
Stochastic Process (ENPC)
Monday, 24th of January 2022 (2h30)

Vocabulary (english/français): positive = strictement positif ; shift= décalage.

Exercise 1 (Martingale and law of large numbers). Let (Ω,F ,P) be a probability space with a
filtration F = (Fn, n ∈ N). Let M = (Mn, n ∈ N) be a martingale, α > 0 and c finite such that
E[M2

n] ≤ c nα for all n ∈ N. Let β > α/2. We shall prove that:

a.s. lim
n→∞

n−βMn = 0. (1)

For λ > 0 and n ∈ N, we consider the event An(λ) = {max2n≤k<2n+1 k−β|Mk| ≥ λ}. We also
recall the maximal inequality E

[
sup0≤k≤n |Mk|p

]
≤ CpE [|Mn|p] which holds for all p > 1 and

n ∈ N with Cp = (p/(p− 1))p.

1. Using the maximal inequality, prove that P (An(λ)) ≤ (λ2βn)−2C2 E
[
M2

2n+1

]
.

2. Prove that E
[∑∞

n=1 1An(1/n)

]
is finite.

3. Deduce that Equation (1) holds.

4. Let (Yn, n ∈ N∗) be independent identically distributed real-valued random variables with
finite variance. Using the martingale (

∑n
k=1 Yk − E[Yk], n ∈ N), recover the strong law of

large numbers.
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Exercise 2 (Random walk in random environment). We shall study the velocity of the simple
random walk in a random environment1 and prove that it is slower than the velocity of the
simple random walk in a constant deterministic environment with the same mean drift. This
phenomenon appears in more general physical models (disordered media, DNA unzipping, ...).
For the proof, we shall adopt in the last question the point of view of the random environment
seen from the random walk2.

Let ε0 ∈ (0, 1/2) and E = [ε0, 1− ε0]Z be the set of [ε0, 1− ε0]-valued sequences indexed by
Z (the product space E is endowed with the product σ-field). An environment is a sequence

p = (p(k), k ∈ Z) ∈ E, and we shall set q(k) = 1− p(k) for k ∈ Z. A random walk X =

(Xn, n ∈ N) in the given environment p is, under the probability measure Pp, an inhomogeneous
Markov chain such that X0 = 0 and for all n ∈ N:

Pp(Xn+1 = Xn + 1| Fn) = p(Xn) = 1−Pp(Xn+1 = Xn − 1| Fn),

where F = (Fn = σ(X0, . . . , Xn), n ∈ N) is the natural filtration of the process X, see also
Figure 1 for a representation of the transition probabilities.

k − 1 k k + 1 · · ·· · ·

p(k)q(k) = 1− p(k)

Figure 1: Transition probabilities for the simple random walk X on Z in the environment p.

1F. Solomon. Random walks in random environment. Ann. Probab., 3:1-31, 1975.
2A.-S. Sznitman. Topics in random walks in random environment. School and Conference on Probability

Theory, ICTP Lect. Notes. XVII: 203-266, 2004.
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1. We set M0 = 0 and Mn = Xn −X0 −
∑n−1

k=0(p(Xk)− q(Xk)) for n ∈ N∗.

(a) Prove that (Mn, n ∈ N) is a martingale in L2.

(b) Check that E[M2
n] = E[(Mn −Mn−1)

2] + E[M2
n−1] and deduce that E[M2

n] ≤ 4n.

(c) Deduce from Equation (1) of Exercise 1 that:

Pp-a.s. lim
n→∞

Xn

n
− 1

n

n∑
k=1

(p(Xk)− q(Xk)) = 0. (2)

2. For i ∈ Z, we set Πi,i(p) = 1 and for j > i:

Πi,j(p) =

j∏
r=i+1

q(r)

p(r)
· (3)

We consider the measurable function h defined on Z× E by h(0, p) = 0 and for k 6= 0:

h(k, p) = −
k−1∑
`=0

Π0,`(p) if k > 0, and h(k, p) =
−1∑
`=k

1

Π`,0(p)
if k < 0.

(a) Check that h(1, p) = −1, h(−1, p) = p(0)/q(0), and that k 7→ h(k, p) is strictly
decreasing on Z.

(b) Prove that N = (Nn = h(Xn, p), n ∈ N) is a martingale.

(c) Assume that:

c(p) := − lim
k→∞

h(k, p) < +∞ and lim
k→−∞

h(k, p) = +∞. (4)

Using the non-negative martingale N + c(p), prove that Pp-a.s. limn→∞Xn = +∞.

From now on, we assume that, under the probability measure P, p = (p(k), k ∈ Z) is a
sequence of independent [ε0, 1 − ε0]-valued random variable with the same distribution. The
probability measure Pp can then be seen as P conditionally on the environment p being given.
We assume that E[log(R)] < 0, where:

R =
q(0)

p(0)
, and we set v =

1− E[R]

1 + E[R]
·

3. We shall prove that P-a.s. limn→∞Xn = +∞.

(a) Prove that P-a.s. lim`→∞
1
` log (Π0,`(p)) = lim`→−∞

1
` log

(
Π`,0(p)

−1) = E[log(R)].

(b) Deduce that P-a.s. the two convergences of Equation (4) hold.

(c) Deduce from Question 2c that P-a.s. limn→∞Xn = +∞.

4. We introduce some notations and give some independent results.

(a) Check that E[R] < 1, so that v > 0. Prove that E[1/p(0)] ≥ 1/E[p(0)] and then that
v ≤ E[p(0)]− E[q(0)], with a strict inequality if p(0) is not a.s. equal to a constant.
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We set:

g(p) = v (1 +R) c(p) with c(p) =

∞∑
`=0

Π0,`(p),

where Π0,`(p) is defined in Equation (3). Recall that c(p) is finite P-a.s., see Question 3b.

(b) Prove that g(p) is positive and that E[g(p)] = 1.

For ` ∈ Z, we define the “shift by `” function, S`, from E to itself by:

S`(η) = (η(k + `), k ∈ Z) where η = (η(k), k ∈ Z) ∈ E.

(c) Check that p and S1(p) have the same distribution.

(d) Let f be a non-negative measurable function defined on E. Prove that:

E [c(p) f ◦ S1(p)] = E [(1 +Rc(p)) f(p)] ,

E [Rc(p) f ◦ S−1(p)] = E [(c(p)− 1) f(p)] .
(5)

5. We consider the environment seen by the random walk as the E-valued process Z =
(Zn = SXn(p), n ∈ N), so that Z0 = p, and its natural filtration G = (Gn, n ∈ N), with
Gn = σ(Z0, . . . , Zn) = σ(p,X1, . . . , Xn).

(a) Let f be a bounded measurable function defined on E. Prove that for all n ∈ N:

P-a.s., E [f(Zn+1)| Gn] = Zn(0)f ◦ S1(Zn) + (1− Zn(0))f ◦ S−1(Zn). (6)

(In particular, Z is a E-valued homogeneous Markov chain under P.)

According to Question 4b, we can define the probability measure P̃ by: Ẽ[W ] = E[g(p)W ],
where W is any non-negative random variable.

(b) Let f be a non-negative measurable function defined on E. Using Equation (5),
prove that Ẽ[f(Z1)] = Ẽ[f(Z0)]. (In particular, since Equation (6) also holds with
E replaced by Ẽ, we get that Z is a E-valued stationary homogeneous Markov chain
under P̃.)

One can prove that the ergodic theorem holds (which is outside the scope of this course
as E is uncountable), that is, if f is a bounded measurable function defined on E, then:

P-a.s., lim
n→∞

1

n

n∑
k=1

f(Zk) = Ẽ[f(p)] = E[g(p) f(p)].

(c) Deduce from this ergodic theorem that P-a.s. limn→∞
1
n

∑n
k=1 Zk(0) = 1/(1 + E[R]).

(d) Deduce from Equation (2) that P-a.s. limn→∞Xn/n = v.

In conclusion, the asymptotic velocity v of the random walk in the random environment p (see
Question 5d), when E[log(R)] < 0 and p(0) not a.s. constant, is strictly slower (see Question 4a)
than the asymptotic velocity of the random walk in the constant deterministic environment
p̄ ≡ E[p(0)] which is given by the mean drift E[X1] = E[p(0)]− E[q(0)] > 0.
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Correction

Exercise 1 1. We have:

P (An(λ)) ≤ P
(

max
2n≤k<2n+1

|Mk| ≥ 2βnλ

)
≤ P

(
max

0≤k≤2n+1
|Mk| ≥ 2βnλ

)
≤ (λ2βn)−2 E

[
max

0≤k≤2n+1
|Mk|2

]
≤ (λ2βn)−2C2 E

[
M2

2n+1

]
,

where we used the maximal inequality for the last inequality.

2. We have:

E

[ ∞∑
n=1

1An(1/n)

]
=
∞∑
n=1

P(An(1/n)) ≤ cC2

∞∑
n=1

n22−2βn2(n+1)α < +∞,

where we used Fubini’s theorem for the equality, the previous question for the first in-
equality, and that α− 2β > 0 for the last.

3. Since the expectation of the non-negative random variable X =
∑∞

n=1 1An(1/n) is finite, it
implies that X is a.s. finite, and thus a.s. all the indicators 1An(1/n) are zero for n large
enough. This readily implies that Equation (1) holds.

4. Set Mn =
∑n

k=1 Yk−E[Yk], so that (Mn, n ∈ N) is indeed a martingale. Notice that, as the
random variables (Yn, n ∈ N∗) are independent, E[M2

n] = Var(
∑n

k=1 Yk) = nσ2, with σ2 the
variance of Y1. We deduce from Equation (1) with α = β = 1 that a.s limn→∞ n

−1Mn = 0
and thus limn→∞ n

−1∑n
k=1 Yk = E[Y1], which is the strong law of large numbers.

Exercise 2 1. On the process M = (Mn, n ∈ N).

(a) Since |Xn+1 − Xn| = 1, we deduce that |Mn −Mn−1| ≤ 2 and thus |Mn| ≤ 2n, so
that Mn belongs to L2. Clearly Mn, as a measurable function of (X0, . . . , Xn), is
Fn-measurable, and thus M is F-adapted. We now compute for all n ∈ N:

E[Mn+1| Fn] = Mn + E[Xn+1 −Xn| Fn]− (p(Xn)− q(Xn)) = Mn.

Thus M is a martingale.

(b) We have for n ∈ N∗:

E[M2
n] = E[(Mn −Mn−1)

2] + E[M2
n−1] + 2E[(Mn −Mn−1)Mn−1].

Furthermore, by conditioning with respect to Fn−1, we get:

E[(Mn −Mn−1)Mn−1] = E [E[Mn −Mn−1| Fn−1]Mn−1] = 0.

This yields E[M2
n] = E[(Mn −Mn−1)

2] + E[M2
n−1]. Since |Mn −Mn−1| ≤ 2 (see the

answer to the previous question), we get that E[M2
n] ≤ 4 + E[M2

n−1] and thus, by
recursion (as E[M2

0 ] = 0), E[M2
n] ≤ 4n.
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(c) We get from Equation (1) of Exercise 1, with α = β = 1, that a.s. limn→∞Mn/n = 0
and thus a.s.:

lim
n→∞

Xn

n
− 1

n

n−1∑
k=0

(p(Xk)− q(Xk)) = 0.

Then, as p(X0)−q(X0) and p(Xn)−q(Xn) belong to [−1, 1], we get that Equation (2)
holds.

2. On the process N = (Nn, n ∈ N).

(a) Since Π0,0(p) = 1, we get h(1, p) = −1 and h(−1, p) = p(0)/q(0). For k ≥ 1, as
Π0,k(p) > 0, we get that h(k+ 1, p) < h(k, p). Similarly, we have h(k+ 1, p) < h(k, p)
for k ≤ −1. Since h(0, p) = 0, we get that k 7→ h(k, p) is strictly decreasing on Z.

(b) Since |Xn| ≤ n, we get that |Nn| ≤ h(−n, p) − h(n, p) and thus Nn is integrable. It
is clearly Fn-measurable, so that N is adapted. We have:

E[Nn+1| Fn] = E[h(Xn+1, p)| Fn] = J(Xn),

with J(k) = p(k)h(k+ 1, p) + q(k)h(k− 1, p). To conclude that N is a martingale, it
is enough to prove that J(k) = h(k) for all k ∈ Z. For k = 0, we get:

J(0) = −p(0) + q(0)
p(0)

q(0)
= 0 = h(0).

For k ≥ 1, we get:

J(k) = p(k) (h(k)−Π0,k(p)) + q(k) (h(k) + Π0,k−1(p))

= h(k)− p(k)
q(k)

p(k)
Π0,k−1(p) + q(k)Π0,k−1(p) = h(k).

For k ≤ −1, we get:

J(k) = p(k)
(
h(k)−Πk,0(p)

−1)+ q(k)
(
h(k) + Πk−1,0(p)

−1)
= h(k)− p(k)Πk,0(p)

−1 + q(k)
p(k)

q(k)
Πk,0(p)

−1 = h(k).

(c) Since h is decreasing, we get that N + c(p) is a nonnegative martingale, and thus a.s.
it converges to a limit, say Y , which is integrable. This gives that h(Xn, p) converges
a.s. to Y − c(p) which is integrable. Since h is strictly decreasing and the process X
is Z-valued, this implies that a.s. X converges to +∞ or a.s. X converges to −∞.
In the latter case, we would get Y = h(−∞, p) + c(p) = +∞ which is not integrable.
So, we deduce that a.s. X converges to +∞ (and Y = 0.)

3. Convergence of X.

(a) We have for ` ≥ 1:

1

`
log(Π0,`(p)) =

1

`

∑̀
r=1

log

(
q(r)

p(r)

)
.

Since the random variables (q(r)/p(r), r ∈ Z) are independent and distributed as R,
we deduce from the strong law of large number that P-a.s. lim`→∞ `

−1 log (Π0,`(p)) =
E[log(R)] < 0. The other result is proved similarly.
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(b) We deduce that as ` goes to infinity, Π0,`(p) = e`(E[log(R)]+o(1)) and thus the series∑∞
`=0 Π0,`(p) converges to a finite random variable, say c(p), as E[log(R)] is negative.

This gives that the first part of Equation (4) holds.

As ` goes to −∞, 1/Π`,0(p) = e−`(E[log(R)]+o(1)) and thus the series
∑−1

`=−∞ 1/Π`,0(p)
converges to +∞ as E[log(R)] is negative. This gives that the second part of Equa-
tion (4) holds.

(c) For P-a.s. all p, we get that Equation (4) holds, and we deduce from Question 2c
that Pp-a.s. limn→∞Xn = +∞. Thus, we get (by integrating with respect to the
distribution of p) that P-a.s. limn→∞Xn = +∞.

In what follows, for simplicity, we shall write for k ∈ Z:

ρ(k) =
q(k)

p(k)
·

4. Some independent results.

(a) We have by Jensen inequality (as the exponential function is convex):

E[R] = E
[
elog(R)

]
≤ eE[log(R)] < 1.

This also gives that v > 0. By Cauchy-Schwarz inequality, we get that 1 = E[1] ≤
E[p(0)]E[1/p(0)]. This implies that:

v =
1− E[R]

1 + E[R]
=

2

E[1/p(0)]
− 1 ≤ 2E[p(0)]− 1 = E[p(0)]− E[q(0)].

Now, the Cauchy-Schwarz inequality is an equality if and only if p(0) is a.s. equal to a
constant time 1/p(0), that is if and only if p(0) is a.s. equal to a constant. Otherwise,
the inequality is strict, which implies then that v < E[p(0)]− E[q(0)].

(b) The function g is indeed positive on E as c(p) and v are positive. We have:

E[g(p)] = v

∞∑
`=0

E
[

1

p(0)
Π0,`(p)

]
= vE

[
1

p(0)

] ∞∑
`=0

∏̀
r=1

E
[
q(r)

p(r)

]

= v(E[R] + 1)

∞∑
`=0

E[R]` = 1,

where we used the definition of c(p) for the first equality, the independence of (p(r), r ∈
Z) for the second, and that they have the same law for the third.

(c) Since p = (p(k), k ∈ Z) is a sequence of independent random variables distributed
as p(0), we deduce that S1(p) = (p(k + 1), k ∈ Z) is also a sequence of independent
random variables distributed as p(0), that is as p(1) = S1(p)(0). Thus p and S1(p)
have the same distribution.

(d) From the previous question, we get that E [c(p) f ◦ S1(p)] = E [c(S−1(p)) f(p)]. Then,
to get the first equality of (5), use that:

c(S−1(p)) =

∞∑
`=0

∏̀
r=1

ρ(r − 1) =

∞∑
`=0

`−1∏
r=0

ρ(r) = 1 + ρ(0)c(ρ) = 1 +Rc(p).
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From the previous question, we get E [Rc(p) f ◦ S−1(p)] = E [ρ(1) c(S1(p)) f(p)].
Then, to get the second equality of (5), use that:

ρ(1) c(S1(p)) = ρ(1)

∞∑
`=0

∏̀
r=1

ρ(r + 1) = ρ(1)

∞∑
`=1

∏̀
r=2

ρ(r) = c(p)− 1.

5. On the process Z.

(a) We have:

E [f(Zn+1)| Gn] = E
[
f(SXn+1(p))| Gn

]
= Ep

[
f(SXn+1(p))|Fn

]
= p(Xn)f(SXn+1(p)) + q(Xn)f(SXn−1(p))

= Zn(0)f(S1(SXn(p))) + (1− Zn(0))f(S−1(SXn(p)))

= Zn(0)f ◦ S1(Zn) + (1− Zn(0))f ◦ S−1(Zn),

where we used the Markov property of X under Ep for the third equality and that
Zn(0) = p(Xn) = 1− q(Xn) and Si+j = Si ◦ Sj for the fourth.

(b) Thanks to the Markov property of Z and since 1 +R = 1/p(0), we have:

Ẽ[f(Z1)] = E[g(Z0)f(Z1)] = E[g(Z0)E[f(Z1)| G0]]

= E
[
g(p)

(
p(0) f ◦ S1(p) + q(0) f ◦ S−1(p)

)]
= vE [c(p) f ◦ S1(p) +Rc(p) f ◦ S−1(p)]

= vE
[(

1 +Rc(p) + c(p)− 1
)
f(p)

]
= E[g(p)f(p)],

where we used (5) for the fourth equality. Then use that E[g(p)f(p)] = Ẽ[f(Z0)] to
conclude.

For A ∈ Gn and W a non-negative random variable, we have:

Ẽ[W1A] = E[Wg(Z0)1A] = E[g(Z0)1AE[W | Gn]] = Ẽ1AE[W | Gn]].

By the characterization of the conditional expectation, we get that a.s. Ẽ[W | Gn] =
E[W | Gn]. Thus, Equation (6) holds indeed with E replaced by Ẽ.

(c) Notice the function η 7→ η(0) defined on E is measurable, by definition of the product
σ-field. By the ergodic theorem, the limit of n−1

∑n
k=1 Zk(0) a.s. exists and is given

by Ẽ[p(0)] = E[g(p)p(0)]. By definition of g(p), we have that E[g(p)p(0)] = vE[c(p)].
Arguing as for Question 4b, we get:

E[c(p)] =

∞∑
`=0

E[Π0,`(p)] =

∞∑
`=0

E[R]` =
1

1− E[R]
·

This gives E[g(p)p(0)] = 1/(1 + E[R]).

(d) We deduce from Equation (2) (which holds Pp-a.s. for all p, and thus P-a.s. also)
that P-a.s.:

lim
n→∞

Xn

n
= lim

n→∞

1

n

n∑
k=1

(Zk(0)− (1− Zk(0))) = −1 +
2

1 + E[R]
= v.
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