Stochastic Process (ENPC)
Monday, 27th of January 2021 (2h30)

Vocabulary (english/francais): urn=urne; distribution =loi; positive = strictement positif.
We shall assume that all the random variables are defined on a probability space (2, F,P).
Exercise 1 (Characterisation of martingales). Let F = (F,,n € N) be a filtration. Let M =

(M,,n € N) be an F-adapted integrable process such that for all bounded stopping time 7, we
have E[M;] = E[Mj]. We shall prove that M is then a martingale.

1. Let m>néeNand A € F,.

(a) Check that E[M,,] = E[M,].
(b) Prove that 7 =nl + ml4c is a F-stopping time.
(c) Prove that E[M,,14] = E[M,14].

2. Deduce that M is a martingale.
A

Exercise 2 (Pdlya’s urn or the progress of an epidemic). We consider an elementary model of
global propagation of an epidemic from Pélya ' (1930), where a new individual is uninfected or
infected with probability depending on the proportion of already uninfected or infected people.
More precisely, we consider an urn with initially » € N* red balls and d € N* deep blue balls.
At each step, pick a ball at random, and put it back in the urn, together with an additional ball
of the same color. At step n € N: there are exactly r + d + n balls in the urn; we denote by S,
the number of red balls in the urn; and we set X,,+1 = 1 if the ball taken at next step is red and
Xp+1 = 0 otherwise. Notice that S, = r + 22:1 X, for all n € N* and Sy = r. We denote by
F = (Fn,n € N) the natural filtration of the process S = (Sp,n € N).

1. (Properties of the process S.)
(a) Prove that P(X,,11 = 1| F,) = Sn/(r +d+n).

(b) Is S an homogeneous Markov chain?
2. (Martingales.) We define the process of proportion of red balls M = (M,,,n € N) by:

Sn
Ol s
(a) Prove that M is a martingale.
(b) Prove that the sequence M converges (in what sense?) to a limit, say M, and that
E[My] =r/(r +d).

For k € N*, we define the processes M*) = (MT(Lk), n € N) by:

k—1
S+ 1
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In particular, we have M = M.

'G. Pélya. Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré, 1(2):117-161, 1930.



(¢) Prove that M®*) is a martingale for k € N*.
(d) Prove that lim, e M = M% a.s. and E[M%) = [[F2L(r+0)/(r+d+0) for k € N*.

3. (Law of M.) Let Y(43) be a random variable with 3(a,b) distribution, where a > 0 and
b > 0; its density (with respect to the Lebesgue measure) is given by:

F(CL + b) 1 b—1 . /+oo -1 -
— 2T a1 = 1 h T'(r)= " ?dx.
f(a,b) (y) F(a)F(b) Yy ( y) (0,1) (y) wit (’f') 0 Z e dx
(a) Prove that for k € N:
Ia+b) T(a+k)
k g .
E [Y@vb)} " Tla+b+k) T(a)

(b) Using that I'(z 4+ 1) = 2T'(z), deduce that E[ME] = E[Y(ﬁ d)] for all k € N*.

(c¢) Using that |e* —ZZ;(% %lf < ‘fl—l,n el for z € C, prove that if Y, Z are [0, 1]-valued

random variables such that E[Y*] = E[Z¥] for all k € N*, then Y and Z have the
same distribution.

(d) Deduce that M., has the B(r,d) distribution.

This result could be easily generalized: instead of adding one ball of the same color, we add
ko € N* balls of the same color, then the distribution of the limiting proportion of red balls has
the ((r/ko,d/ko) distribution. In the Friedman’s urn model 2 3 (1949), one adds kg balls of the
same color and £y € N* balls of the other color. On can then prove that the proportion of red
balls has a very different behavior as it converges a.s. to 1/2: the limit is no more random and
does not depend on the positive parameters r, d, kg, £y of the model! A

Exercise 3 (Markov property for Gaussian processes). We say a random process W = (W, t €
R ) has the Markov property if for all ¢ € (0, +00), conditionally on W, the processes (W, u €
[0,%]) and (W,,v € [t,+00)) are independent. We shall describe the centered Gaussian processes
which enjoy the Markov property.

1. Let (Y, Z,G) be a R3-valued centered Gaussian vector such that Var(G) > 0.

(a) Determine «, 8 € R such that G; =Y — aG is independent of G and Gy = Z — G
is independent of G.

(b) Compute the covariance matrix of random vector (G1, G2).

(c) Give a necessary and sufficient condition for Y and Z to be independent conditionally
on G.

2. Let X = (Xy,t € R;) be a centered Gaussian process with covariance kernel K =
(K(s,t) = Cov(Xs, X¢); s,t € Ry). We assume that K(t,t) > 0 for all £ > 0.
(a) Prove that X has the Markov property if and only if:
K(u,t)K(t,v)
K(t,t)
(b) Deduce that a standard Brownian motion has the Markov property.

K(u,v) = forall 0 <u<t<w.

2D. Freedman. Bernard Friedman’s urn. Ann. Math. Statist., 36:956-970, 1965.
3R. Pemantle. A survey of random processes with reinforcement. Probability Surveys, 4:1-79, 2007.



Correction

FEzercise 1 1. (a) Clear.

(b) Let k € N. We have {tr =k} =0 € Frif k & {n,m}, {r =n} = A € F,, and
{r =m} = A° € F,, C F,- This implies that 7 is a stopping time with respect to
the filtration F.

(c) Since 7 is a bounded stopping time, we get E[M;] = E[Mp] by hypothesis on M. This
gives:
E[My] = E[M,14 + M1 4c] = E[M,14] + E[M,,] — E[M,,14].

Then, use that E[M,,] = E[My] to conclude.

2. Since E[M,,14] = E[M,14] for all A € F,, we deduce that E[M,,|F,] = M,. Since this
holds for m =n + 1 and all n € N, we get that M is a martingale.

Ezercise 2 1. (Properties of the process S.)

(a) By construction, we have P(X,,11 = 1| F,) = S, /(r +d +n).

(b) We deduce that P(Sp,41 = S, + 1| Fp) = Sp/(r +d+n) and P(Spq1 = Sp| Fn) =
1—5,/(r+d+n). This gives that P(S,+1 = | F,,) = P(Sp+1 = | S,). This implies
that S is an in-homogeneous Markov chain on N* with transition matrices given by
Pri1(Sn, 2) = P(Sp4+1 = 2| Fr), that is for s,z € N* and n € N:

min(l,s/(r—l—d—i—n)) it z=s5+1,
Poyi(s,z) = maX(O,(T+d+nfs)/(r+d+n)> if z=s,
0 otherwise.

But S is not an homogeneous Markov chain.
2. (Martingales.)

(a) The process M is F-adapted as F is the natural filtration of S. We have that M, €
[0,1] for n € N, and thus the process M is integrable. For n € N, we have:

Sn

E [St] Fal = (Su+ DB(Snt1 = Sa+11F) + SuP(Snpr = Sl Fo) = St ——

This gives that E[M,,11| F,] = M, for n € N. Thus the process M is a martingale.

(b) The martingale M is non-negative and thus it converges a.s. to a limit, say M. Since
M, € [0,1] for all n € N, we deduce by dominated convergence that M converges
also in L' and thus lim,, o E[M,] = E[M,]. We deduce that:

r
r+d

E[Moo] = E[MO} =

(¢) The process M*) is F-adapted as F is the natural filtration of S. We have that



M,,(Lk) € [0,1] for n € N, and thus the process M®) ig integrable. For n € N, we have:

k—1
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£=0
— k-1
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= 20 T TT(Sn+0) + " T](Sn + ¢
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k—1
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This gives that E| n—i-l‘ Fnl = M for n € N. Thus the process M *) is a martingale.

(d) Since
k—1
L r+d+n
M) = M,
n g( +r+d+n) r+d+nA4L

We deduce that lim,, MT(Lk) = Mfo Since M,gk) is bounded by 1 for all n € N and

k > 2, we get by dominated convergence that lim,, E[Mr(lk)] = E[ME] and thus:

e [ut] e ] =TT 5L

3. (Law of M.)
(a) Since f(q1kp) is a probability density, we have for k € N:

Fla+b) T'(a+ k)L'(b
E [}/(lfz,b)} - /yk f(a,b)(y) dy = F((a)_l"‘_(b)) ].—‘((CL—:— b)—|—(k‘)) /f(a+k,b)(y) dy
I'(a+d) T(a+k)
Lla+b+k) I'(a)

(b) Since T(r+d+k-+1) =T(r+d) [[}_o(r+d+£) and T(r+k+1) = T(r) [Ty (r +£)
for k € N, we deduce from Questions 2.(b) and 2.(d) that for k¥ € N:

k
ovty] =115 -2 o]

(c) Let X be a random variable taking values in [0, 1] and ¢ x be its characteristic func-
tion. Let u € R. We have:

n—1 g k n—1 k n n n

T uE[X"] X 3 (uX) [u["E[X"] _ |ul
l/Jx(u)— ol <E [e X _ i < oy < oy .

P ! P ! ! !

We deduce that if X and Y are random variables taking values in [0, 1] such that
E[X*] = E[Y*] for all k € N*, then 1y = 1y and thus X and Y have the same law.
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(d) Using the previous questions, we get that M, has distribution §(r,d).

Ezercise 3 1. (a) Since (Y,G) is a Gaussian vector, we deduce that (Y — aG,G) is also
a Gaussian vector. Since Cov(Y — aG,G) = Cov(Y,G) — aVar(G, G), we get that
Y — aG and G are independent if and only if o = Cov(Y,G)/ Var(G). We prove
similarly that Z — SG and G are independent if and only if 8 = Cov(Z, G)/ Var(G).

(b) We have Var(Gq) = Var(Y — aG) = (Var(Y) Var(G) — Cov(Y, G)?) / Var(G). Simi-
larly, we have Var(G3) = (Var(Z) Var(G) — Cov(Z,G)?) / Var(G). We also have:
Cov(Y, Z) Var(G) — Cov(Y,G) Cov(Z,G)

Cov(G1,G2) = Cov(Y —aG,Z — BG) = Var(G) :

(c) Since (Y, Z) is conditionally on G distributed as (G1 + aG, G2 + SG), we deduce that
Y and Z are independent conditionally on G if and only if G; and G2 are independent.
Since (G1,G2) is a Gaussian vector, we get that G; and Gy are independent if and
only if Cov(G1,G2) = 0 that is, according to the previous question:

Cov(Y, Z) Var(G) = Cov(Y, G) Cov(Z, G).

2. (a) Since the distribution of a process is characterised by the distribution of its finite
marginals, we get that the process X has the Markov property if and only if for all
m,n € N*, t € (0,4+00), u1,...,un € [0,t) and vy,...,v, € (t,+00), we have that
(Xuys .-y Xu,) and (Xy,,..., Xy, ) are independent conditionally on X;. Because
(Xugy ooy Xupyr Xty Xogy - - Xy, ) 18 a Gaussian vector, this is equivalent to X, and
X, being independent conditionally on X; for any choice of u € [0,t) and v € (¢, +00).
According to Question 1(c), this is equivalent to:

K(u,v)K(t,t) = K(u,t)K(t,v) foral0<u<t<w. (1)

(b) The covariance kernel K = (K (s,t); s,t € R;) of a standard Brownian motion is
given by K(s,t) = s At. Notice that for this covariance kernel (1) holds trivially.
Hence a standard Brownian motion has the Markov property.



