Stochastic Process (ENPC) Monday, 27th of January 2021 (2h30)

Vocabulary (english/français): urn=urne; distribution $=l o i$; positive $=$ strictement positif.
We shall assume that all the random variables are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
Exercise 1 (Characterisation of martingales). Let $\mathbb{F}=\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ be a filtration. Let $M=$ $\left(M_{n}, n \in \mathbb{N}\right)$ be an \mathbb{F}-adapted integrable process such that for all bounded stopping time τ, we have $\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[M_{0}\right]$. We shall prove that M is then a martingale.

1. Let $m>n \in \mathbb{N}$ and $A \in \mathcal{F}_{n}$.
(a) Check that $\mathbb{E}\left[M_{m}\right]=\mathbb{E}\left[M_{n}\right]$.
(b) Prove that $\tau=n \mathbf{1}_{A}+m \mathbf{1}_{A^{c}}$ is a \mathcal{F}-stopping time.
(c) Prove that $\mathbb{E}\left[M_{m} \mathbf{1}_{A}\right]=\mathbb{E}\left[M_{n} \mathbf{1}_{A}\right]$.
2. Deduce that M is a martingale.

Exercise 2 (Pólya's urn or the progress of an epidemic). We consider an elementary model of global propagation of an epidemic from Pólya ${ }^{1}$ (1930), where a new individual is uninfected or infected with probability depending on the proportion of already uninfected or infected people. More precisely, we consider an urn with initially $r \in \mathbb{N}^{*}$ red balls and $d \in \mathbb{N}^{*}$ deep blue balls. At each step, pick a ball at random, and put it back in the urn, together with an additional ball of the same color. At step $n \in \mathbb{N}$: there are exactly $r+d+n$ balls in the urn; we denote by S_{n} the number of red balls in the urn; and we set $X_{n+1}=1$ if the ball taken at next step is red and $X_{n+1}=0$ otherwise. Notice that $S_{n}=r+\sum_{k=1}^{n} X_{k}$ for all $n \in \mathbb{N}^{*}$ and $S_{0}=r$. We denote by $\mathbb{F}=\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ the natural filtration of the process $S=\left(S_{n}, n \in \mathbb{N}\right)$.

1. (Properties of the process S.)
(a) Prove that $\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right)=S_{n} /(r+d+n)$.
(b) Is S an homogeneous Markov chain?
2. (Martingales.) We define the process of proportion of red balls $M=\left(M_{n}, n \in \mathbb{N}\right)$ by:

$$
M_{n}=\frac{S_{n}}{r+d+n} .
$$

(a) Prove that M is a martingale.
(b) Prove that the sequence M converges (in what sense?) to a limit, say M_{∞}, and that $\mathbb{E}\left[M_{\infty}\right]=r /(r+d)$.
For $k \in \mathbb{N}^{*}$, we define the processes $M^{(k)}=\left(M_{n}^{(k)}, n \in \mathbb{N}\right)$ by:

$$
M_{n}^{(k)}=\prod_{\ell=0}^{k-1} \frac{S_{n}+\ell}{r+d+n+\ell}
$$

In particular, we have $M=M^{(1)}$.

[^0](c) Prove that $M^{(k)}$ is a martingale for $k \in \mathbb{N}^{*}$.
(d) Prove that $\lim _{n \rightarrow \infty} M_{n}^{(k)}=M_{\infty}^{k}$ a.s. and $\mathbb{E}\left[M_{\infty}^{k}\right]=\prod_{\ell=0}^{k-1}(r+\ell) /(r+d+\ell)$ for $k \in \mathbb{N}^{*}$.
3. (Law of M_{∞}.) Let $Y_{(a, b)}$ be a random variable with $\beta(a, b)$ distribution, where $a>0$ and $b>0$; its density (with respect to the Lebesgue measure) is given by:
$$
f_{(a, b)}(y)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1} \mathbf{1}_{(0,1)}(y) \quad \text { with } \quad \Gamma(r)=\int_{0}^{+\infty} x^{r-1} \mathrm{e}^{-x} d x
$$
(a) Prove that for $k \in \mathbb{N}$:
$$
\mathbb{E}\left[Y_{(a, b)}^{k}\right]=\frac{\Gamma(a+b)}{\Gamma(a+b+k)} \frac{\Gamma(a+k)}{\Gamma(a)} .
$$
(b) Using that $\Gamma(x+1)=x \Gamma(x)$, deduce that $\mathbb{E}\left[M_{\infty}^{k}\right]=\mathbb{E}\left[Y_{(r, d)}^{k}\right]$ for all $k \in \mathbb{N}^{*}$.
(c) Using that $\left|\mathrm{e}^{z}-\sum_{k=0}^{n-1} \frac{z^{k}}{k!}\right| \leq \frac{|z|^{n}}{n!} \mathrm{e}^{|z|}$ for $z \in \mathbb{C}$, prove that if Y, Z are $[0,1]$-valued random variables such that $\mathbb{E}\left[Y^{k}\right]=\mathbb{E}\left[Z^{k}\right]$ for all $k \in \mathbb{N}^{*}$, then Y and Z have the same distribution.
(d) Deduce that M_{∞} has the $\beta(r, d)$ distribution.

This result could be easily generalized: instead of adding one ball of the same color, we add $k_{0} \in \mathbb{N}^{*}$ balls of the same color, then the distribution of the limiting proportion of red balls has the $\beta\left(r / k_{0}, d / k_{0}\right)$ distribution. In the Friedman's urn model ${ }^{23}$ (1949), one adds k_{0} balls of the same color and $\ell_{0} \in \mathbb{N}^{*}$ balls of the other color. On can then prove that the proportion of red balls has a very different behavior as it converges a.s. to $1 / 2$: the limit is no more random and does not depend on the positive parameters r, d, k_{0}, ℓ_{0} of the model!

Exercise 3 (Markov property for Gaussian processes). We say a random process $W=\left(W_{t}, t \in\right.$ \mathbb{R}_{+}) has the Markov property if for all $t \in(0,+\infty)$, conditionally on W_{t} the processes ($W_{u}, u \in$ $[0, t])$ and $\left(W_{v}, v \in[t,+\infty)\right)$ are independent. We shall describe the centered Gaussian processes which enjoy the Markov property.

1. Let (Y, Z, G) be a \mathbb{R}^{3}-valued centered Gaussian vector such that $\operatorname{Var}(G)>0$.
(a) Determine $\alpha, \beta \in \mathbb{R}$ such that $G_{1}=Y-\alpha G$ is independent of G and $G_{2}=Z-\beta G$ is independent of G.
(b) Compute the covariance matrix of random vector $\left(G_{1}, G_{2}\right)$.
(c) Give a necessary and sufficient condition for Y and Z to be independent conditionally on G.
2. Let $X=\left(X_{t}, t \in \mathbb{R}_{+}\right)$be a centered Gaussian process with covariance kernel $K=$ $\left(K(s, t)=\operatorname{Cov}\left(X_{s}, X_{t}\right) ; s, t \in \mathbb{R}_{+}\right)$. We assume that $K(t, t)>0$ for all $t>0$.
(a) Prove that X has the Markov property if and only if:

$$
K(u, v)=\frac{K(u, t) K(t, v)}{K(t, t)} \quad \text { for all } 0 \leq u<t<v
$$

(b) Deduce that a standard Brownian motion has the Markov property.

[^1]
Correction

Exercise 1 1. (a) Clear.

(b) Let $k \in \mathbb{N}$. We have $\{\tau=k\}=\emptyset \in \mathcal{F}_{k}$ if $k \notin\{n, m\},\{\tau=n\}=A \in \mathcal{F}_{n}$, and $\{\tau=m\}=A^{c} \in \mathcal{F}_{n} \subset \mathcal{F}_{m}$. This implies that τ is a stopping time with respect to the filtration \mathbb{F}.
(c) Since τ is a bounded stopping time, we get $\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[M_{0}\right]$ by hypothesis on M. This gives:

$$
\mathbb{E}\left[M_{0}\right]=\mathbb{E}\left[M_{n} \mathbf{1}_{A}+M_{m} \mathbf{1}_{A^{c}}\right]=\mathbb{E}\left[M_{n} \mathbf{1}_{A}\right]+\mathbb{E}\left[M_{m}\right]-\mathbb{E}\left[M_{m} \mathbf{1}_{A}\right] .
$$

Then, use that $\mathbb{E}\left[M_{m}\right]=\mathbb{E}\left[M_{0}\right]$ to conclude.
2. Since $\mathbb{E}\left[M_{m} \mathbf{1}_{A}\right]=\mathbb{E}\left[M_{n} \mathbf{1}_{A}\right]$ for all $A \in \mathcal{F}_{n}$, we deduce that $\mathbb{E}\left[M_{m} \mid \mathcal{F}_{n}\right]=M_{n}$. Since this holds for $m=n+1$ and all $n \in \mathbb{N}$, we get that M is a martingale.

Exercise 2 1. (Properties of the process S.)
(a) By construction, we have $\mathbb{P}\left(X_{n+1}=1 \mid \mathcal{F}_{n}\right)=S_{n} /(r+d+n)$.
(b) We deduce that $\mathbb{P}\left(S_{n+1}=S_{n}+1 \mid \mathcal{F}_{n}\right)=S_{n} /(r+d+n)$ and $\mathbb{P}\left(S_{n+1}=S_{n} \mid \mathcal{F}_{n}\right)=$ $1-S_{n} /(r+d+n)$. This gives that $\mathbb{P}\left(S_{n+1}=\bullet \mid \mathcal{F}_{n}\right)=\mathbb{P}\left(S_{n+1}=\bullet \mid S_{n}\right)$. This implies that S is an in-homogeneous Markov chain on \mathbb{N}^{*} with transition matrices given by $P_{n+1}\left(S_{n}, z\right)=\mathbb{P}\left(S_{n+1}=z \mid \mathcal{F}_{n}\right)$, that is for $s, z \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$:

$$
P_{n+1}(s, z)= \begin{cases}\min (1, s /(r+d+n)) & \text { if } z=s+1 \\ \max (0,(r+d+n-s) /(r+d+n)) & \text { if } z=s \\ 0 & \text { otherwise }\end{cases}
$$

But S is not an homogeneous Markov chain.
2. (Martingales.)
(a) The process M is \mathbb{F}-adapted as \mathbb{F} is the natural filtration of S. We have that $M_{n} \in$ $[0,1]$ for $n \in \mathbb{N}$, and thus the process M is integrable. For $n \in \mathbb{N}$, we have:
$\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=\left(S_{n}+1\right) \mathbb{P}\left(S_{n+1}=S_{n}+1 \mid \mathcal{F}_{n}\right)+S_{n} \mathbb{P}\left(S_{n+1}=S_{n} \mid \mathcal{F}_{n}\right)=S_{n}+\frac{S_{n}}{r+d+n}$.
This gives that $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}$ for $n \in \mathbb{N}$. Thus the process M is a martingale.
(b) The martingale M is non-negative and thus it converges a.s. to a limit, say M_{∞}. Since $M_{n} \in[0,1]$ for all $n \in \mathbb{N}$, we deduce by dominated convergence that M converges also in L^{1} and thus $\lim _{n \rightarrow \infty} \mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[M_{\infty}\right]$. We deduce that:

$$
\mathbb{E}\left[M_{\infty}\right]=\mathbb{E}\left[M_{0}\right]=\frac{r}{r+d} .
$$

(c) The process $M^{(k)}$ is \mathbb{F}-adapted as \mathbb{F} is the natural filtration of S. We have that
$M_{n}^{(k)} \in[0,1]$ for $n \in \mathbb{N}$, and thus the process $M^{(k)}$ is integrable. For $n \in \mathbb{N}$, we have:

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{\ell=0}^{k-1}\left(S_{n+1}+\ell\right) \mid \mathcal{F}_{n}\right] \\
& \quad=\prod_{\ell=0}^{k-1}\left(S_{n}+\ell+1\right) \mathbb{P}\left(S_{n+1}=S_{n}+1 \mid \mathcal{F}_{n}\right)+\prod_{\ell=0}^{k-1}\left(S_{n}+\ell\right) \mathbb{P}\left(S_{n+1}=S_{n} \mid \mathcal{F}_{n}\right) \\
& \quad=\frac{S_{n}+k}{r+d+n} \prod_{\ell=0}^{k-1}\left(S_{n}+\ell\right)+\frac{r+d+n-S_{n}}{r+d+n} \prod_{\ell=0}^{k-1}\left(S_{n}+\ell\right) \\
& \quad=\frac{r+d+n+k}{r+d+n} \prod_{\ell=0}^{k-1}\left(S_{n}+\ell\right) .
\end{aligned}
$$

This gives that $\mathbb{E}\left[M_{n+1}^{(k)} \mid \mathcal{F}_{n}\right]=M_{n}^{(k)}$ for $n \in \mathbb{N}$. Thus the process $M^{(k)}$ is a martingale.
(d) Since

$$
M_{n}^{(k)}=\prod_{\ell=0}^{k-1}\left(M_{n}+\frac{\ell}{r+d+n}\right) \frac{r+d+n}{r+d+n+\ell},
$$

We deduce that $\lim _{n \rightarrow \infty} M_{n}^{(k)}=M_{\infty}^{k}$. Since $M_{n}^{(k)}$ is bounded by 1 for all $n \in \mathbb{N}$ and $k \geq 2$, we get by dominated convergence that $\lim _{n \rightarrow \infty} \mathbb{E}\left[M_{n}^{(k)}\right]=\mathbb{E}\left[M_{\infty}^{k}\right]$ and thus:

$$
\mathbb{E}\left[M_{\infty}^{k}\right]=\mathbb{E}\left[M_{0}^{(k)}\right]=\prod_{\ell=0}^{k-1} \frac{r+\ell}{r+d+\ell}
$$

3. (Law of M_{∞}.)
(a) Since $f_{(a+k, b)}$ is a probability density, we have for $k \in \mathbb{N}$:

$$
\begin{aligned}
\mathbb{E}\left[Y_{(a, b)}^{k}\right]=\int y^{k} f_{(a, b)}(y) d y & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(a+k) \Gamma(b)}{\Gamma(a+b+k)} \int f_{(a+k, b)}(y) d y \\
& =\frac{\Gamma(a+b)}{\Gamma(a+b+k)} \frac{\Gamma(a+k)}{\Gamma(a)}
\end{aligned}
$$

(b) Since $\Gamma(r+d+k+1)=\Gamma(r+d) \prod_{\ell=0}^{k}(r+d+\ell)$ and $\Gamma(r+k+1)=\Gamma(r) \prod_{\ell=0}^{k}(r+\ell)$ for $k \in \mathbb{N}$, we deduce from Questions 2.(b) and 2.(d) that for $k \in \mathbb{N}$:

$$
\mathbb{E}\left[Y_{(r, d)}^{k+1}\right]=\prod_{\ell=0}^{k} \frac{r+\ell}{r+d+\ell}=\mathbb{E}\left[M_{\infty}^{k+1}\right] .
$$

(c) Let X be a random variable taking values in $[0,1]$ and ψ_{X} be its characteristic function. Let $u \in \mathbb{R}$. We have:

$$
\left|\psi_{X}(u)-\sum_{k=0}^{n-1} \frac{u^{k} \mathbb{E}\left[X^{k}\right]}{k!}\right| \leq \mathbb{E}\left[\left|\mathrm{e}^{i u X}-\sum_{k=0}^{n-1} \frac{(u X)^{k}}{k!}\right|\right] \leq \frac{|u|^{n} \mathbb{E}\left[X^{n}\right]}{n!} \leq \frac{|u|^{n}}{n!} .
$$

We deduce that if X and Y are random variables taking values in $[0,1]$ such that $\mathbb{E}\left[X^{k}\right]=\mathbb{E}\left[Y^{k}\right]$ for all $k \in \mathbb{N}^{*}$, then $\psi_{X}=\psi_{Y}$ and thus X and Y have the same law.
(d) Using the previous questions, we get that M_{∞} has distribution $\beta(r, d)$.

Exercise 3 1. (a) Since (Y, G) is a Gaussian vector, we deduce that $(Y-\alpha G, G)$ is also a Gaussian vector. Since $\operatorname{Cov}(Y-\alpha G, G)=\operatorname{Cov}(Y, G)-\alpha \operatorname{Var}(G, G)$, we get that $Y-\alpha G$ and G are independent if and only if $\alpha=\operatorname{Cov}(Y, G) / \operatorname{Var}(G)$. We prove similarly that $Z-\beta G$ and G are independent if and only if $\beta=\operatorname{Cov}(Z, G) / \operatorname{Var}(G)$.
(b) We have $\operatorname{Var}\left(G_{1}\right)=\operatorname{Var}(Y-\alpha G)=\left(\operatorname{Var}(Y) \operatorname{Var}(G)-\operatorname{Cov}(Y, G)^{2}\right) / \operatorname{Var}(G)$. Similarly, we have $\operatorname{Var}\left(G_{2}\right)=\left(\operatorname{Var}(Z) \operatorname{Var}(G)-\operatorname{Cov}(Z, G)^{2}\right) / \operatorname{Var}(G)$. We also have:

$$
\operatorname{Cov}\left(G_{1}, G_{2}\right)=\operatorname{Cov}(Y-\alpha G, Z-\beta G)=\frac{\operatorname{Cov}(Y, Z) \operatorname{Var}(G)-\operatorname{Cov}(Y, G) \operatorname{Cov}(Z, G)}{\operatorname{Var}(G)}
$$

(c) Since (Y, Z) is conditionally on G distributed as $\left(G_{1}+\alpha G, G_{2}+\beta G\right)$, we deduce that Y and Z are independent conditionally on G if and only if G_{1} and G_{2} are independent. Since $\left(G_{1}, G_{2}\right)$ is a Gaussian vector, we get that G_{1} and G_{2} are independent if and only if $\operatorname{Cov}\left(G_{1}, G_{2}\right)=0$ that is, according to the previous question:

$$
\operatorname{Cov}(Y, Z) \operatorname{Var}(G)=\operatorname{Cov}(Y, G) \operatorname{Cov}(Z, G) .
$$

2. (a) Since the distribution of a process is characterised by the distribution of its finite marginals, we get that the process X has the Markov property if and only if for all $m, n \in \mathbb{N}^{*}, t \in(0,+\infty), u_{1}, \ldots, u_{m} \in[0, t)$ and $v_{1}, \ldots, v_{n} \in(t,+\infty)$, we have that $\left(X_{u_{1}}, \ldots, X_{u_{m}}\right)$ and $\left(X_{v_{1}}, \ldots, X_{v_{n}}\right)$ are independent conditionally on X_{t}. Because $\left(X_{u_{1}}, \ldots, X_{u_{m}}, X_{t}, X_{v_{1}}, \ldots, X_{v_{n}}\right)$ is a Gaussian vector, this is equivalent to X_{u} and X_{v} being independent conditionally on X_{t} for any choice of $u \in[0, t)$ and $v \in(t,+\infty)$. According to Question 1(c), this is equivalent to:

$$
\begin{equation*}
K(u, v) K(t, t)=K(u, t) K(t, v) \quad \text { for all } 0 \leq u<t<v . \tag{1}
\end{equation*}
$$

(b) The covariance kernel $K=\left(K(s, t) ; s, t \in \mathbb{R}_{+}\right)$of a standard Brownian motion is given by $K(s, t)=s \wedge t$. Notice that for this covariance kernel (1) holds trivially. Hence a standard Brownian motion has the Markov property.

[^0]: ${ }^{1}$ G. Pólya. Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré, 1(2):117-161, 1930.

[^1]: ${ }^{2}$ D. Freedman. Bernard Friedman's urn. Ann. Math. Statist., 36:956-970, 1965.
 ${ }^{3}$ R. Pemantle. A survey of random processes with reinforcement. Probability Surveys, 4:1-79, 2007.

