
Stochastic Process (ENPC)
Monday, 27th of January 2020 (2h30)

Vocabulary (english/français) : random walk =marche aléatoire ; distribution =loi ; positive
= strictement positif ; interwining relationship =relation d’entrelacement.

We shall assume that all the random variables are defined on a probability space (Ω,F ,P).

Exercise 1 (Mean of some exit time). Let B = (Bt, t ∈ R+) be a standard Brownian motion.

1. Prove that M = (Mt = B2
t − t, t ≥ 0) is a martingale.

2. Let a > 0 and set τa = inf{t ≥ 0; Bt 6∈ [−a, a]}.
(a) Prove that E[t ∧ τa] = E[B2

t∧τa ].

(b) Deduce that E[τa] is finite and then compute E[τa].

3. Let a > 0 and b > 0 and set τa,b = inf{t ≥ 0; Bt 6∈ [−a, b]}.
(a) Check that τa,b is a.s. finite. Using that B is a martingale, compute P(Bτa,b = −a).

(b) Deduce the value of E[τa,b].
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We write N∗ = Z ∩ [1,+∞) and N = N∗
⋃
{0}. For x ∈ R, we set x+ = max(x, 0) for the

positive part of x. We recall the notation P(A| G) = E[1A| G] for any A ∈ F and G ⊂ F a σ-field.

Exercise 2 (When is a functional of a Markov chain again a Markov chain ?). Let p ∈ (0, 1)
and q = 1− p. Let ζ be a {−1, 1}-valued random variable such that :

P(ζ = 1) = p and P(ζ = −1) = 1− p = q.

Let (ζn, n ∈ N∗) be independent random variables distributed as ζ. We define the simple random
walk S = (Sn, n ∈ N) by S0 = 0 and Sn = Sn−1 + ζn for n ∈ N∗. The process S is a Markov
chain on Z with transition matrix P = (P (s, t); s, t ∈ Z), see Figure 1, given by :

P (s, t) = p1{t=s+1} + q1{t=s−1}.

s− 1 s s+ 1 · · ·· · ·

p p p p

q q q q

Figure 1 – Transition graph for the simple random walk S on Z.

We consider the natural filtration F = (Fn = σ(S0, . . . , Sn), n ∈ N) of S. We define the
infimum process (In, n ∈ N) associated to S by, for n ∈ N :

In = min{Sk, 0 ≤ k ≤ n}.

We define the processes U = (Un = Sn − In, n ∈ N) and S̃ = (S̃n = (Sn, In), n ∈ N) the
random walk completed with its infimum process taking values in N. Notice that S̃ takes values
in E = {(s, i) ∈ Z2, s ≥ i and 0 ≥ i}. Figure 2 represents a simulation of the processes S, I and
U = S − I.
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Figure 2 – A path simulation of S (black), I (red) and U = S − I (blue) up to time n = 150
for p = 0.55.

I Some Markov chains related to S

1. Prove that S̃ is a E-valued Markov chain with respect to (w.r.t.) the filtration F and with
transition matrix P̃ = (P̃ ((s, i), (t, j)); (s, i), (t, j) ∈ E) given by :

P̃ ((s, i), (t, j)) = p1{t=s+1,j=i} + q
(
1{s>i,t=s−1,j=i} + 1{s=i,t=s−1,j=i−1}

)
.

2. Compute P(Un+1 = u| Fn) for u ∈ N.

3. Deduce U is a Markov chain w.r.t. the filtration F and give its transition matrix R.

4. Prove that F is also the natural filtration of U .

5. Prove that U is distributed as the reflected simple random walk Srefl = (Srefl
n , n ∈ N)

defined by Srefl
0 = 0 and Srefl

n = (Srefl
n−1 + ζn)+ for n ∈ N∗.

6. (Dynkin’s criterion 1). For this question only : let S̃ = (S̃n, n ∈ N) be a general Markov
chain on a discrete state space E with transition matrix P̃ ; and ϕ be a function from
E to F = ϕ(E). Set Φ = (Φ(s̃, x); s̃ ∈ E, x ∈ F ) with Φ(s̃, x) = 1{ϕ(s̃)=x}. Assume the

intertwining relation P̃Φ = ΦR holds for some stochastic matrix R on F .

(a) Prove that ϕ(S̃) is a Markov chain w.r.t. the natural filtration of S̃ and with transition
matrix R. (Hint : check P̃ g̃ = P̃Φg, with g non-negative defined on F and g̃ = g ◦ϕ.)

(b) Explain how this result generalises Question 3.

II Infimum and excursion

We define the hitting time τa = inf{k ∈ N, Sk = −a} of −a for a ≥ 1 (with the convention
that inf ∅ = +∞) and the infimum I∞ = inf{Sk, k ∈ N} of S. We set ϕ(λ) = E[e−λτ1 ] for λ > 0.

1. Prove that τ2 is distributed as τ1 + τ ′1, where τ ′1 is distributed as τ1 and independent of τ1.

2. Prove that ϕ(λ) = p e−λ ϕ(λ)2 + q e−λ.

3. Compute ϕ(λ) and deduce that P(τ1 < +∞) = min
(

1, qp

)
.

4. Check that {n ∈ N∗, In = In−1 − 1} = {n ∈ N∗, (Un−1, Un) = (0, 0)}. Using that U is
a Markov chain, prove that |I∞| + 1 is geometric with parameter P(τ1 = +∞) (with the
convention that a geometric random variable with parameter 0 is a.s. infinite).

5. We write P(p) for P to stress out that P(ζ = 1) = p. On {τ1 < +∞}, we define E =
(S0, . . . , Sτ1−1) the finite excursion of S strictly above −1. Prove that E conditionally on
{τ1 < +∞} has the same distribution under P(p) and under P(q).
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1. E. Dynkin. Markov processes. Vol. I. Springer, 1965. (See Section X.6.)
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Correction

Exercise 1 Let F = (Ft, t ≥ 0) denote the Brownian filtration of B.

1. We have clearly that M is F-adapted. Since E[B2
t ] = t, we deduce that Mt is integrable

that for all t ≥ 0. We have for all t ≥ 0, s ≥ 0 :

E[B2
t+s| Ft] = E[(Bt+s −Bt)2 +B2

t + 2Bt(Bt+s −Bt)| Ft]
= E[B2

s ] +B2
t + 2BtE[(Bt+s −Bt)| Ft]

= s+B2
t ,

where we used that Bt+s − Bt is independent of Ft and distributed as Bs for the second
and third equalities. We deduce that E[Mt+s| Ft] = Mt. This gives that M is a martingale.

2. (a) Since {τa > t} =
⋂
s∈Q∩[0,t]{Bs ∈ [−a, a]}, we deduce that τa is a stopping time. By

the optional stopping theorem, we get that E[Mt∧τa ] = E[M0] = 0. This implies that
for all t ≥ 0 :

E[t ∧ τa] = E[B2
t∧τa ].

(b) Since B2
t∧τa ≤ a

2, we get that E[t∧τa] ≤ a2. By monotone convergence, we deduce that
E[τa] ≤ a2. In particular τa is a.s. finite. This implies that a.s. limt→+∞B

2
t∧τa = B2

τa =
a2. By dominated convergence, we get that limt→+∞ E[B2

t∧τa ] = a2. By monotone
convergence, we deduce that :

E[τa] = lim
t→+∞

E[t ∧ τa] = lim
t→+∞

E[B2
t∧τa ] = a2.

3. (a) Since {τa,b > t} =
⋂
s∈Q∩[0,t]{Bs ∈ [−a, b]}, we deduce that τa,b is a stopping time.

Since τa,b ≤ τa + τb, we deduce from the answer to Question 2 that τa,b is a.s. finite.
Since B is a martingale, by the optional stopping theorem, we get E[Bt∧τa,b ] = 0 for
all t ≥ 0. Then use that a.s. limt→+∞Bt∧τa,b = Bτa,b and that |Bt∧τa,b | ≤ a+ b to get
by dominated convergence that E[Bτa,b ] = 0. Since Bτa,b ∈ {−a, b}, we deduce that :

−aP(Bτa,b = −a) + bP(Bτa,b = b) = 0 and P(Bτa,b = −a) + P(Bτa,b = b) = 1.

This gives :

P(Bτa,b = −a) =
b

a+ b
and P(Bτa,b = b) =

a

a+ b
·

(b) Arguing as in the answer to Question 2, we get :

E[τa,b] = lim
t→+∞

E[t ∧ τa,b] = lim
t→+∞

E[B2
t∧τa,b ] = E[B2

τa,b
].

We deduce that :

E[τa,b] = E[B2
τa,b

] = a2P(Bτa,b = −a) + b2P(Bτa,b = b) = ab.

Exercise 2 I Some Markov chains related to S

1. We have that In+1 = In − 1{ζn+1=−1,Sn=In}. We deduce that

S̃n+1 = (Sn+1, In+1) = (Sn + ζn+1, In − 1{ζn+1=−1,Sn=In}) = f(S̃n, ζn+1), (1)

3



for some function f . Since (ζn, n ∈ N∗) are independent identically distributed random
variables independent of S̃0, the process S̃ is a stochastic dynamical system and thus a
Markov chain. Clearly S̃ takes values in E. The transition matrix is easily computed from
(1) and the fact that P(ζn+1 = 1) = 1− P(ζn+1 = −1) = p.

2. We have for u ∈ N∗ :

{Un+1 = u} = {Sn − In = u− 1, ζn+1 = 1} ∪ {Sn − In = u+ 1, ζn+1 = −1},

and for u = 0 :

{Un+1 = 0} = {Sn − In = 0, ζn+1 = −1} ∪ {Sn − In = 1, ζn+1 = −1},

where the unions are between disjoint sets. Since (Sn, In) is Fn-measurable and ζn+1 is
independent from Fn, we deduce that for u ∈ N∗ :

P(Un+1 = u| Fn) = p1{Sn−In=u−1} + q1{Sn−In=u+1} = p1{Un=u−1} + q1{Un=u+1},

and for u = 0 :
P(Un+1 = 0| Fn) = q1{Sn−In∈{0,1}} = q1{Un∈{0,1}}.

3. For u ∈ N, we get that P(Un+1 = u| Fn) = R(Un, u), where for w ∈ N :

R(w, u) = p1{u≥1}1{w=u−1} + q1{w=u+1} + q1{u=0}1{w=0}. (2)

This implies that U is a N-valued Markov chain with respect to the filtration F and with
transition matrix R.

4. Let G = (Gn = σ(U0, . . . , Un), ,∈ N) be the natural filtration of U . Since U is F-adapted,
we have Gn ⊂ Fn. For n ∈ N, we have :

ζn = (Un − Un−1)1{Un 6=Un−1} − 1{Un=Un−1}.

Thus the random variable ζn is Gn-measurable. This implies that σ(ζ1, . . . , ζn) ⊂ Gn. Then
use that Fn = σ(S0, . . . , Sn) = σ(ζ1, . . . , ζn) to conclude that Gn = Fn.

5. Notice from the definition of R that R(w,w + 1) = p for w ∈ N ; R(w,w − 1) = q for
w ∈ N∗ ; and R(0, 0) = q. It is clear from the definition of Srefl that Srefl is a Markov chain
with transition matrix R.

6. Recall that functions are seen as column vectors. If M is a matrix (with non-negative
entries) and v a column vectors (with non-negative entries), then we may also write M [v]
for the column vector Mv.

(a) We have, for n ∈ N and g a non-negative function defined on F :

E[g ◦ ϕ(S̃n+1)| Fn] = P̃ [g ◦ ϕ](S̃n) = P̃Φ[g](S̃n) = ΦR[g](S̃n) = R[g](ϕ(S̃n)),

where we used that S̃ is a Markov chain with respect to the filtration F for the first
equality. This readily implies that ϕ(S̃) is a Markov chain with respect to the filtration
F and with transition matrix R.
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(b) In the setting of Question 3, for s̃ = (s, i), we set ϕ(s̃) = s − i, so that U = (Un =
ϕ(S̃n), n ∈ N). We have F = N. Let (s, i) ∈ E and u ∈ N. On the one hand, we have
by definition of R given in (2) that :

ΦR((s, i), u) =
∑
w∈F

Φ((s, i), w)R(w, u)

= R(s− i, u)

= p1{u≥1}1{s−i=u−1} + q1{s−i=u+1} + q1{u=0}1{s−i=0}.

On the other hand, we have :

P̃Φ((s, i), u) =
∑

(t,j)∈E

P̃ ((s, i), (t, j))Φ((t, j), u)

=
∑

(t,j)∈E

[
p1{t=s+1,j=i} + q

(
1{s>i,t=s−1,j=i} + 1{s=i,t=s−1,j=i−1}

)]
1{t−j=u}

= p1{s−i=u−1} + q1{s>i,s−i=u+1} + q1{u=0}1{s−i=0}.

Use that s− i ≥ 0 and u ≥ 0 to get that the intertwining relation relation P̃Φ = ΦR
holds. Since R is a stochastic matrix, Question 3 is a particular case of the Dynkin’s
criterion.

II Infimum and excursion

1. On {τ1 = +∞}, the statement is true. On {τ1 < +∞}, as Sτ1 = −1, we get :

τ2 = τ1 + inf{k ∈ N, Sτ1+k = −2} = τ1 + τ ′1 with τ ′1 = inf
{
k ∈ N,

k∑
i=1

ζτ1+i = −1
}
.

By the strong Markov property for the sequence (ζn, n ∈ N), we get that (ζτ1+n, n ∈ N)
is, on {τ1 < +∞}, independent of (ζk, 1 ≤ k ≤ τ1) and distributed as (ζn, n ∈ N). This
implies that τ1 and τ ′1 are independent and with the same distribution.

2. We have :

ϕ(λ) = E[e−λτ1 1{S1=1}] + E[e−λτ1 1{S1=−1}]

= e−λ E[e−λτ2 ] + q e−λ

= e−λ E[e−λτ1 ]2 + q e−λ

= p e−λ ϕ(λ)2 + q e−λ,

where we decomposed according to S1 equal to 1 or −1 for the first equality, that S started
at 1 is distributed as S+1 for the second, and the previous question for the decomposition
of τ2 for the third.

3. We get, as ϕ(λ) ≤ 1 :

ϕ(λ) =
eλ

2p

(
1−

√
1− 4pq e−2λ

)
.

Since limλ→0+ e−λτ1 = 1{τ1<+∞}, we deduce by dominated convergence that P(τ1 <
+∞) = limλ→0+ ϕ(λ), that is, as q = 1− p :

P(τ1 < +∞) =
1

2p

(
1−

√
1− 4pq

)
=

1

2p
(1− |1− 2p|) = min

(
1,
q

p

)
.
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4. Since U is a Markov chain, we deduce that it is also a second order Markov chain, that
is Û = (Ûn = (Un−1, Un), n ∈ N), with the convention that U−1 = 0, is a Markov chain
started at Û0 = (0, 0). For n ∈ N∗, clearly In = In−1 − 1 if and only if Ûn = (0, 0).
In particular |I∞| + 1 is equal to the number of visits of (0, 0) for Û (this latter is the
cardinal of {n ∈ N, (Un−1, Un) = (0, 0)}). The number of visit is geometric with parameter
P(0,0)(T

(0,0) = +∞), where T (0,0) = inf{n ∈ N∗, Ûn = (0, 0)} is the first return time to

(0, 0) for Û . Then notice that T (0,0) = τ1 to conclude that |I∞| + 1 is geometric with
parameter P(τ1 = +∞).

5. We define the set of excursions of S above -1 of length n ∈ N∗ as :

Sn =
{
e = (s0, . . . , sn); s0 = sn = 0, zek ∈ {−1, 1} and sk ≥ 0 for all 1 ≤ k ≤ n

}
,

where zek = sk − sk−1 for e = (s0, . . . , sn). We set ne = n the length of e ∈ Sn. Notice that
Sn is empty if n is odd. The set of finite excursions is S =

⋃
n∈2N∗ Sn. Let e ∈ S be an

excursion. We denote by ne+ =
∑ne

k=1 1{zek=1} (resp. ne− =
∑ne

k=1 1{zek=−1}) the number of
positive (resp. negative) increments of the path e. Notice that ne+ = ne− = n/2. For e ∈ S,
we have, taking into account that the step just after time τ1 − 1 is negative :

P(p)(E = e) = pn
e
+ qn

e
−+1 = (pq)n

e
+ q.

Using Question 3, this implies that :

P(p)(E = e|τ1 < +∞) = (pq)n
e
+

q

min
(

1, qp

) = (pq)n
e
+ max(p, q).

By symmetry, we get that :

P(q)(E = e|τ1 < +∞) = (qp)n
e
+ max(q, p) = P(p)(E = e|τ1 < +∞),

that is E conditionally on {τ1 < +∞} has the same distribution under P(p) and under P(q).

It is interesting to note that most of the results of this exercise can be extended to the Brownian
motion with drift.
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