
Stochastic Process (ENPC)
Monday, 27th of January 2021 (2h30)

Vocabulary (english/français): urn=urne; distribution =loi ; positive = strictement positif.

We shall assume that all the random variables are defined on a probability space (Ω,F ,P).

Exercise 1 (Characterisation of martingales). Let F = (Fn, n ∈ N) be a filtration. Let M =
(Mn, n ∈ N) be an F-adapted integrable process such that for all bounded stopping time τ , we
have E[Mτ ] = E[M0]. We shall prove that M is then a martingale.

1. Let m > n ∈ N and A ∈ Fn.

(a) Check that E[Mm] = E[Mn].

(b) Prove that τ = n1A +m1Ac is a F-stopping time.

(c) Prove that E[Mm1A] = E[Mn1A].

2. Deduce that M is a martingale.

4

Exercise 2 (Pólya’s urn or the progress of an epidemic). We consider an elementary model of
global propagation of an epidemic from Pólya 1 (1930), where a new individual is uninfected or
infected with probability depending on the proportion of already uninfected or infected people.
More precisely, we consider an urn with initially r ∈ N∗ red balls and d ∈ N∗ deep blue balls.
At each step, pick a ball at random, and put it back in the urn, together with an additional ball
of the same color. At step n ∈ N: there are exactly r + d+ n balls in the urn; we denote by Sn
the number of red balls in the urn; and we set Xn+1 = 1 if the ball taken at next step is red and
Xn+1 = 0 otherwise. Notice that Sn = r +

∑n
k=1Xk for all n ∈ N∗ and S0 = r. We denote by

F = (Fn, n ∈ N) the natural filtration of the process S = (Sn, n ∈ N).

1. (Properties of the process S.)

(a) Prove that P(Xn+1 = 1| Fn) = Sn/(r + d+ n).

(b) Is S an homogeneous Markov chain?

2. (Martingales.) We define the process of proportion of red balls M = (Mn, n ∈ N) by:

Mn =
Sn

r + d+ n
·

(a) Prove that M is a martingale.

(b) Prove that the sequence M converges (in what sense?) to a limit, say M∞, and that
E[M∞] = r/(r + d).

For k ∈ N∗, we define the processes M (k) = (M
(k)
n , n ∈ N) by:

M (k)
n =

k−1∏
`=0

Sn + `

r + d+ n+ `
·

In particular, we have M = M (1).

1G. Pólya. Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré, 1(2):117-161, 1930.
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(c) Prove that M (k) is a martingale for k ∈ N∗.
(d) Prove that limn→∞M

(k)
n = Mk

∞ a.s. and E[Mk
∞] =

∏k−1
`=0 (r+`)/(r+d+`) for k ∈ N∗.

3. (Law of M∞.) Let Y(a,b) be a random variable with β(a, b) distribution, where a > 0 and
b > 0; its density (with respect to the Lebesgue measure) is given by:

f(a,b)(y) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1 1(0,1)(y) with Γ(r) =

∫ +∞

0
xr−1 e−x dx.

(a) Prove that for k ∈ N:

E
[
Y k
(a,b)

]
=

Γ(a+ b)

Γ(a+ b+ k)

Γ(a+ k)

Γ(a)
·

(b) Using that Γ(x+ 1) = xΓ(x), deduce that E[Mk
∞] = E[Y k

(r,d)] for all k ∈ N∗.

(c) Using that
∣∣∣ez −∑n−1

k=0
zk

k!

∣∣∣ ≤ |z|n
n! e|z| for z ∈ C, prove that if Y,Z are [0, 1]-valued

random variables such that E[Y k] = E[Zk] for all k ∈ N∗, then Y and Z have the
same distribution.

(d) Deduce that M∞ has the β(r, d) distribution.

This result could be easily generalized: instead of adding one ball of the same color, we add
k0 ∈ N∗ balls of the same color, then the distribution of the limiting proportion of red balls has
the β(r/k0, d/k0) distribution. In the Friedman’s urn model 2 3 (1949), one adds k0 balls of the
same color and `0 ∈ N∗ balls of the other color. On can then prove that the proportion of red
balls has a very different behavior as it converges a.s. to 1/2: the limit is no more random and
does not depend on the positive parameters r, d, k0, `0 of the model! 4
Exercise 3 (Markov property for Gaussian processes). We say a random process W = (Wt, t ∈
R+) has the Markov property if for all t ∈ (0,+∞), conditionally on Wt the processes (Wu, u ∈
[0, t]) and (Wv, v ∈ [t,+∞)) are independent. We shall describe the centered Gaussian processes
which enjoy the Markov property.

1. Let (Y, Z,G) be a R3-valued centered Gaussian vector such that Var(G) > 0.

(a) Determine α, β ∈ R such that G1 = Y − αG is independent of G and G2 = Z − βG
is independent of G.

(b) Compute the covariance matrix of random vector (G1, G2).

(c) Give a necessary and sufficient condition for Y and Z to be independent conditionally
on G.

2. Let X = (Xt, t ∈ R+) be a centered Gaussian process with covariance kernel K =
(K(s, t) = Cov(Xs, Xt); s, t ∈ R+). We assume that K(t, t) > 0 for all t > 0.

(a) Prove that X has the Markov property if and only if:

K(u, v) =
K(u, t)K(t, v)

K(t, t)
for all 0 ≤ u < t < v.

(b) Deduce that a standard Brownian motion has the Markov property.

4
2D. Freedman. Bernard Friedman’s urn. Ann. Math. Statist., 36:956-970, 1965.
3R. Pemantle. A survey of random processes with reinforcement. Probability Surveys, 4:1-79, 2007.
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Correction

Exercise 1 1. (a) Clear.

(b) Let k ∈ N. We have {τ = k} = ∅ ∈ Fk if k 6∈ {n,m}, {τ = n} = A ∈ Fn, and
{τ = m} = Ac ∈ Fn ⊂ Fm. This implies that τ is a stopping time with respect to
the filtration F.

(c) Since τ is a bounded stopping time, we get E[Mτ ] = E[M0] by hypothesis on M . This
gives:

E[M0] = E[Mn1A +Mm1Ac ] = E[Mn1A] + E[Mm]− E[Mm1A].

Then, use that E[Mm] = E[M0] to conclude.

2. Since E[Mm1A] = E[Mn1A] for all A ∈ Fn, we deduce that E[Mm| Fn] = Mn. Since this
holds for m = n+ 1 and all n ∈ N, we get that M is a martingale.

Exercise 2 1. (Properties of the process S.)

(a) By construction, we have P(Xn+1 = 1| Fn) = Sn/(r + d+ n).

(b) We deduce that P(Sn+1 = Sn + 1| Fn) = Sn/(r + d + n) and P(Sn+1 = Sn| Fn) =
1− Sn/(r+ d+ n). This gives that P(Sn+1 = •| Fn) = P(Sn+1 = •|Sn). This implies
that S is an in-homogeneous Markov chain on N∗ with transition matrices given by
Pn+1(Sn, z) = P(Sn+1 = z| Fn), that is for s, z ∈ N∗ and n ∈ N:

Pn+1(s, z) =


min

(
1, s/(r + d+ n)

)
if z = s+ 1,

max
(

0, (r + d+ n− s)/(r + d+ n)
)

if z = s,

0 otherwise.

But S is not an homogeneous Markov chain.

2. (Martingales.)

(a) The process M is F-adapted as F is the natural filtration of S. We have that Mn ∈
[0, 1] for n ∈ N, and thus the process M is integrable. For n ∈ N, we have:

E [Sn+1| Fn] = (Sn+1)P(Sn+1 = Sn+1| Fn)+SnP(Sn+1 = Sn| Fn) = Sn+
Sn

r + d+ n
·

This gives that E[Mn+1| Fn] = Mn for n ∈ N. Thus the process M is a martingale.

(b) The martingale M is non-negative and thus it converges a.s. to a limit, say M∞. Since
Mn ∈ [0, 1] for all n ∈ N, we deduce by dominated convergence that M converges
also in L1 and thus limn→∞ E[Mn] = E[M∞]. We deduce that:

E[M∞] = E[M0] =
r

r + d
·

(c) The process M (k) is F-adapted as F is the natural filtration of S. We have that
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M
(k)
n ∈ [0, 1] for n ∈ N, and thus the process M (k) is integrable. For n ∈ N, we have:

E

[
k−1∏
`=0

(Sn+1 + `)
∣∣∣Fn]

=
k−1∏
`=0

(Sn + `+ 1)P(Sn+1 = Sn + 1| Fn) +
k−1∏
`=0

(Sn + `)P(Sn+1 = Sn| Fn)

=
Sn + k

r + d+ n

k−1∏
`=0

(Sn + `) +
r + d+ n− Sn
r + d+ n

k−1∏
`=0

(Sn + `)

=
r + d+ n+ k

r + d+ n

k−1∏
`=0

(Sn + `)·

This gives that E[M
(k)
n+1| Fn] = M

(k)
n for n ∈ N. Thus the process M (k) is a martingale.

(d) Since

M (k)
n =

k−1∏
`=0

(
Mn +

`

r + d+ n

)
r + d+ n

r + d+ n+ `
,

We deduce that limn→∞M
(k)
n = Mk

∞. Since M
(k)
n is bounded by 1 for all n ∈ N and

k ≥ 2, we get by dominated convergence that limn→∞ E[M
(k)
n ] = E[Mk

∞] and thus:

E
[
Mk
∞

]
= E

[
M

(k)
0

]
=

k−1∏
`=0

r + `

r + d+ `
·

3. (Law of M∞.)

(a) Since f(a+k,b) is a probability density, we have for k ∈ N:

E
[
Y k
(a,b)

]
=

∫
yk f(a,b)(y) dy =

Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ k)Γ(b)

Γ(a+ b+ k)

∫
f(a+k,b)(y) dy

=
Γ(a+ b)

Γ(a+ b+ k)

Γ(a+ k)

Γ(a)
·

(b) Since Γ(r+ d+ k+ 1) = Γ(r+ d)
∏k
`=0(r+ d+ `) and Γ(r+ k+ 1) = Γ(r)

∏k
`=0(r+ `)

for k ∈ N, we deduce from Questions 2.(b) and 2.(d) that for k ∈ N:

E
[
Y k+1
(r,d)

]
=

k∏
`=0

r + `

r + d+ `
= E

[
Mk+1
∞

]
.

(c) Let X be a random variable taking values in [0, 1] and ψX be its characteristic func-
tion. Let u ∈ R. We have:∣∣∣∣∣ψX(u)−

n−1∑
k=0

ukE[Xk]

k!

∣∣∣∣∣ ≤ E

[∣∣∣∣∣eiuX −
n−1∑
k=0

(uX)k

k!

∣∣∣∣∣
]
≤ |u|

nE [Xn]

n!
≤ |u|

n

n!
·

We deduce that if X and Y are random variables taking values in [0, 1] such that
E[Xk] = E[Y k] for all k ∈ N∗, then ψX = ψY and thus X and Y have the same law.
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(d) Using the previous questions, we get that M∞ has distribution β(r, d).

Exercise 3 1. (a) Since (Y,G) is a Gaussian vector, we deduce that (Y − αG,G) is also
a Gaussian vector. Since Cov(Y − αG,G) = Cov(Y,G) − αVar(G,G), we get that
Y − αG and G are independent if and only if α = Cov(Y,G)/Var(G). We prove
similarly that Z − βG and G are independent if and only if β = Cov(Z,G)/Var(G).

(b) We have Var(G1) = Var(Y − αG) =
(
Var(Y ) Var(G)− Cov(Y,G)2

)
/Var(G). Simi-

larly, we have Var(G2) =
(
Var(Z) Var(G)− Cov(Z,G)2

)
/Var(G). We also have:

Cov(G1, G2) = Cov(Y − αG,Z − βG) =
Cov(Y, Z) Var(G)− Cov(Y,G) Cov(Z,G)

Var(G)
·

(c) Since (Y, Z) is conditionally on G distributed as (G1 +αG,G2 +βG), we deduce that
Y and Z are independent conditionally on G if and only if G1 and G2 are independent.
Since (G1, G2) is a Gaussian vector, we get that G1 and G2 are independent if and
only if Cov(G1, G2) = 0 that is, according to the previous question:

Cov(Y, Z) Var(G) = Cov(Y,G) Cov(Z,G).

2. (a) Since the distribution of a process is characterised by the distribution of its finite
marginals, we get that the process X has the Markov property if and only if for all
m,n ∈ N∗, t ∈ (0,+∞), u1, . . . , um ∈ [0, t) and v1, . . . , vn ∈ (t,+∞), we have that
(Xu1 , . . . , Xum) and (Xv1 , . . . , Xvn) are independent conditionally on Xt. Because
(Xu1 , . . . , Xum , Xt, Xv1 , . . . , Xvn) is a Gaussian vector, this is equivalent to Xu and
Xv being independent conditionally on Xt for any choice of u ∈ [0, t) and v ∈ (t,+∞).
According to Question 1(c), this is equivalent to:

K(u, v)K(t, t) = K(u, t)K(t, v) for all 0 ≤ u < t < v. (1)

(b) The covariance kernel K = (K(s, t); s, t ∈ R+) of a standard Brownian motion is
given by K(s, t) = s ∧ t. Notice that for this covariance kernel (1) holds trivially.
Hence a standard Brownian motion has the Markov property.
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