.

II Infimum and excursion

1. On $\left\{\tau_{1}=+\infty\right\}$, the statement is true. On $\left\{\tau_{1}<+\infty\right\}$, as $S_{\tau_{1}}=-1$, we get :

$$
\tau_{2}=\tau_{1}+\inf \left\{k \in \mathbb{N}, S_{\tau_{1}+k}=-2\right\}=\tau_{1}+\tau_{1}^{\prime} \quad \text { with } \quad \tau_{1}^{\prime}=\inf \left\{k \in \mathbb{N}, \sum_{i=1}^{k} \zeta_{\tau_{1}+i}=-1\right\} .
$$

By the strong Markov property for the sequence $\left(\zeta_{n}, n \in \mathbb{N}\right)$, we get that $\left(\zeta_{\tau_{1}+n}, n \in \mathbb{N}\right)$ is, on $\left\{\tau_{1}<+\infty\right\}$, independent of ($\left.\zeta_{k}, 1 \leq k \leq \tau_{1}\right)$ and distributed as ($\left.\zeta_{n}, n \in \mathbb{N}\right)$. This implies that τ_{1} and τ_{1}^{\prime} are independent and with the same distribution.
2. We have:

$$
\begin{aligned}
\varphi(\lambda) & =\mathbb{E}\left[\mathrm{e}^{-\lambda \tau_{1}} \mathbf{1}_{\left\{S_{1}=1\right\}}\right]+\mathbb{E}\left[\mathrm{e}^{-\lambda \tau_{1}} \mathbf{1}_{\left\{S_{1}=-1\right\}}\right] \\
& =\mathrm{e}^{-\lambda} \mathbb{E}\left[\mathrm{e}^{-\lambda \tau_{2}}\right]+q \mathrm{e}^{-\lambda} \\
& =\mathrm{e}^{-\lambda} \mathbb{E}\left[\mathrm{e}^{-\lambda \tau_{1}}\right]^{2}+q \mathrm{e}^{-\lambda} \\
& =p \mathrm{e}^{-\lambda} \varphi(\lambda)^{2}+q \mathrm{e}^{-\lambda},
\end{aligned}
$$

where we decomposed according to S_{1} equal to 1 or -1 for the first equality, that S started at 1 is distributed as $S+1$ for the second, and the previous question for the decomposition of τ_{2} for the third.
3. We get, as $\varphi(\lambda) \leq 1$:

$$
\varphi(\lambda)=\frac{\mathrm{e}^{\lambda}}{2 p}\left(1-\sqrt{1-4 p q \mathrm{e}^{-2 \lambda}}\right) .
$$

Since $\lim _{\lambda \rightarrow 0+} \mathrm{e}^{-\lambda \tau_{1}}=\mathbf{1}_{\left\{\tau_{1}<+\infty\right\}}$, we deduce by dominated convergence that $\mathbb{P}\left(\tau_{1}<\right.$ $+\infty)=\lim _{\lambda \rightarrow 0+} \varphi(\lambda)$, that is, as $q=1-p$:

$$
\mathbb{P}\left(\tau_{1}<+\infty\right)=\frac{1}{2 p}(1-\sqrt{1-4 p q})=\frac{1}{2 p}(1-|1-2 p|)=\min \left(1, \frac{q}{p}\right) .
$$

4. Since U is a Markov chain, we deduce that it is also a second order Markov chain, that is $\hat{U}=\left(\hat{U}_{n}=\left(U_{n-1}, U_{n}\right), n \in \mathbb{N}\right)$, with the convention that $U_{-1}=0$, is a Markov chain started at $\hat{U}_{0}=(0,0)$. For $n \in \mathbb{N}^{*}$, clearly $I_{n}=I_{n-1}-1$ if and only if $\hat{U}_{n}=(0,0)$. In particular $\left|I_{\infty}\right|+1$ is equal to the number of visits of $(0,0)$ for \hat{U} (this latter is the cardinal of $\left.\left\{n \in \mathbb{N},\left(U_{n-1}, U_{n}\right)=(0,0)\right\}\right)$. The number of visit is geometric with parameter $\mathbb{P}_{(0,0)}\left(T^{(0,0)}=+\infty\right)$, where $T^{(0,0)}=\inf \left\{n \in \mathbb{N}^{*}, \hat{U}_{n}=(0,0)\right\}$ is the first return time to $(0,0)$ for \hat{U}. Then notice that $T^{(0,0)}=\tau_{1}$ to conclude that $\left|I_{\infty}\right|+1$ is geometric with parameter $\mathbb{P}\left(\tau_{1}=+\infty\right)$.
5. We define the set of excursions of S above -1 of length $n \in \mathbb{N}^{*}$ as :

$$
\mathcal{S}_{n}=\left\{e=\left(s_{0}, \ldots, s_{n}\right) ; s_{0}=s_{n}=0, z_{k}^{e} \in\{-1,1\} \text { and } s_{k} \geq 0 \text { for all } 1 \leq k \leq n\right\}
$$

where $z_{k}^{e}=s_{k}-s_{k-1}$ for $e=\left(s_{0}, \ldots, s_{n}\right)$. We set $n^{e}=n$ the length of $e \in \mathcal{S}_{n}$. Notice that \mathcal{S}_{n} is empty if n is odd. The set of finite excursions is $\mathcal{S}=\bigcup_{n \in 2 \mathbb{N}^{*}} \mathcal{S}_{n}$. Let $e \in \mathcal{S}$ be an excursion. We denote by $n_{+}^{e}=\sum_{k=1}^{n^{e}} \mathbf{1}_{\left\{z_{k}^{e}=1\right\}}$ (resp. $n_{-}^{e}=\sum_{k=1}^{n^{e}} \mathbf{1}_{\left\{z_{k}^{e}=-1\right\}}$) the number of positive (resp. negative) increments of the path e. Notice that $n_{+}^{e}=n_{-}^{e}=n / 2$. For $e \in \mathcal{S}$, we have, taking into account that the step just after time $\tau_{1}-1$ is negative :

$$
\mathbb{P}_{(p)}(\mathcal{E}=e)=p^{n_{+}^{e}} q^{n_{-}^{e}+1}=(p q)^{n_{+}^{e}} q .
$$

Using Question 3, this implies that :

$$
\mathbb{P}_{(p)}\left(\mathcal{E}=e \mid \tau_{1}<+\infty\right)=(p q)^{n_{+}^{e}} \frac{q}{\min \left(1, \frac{q}{p}\right)}=(p q)^{n_{+}^{e}} \max (p, q) .
$$

By symmetry, we get that :

$$
\mathbb{P}_{(q)}\left(\mathcal{E}=e \mid \tau_{1}<+\infty\right)=(q p)^{n_{+}^{e}} \max (q, p)=\mathbb{P}_{(p)}\left(\mathcal{E}=e \mid \tau_{1}<+\infty\right),
$$

that is \mathcal{E} conditionally on $\left\{\tau_{1}<+\infty\right\}$ has the same distribution under $\mathbb{P}_{(p)}$ and under $\mathbb{P}_{(q)}$.
It is interesting to note that most of the results of this exercise can be extended to the Brownian motion with drift.

