Stochastic Process (ENPC) Monday, 23rd of January 2023 (2h30)

Vocabulary (english/français): positive $=$ strictement positif; stationary $=$ stationnaire.
Questions 1, 2, 3, 4 and 6 are largely independent. Question 5 depends heavily on Question 4.
Problem (Exchangeability). In this problem, all the random variables are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We consider a (infinite) sequence $X=\left(X_{n}, n \in \mathbb{N}^{*}\right)$ of random variables, and the corresponding future σ-fields \mathcal{G}_{n} for $n \in \mathbb{N}^{*}$ and tail- σ-field \mathcal{G}_{∞} defined by:

$$
\mathcal{G}_{n}=\sigma\left(X_{k}, k \geq n\right) \quad \text { and } \quad \mathcal{G}_{\infty}=\bigcap_{n \in \mathbb{N}} \mathcal{G}_{n} .
$$

For example, when the random variables takes values in \mathbb{R}, the event $\left\{\lim _{n \rightarrow \infty} \bar{X}_{n}\right.$ exists $\}$ is \mathcal{G}_{∞}-measurable, where for $n \in \mathbb{N}^{*}$:

$$
\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k} .
$$

We say that conditionally on \mathcal{G}_{∞}, the random variables $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ are independent and equally distributed if and only if for all $n \in \mathbb{N}^{*}$ and any measurable bounded real-valued functions $\varphi_{1}, \ldots, \varphi_{n}$, we have:

$$
\mathbb{E}\left[\prod_{k=1}^{n} \varphi_{k}\left(X_{k}\right) \mid \mathcal{G}_{\infty}\right]=\prod_{k=1}^{n} \mathbb{E}\left[\varphi_{k}\left(X_{1}\right) \mid \mathcal{G}_{\infty}\right] .
$$

We say the sequence X is exchangeable if for all $n \in \mathbb{N}^{*}$, for all (deterministic) permutation $\pi \in \mathcal{S}_{n}$ on $\{1, \ldots, n\}$, the random vectors $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ and $\left(X_{1}, \ldots, X_{n}\right)$ have the same distribution. The aim of this exercise is to prove de Finetti's theorem ${ }^{1}$ (1931).

Theorem (de Finetti's theorem). If the sequence X is exchangeable, then conditionally on \mathcal{G}_{∞}, the random variables $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ are independent and equally distributed.

I Examples

1. Assume that $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ are independent random variables identically distributed. Set $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ for $n \in \mathbb{N}^{*}$. Let $A \in \mathcal{G}_{\infty}$.
(a) Prove that X is exchangeable.
(b) Prove that $M=\left(M_{n}=\mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{F}_{n}\right], n \in \mathbb{N}^{*}\right)$ is a martingale.
(c) Prove that M converges a.s. to $\mathbf{1}_{A}$.
(d) Prove that $\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B}\right]=\mathbb{P}(A) \mathbb{P}(B)$ for all $B \in \mathcal{F}_{n}$ and $n \in \mathbb{N}^{*}$.
(e) Deduce that $\mathbb{P}(A)$ is equal to 0 or 1 , which means that the tail σ-field \mathcal{G}_{∞} is trivial, and thus that conditionally on \mathcal{G}_{∞}, the random variables ($X_{n}, n \in \mathbb{N}^{*}$) are independent and equally distributed.
2. Let $X=\left(X_{n}, n \in \mathbb{N}^{*}\right)$ be a centered Gaussian process with covariance kernel $K=$ $\left(K(n, k),(n, k) \in \mathbb{N}^{2}\right)$ and assume X is exchangeable.

[^0](a) Prove there exists $\sigma \geq 0$ and $\rho \in\left[-\sigma^{2}, \sigma^{2}\right]$ such that for all $n, k \in \mathbb{N}^{*}$:
$$
K(n, k)=\rho \mathbf{1}_{\{n \neq k\}}+\sigma^{2} \mathbf{1}_{\{n=k\}} .
$$
(b) Compute $\mathbb{E}\left[\bar{X}_{n}^{2}\right]$ for $n \in \mathbb{N}^{*}$ and deduce that $\rho \geq 0$.

Let $\left(Z_{n}, n \in \mathbb{N}\right)$ be independent centered reduced Gaussian random variables and $\alpha, \beta \in \mathbb{R}$. Set $X_{n}^{\prime}=\alpha Z_{0}+\beta Z_{n}$ for all $n \in \mathbb{N}^{*}$.
(c) Find α and β such that X is distributed as X^{\prime}.
(d) Deduce that a.s. $\bar{X}_{\infty}:=\lim _{n \rightarrow \infty} \bar{X}_{n}$ exists and is \mathcal{G}_{∞}-measurable.
(e) Check that ($X_{n}-\bar{X}_{\infty}, n \in \mathbb{N}^{*}$) are independent and identically distributed, and deduce from the first part of Question 1e that \mathcal{G}_{∞} and $\sigma\left(\bar{X}_{\infty}\right)$ coincide up to negligeable events, so that conditionally on \mathcal{G}_{∞}, the random variables $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ are i.i.d..

II Reversed martingales

Let $\mathbb{G}^{\prime}=\left(\mathcal{G}_{n}^{\prime}, n \in \mathbb{N}^{*}\right)$ be a sequence of sub- σ-fields of \mathcal{F} which is non-increasing, that is, $\mathcal{G}_{n+1}^{\prime} \subset \mathcal{G}_{n}^{\prime}$ for all $n \in \mathbb{N}^{*}$, and set $\mathcal{G}_{\infty}^{\prime}=\bigcap_{n \in \mathbb{N}^{*}} \mathcal{G}_{n}^{\prime}$. Let $M=\left(M_{n}, n \in \mathbb{N}^{*}\right)$ be a sequence of real-valued random variables. We say that M is a reversed martingale with respect to \mathbb{G}^{\prime} if M_{n} is integrable and \mathcal{G}_{n}^{\prime} measurable, and a.s. $\mathbb{E}\left[M_{n} \mid \mathcal{G}_{n+1}^{\prime}\right]=M_{n+1}$ for all $n \in \mathbb{N}^{*}$. We admit ${ }^{2}$ the following result on reversed martingales:

Theorem (Convergence for reversed martingales). If M a reversed martingale with respect to \mathbb{G}^{\prime}, then it converges a.s. and in L^{1} to $M_{\infty}:=\mathbb{E}\left[M_{1} \mid \mathcal{G}_{\infty}^{\prime}\right]$.
3. We give an application of the theorem on the convergence for reversed martingales. Assume that X is a sequence of identically distributed integrable independent random variables. Let $\mathcal{G}_{n}^{\prime}=\sigma\left(\bar{X}_{n}\right) \vee \mathcal{G}_{n+1}=\sigma\left(\bar{X}_{n}, X_{n+1}, X_{n+2}, \ldots\right)$.
(a) Check that $\mathbb{G}^{\prime}=\left(\mathcal{G}_{n}^{\prime}, n \in \mathbb{N}^{*}\right)$ is a non-increasing sequence of σ-fields.
(b) Prove that $\left(\bar{X}_{n}, n \in \mathbb{N}^{*}\right)$ is a reversed martingale with respect to \mathbb{G}^{\prime}. (Hint. Check that $\mathbb{E}\left[X_{k} \mid \mathcal{G}_{n}^{\prime}\right]=\mathbb{E}\left[X_{n} \mid \mathcal{G}_{n}^{\prime}\right]$ for all $k \in\{1, \ldots, n\}$.)
(c) Deduce that a.s. $\bar{X}_{\infty}:=\lim _{n \rightarrow \infty} \bar{X}_{n}$ exists.
(d) Prove the strong law of large numbers using the first part of Question I.1e.
4. We consider the following technical properties. Let $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ be two σ-fields and $V \in L^{2}$.
(a) Assume that $\mathbb{E}[V \mid \mathcal{H}]$ and $\mathbb{E}[V \mid \mathcal{G}]$ have the same distribution. After computing $\mathbb{E}\left[(\mathbb{E}[V \mid \mathcal{H}]-\mathbb{E}[V \mid \mathcal{G}])^{2}\right]$, deduce that a.s. $\mathbb{E}[V \mid \mathcal{H}]=\mathbb{E}[V \mid \mathcal{G}]$.
(b) Let (V, Y) and $\left(V^{\prime}, Y^{\prime}\right)$ be random variables with the same distribution. We recall that a.s. $\mathbb{E}[V \mid Y]=\varphi(Y)$ for some real-valued measurable function φ. Prove that, for all measurable sets $A, \mathbb{E}\left[V^{\prime} \mathbf{1}_{\left\{Y^{\prime} \in A\right\}}\right]=\mathbb{E}\left[\varphi\left(Y^{\prime}\right) \mathbf{1}_{\left\{Y^{\prime} \in A\right\}}\right]$, and deduce that $\mathbb{E}[V \mid Y]$ and $\mathbb{E}\left[V^{\prime} \mid Y^{\prime}\right]$ have the same distribution.
(c) Let Y be a random variable. We say that Y is independent of \mathcal{H} conditionally on \mathcal{G}_{∞} if for all bounded real-valued measurable functions φ and all $B \in \mathcal{H}$, a.s. we have:

$$
\mathbb{E}\left[\varphi(Y) \mathbf{1}_{B} \mid \mathcal{G}_{\infty}\right]=\mathbb{E}\left[\varphi(Y) \mid \mathcal{G}_{\infty}\right] \mathbb{E}\left[\mathbf{1}_{B} \mid \mathcal{G}_{\infty}\right] .
$$

[^1]Prove that Y is independent of \mathcal{H} conditionally on \mathcal{G}_{∞} if for all bounded real-valued measurable function φ, a.s. we have:

$$
\mathbb{E}\left[\varphi(Y) \mid \mathcal{H} \vee \mathcal{G}_{\infty}\right]=\mathbb{E}\left[\varphi(Y) \mid \mathcal{G}_{\infty}\right]
$$

5. We shall prove de Finetti's theorem ${ }^{3}$. Assume that X is exchangeable. Let φ be a bounded real-valued measurable function and set for $n \in \mathbb{N}^{*} \cup\{\infty\}$:

$$
M_{n}=\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{n}\right]
$$

(a) Using reversed martingales, prove that $\left(M_{n}, n \in \mathbb{N}^{*}\right)$ converges a.s. to M_{∞}.
(b) Using Question 4 b , prove that the random variables $\left(M_{n}, 2 \leq n<\infty\right)$ have the same distribution and then that $\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{2}\right]$ and $\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{\infty}\right]$ have the same distribution.
(c) Using Questions 4 a and 4 c , prove that X_{1} is independent of \mathcal{G}_{2} conditionally on \mathcal{G}_{∞}.
(d) Prove de Finetti's theorem.

III Pólya urn ${ }^{4}$

Consider an urn at time $n=0$ with $r \in \mathbb{N}^{*}$ red balls and $b \in \mathbb{N}^{*}$ blue balls. At time $n \in \mathbb{N}^{*}$, draw a ball uniformly at random from the urn and then return it to the urn, and add an additional ball of the same color. Set $X_{n}=1$ if the new ball added at time $n \in \mathbb{N}^{*}$ is red and 0 otherwise. So at time n there are $r+b+n$ balls in the urn and $R_{n}=r+\sum_{k=1}^{n} X_{k}$ among them are red.
6. We shall determine limit of the fraction of red balls when the Pólya urn is filled.
(a) Let $n \in \mathbb{N}^{*}$. Prove that:

$$
\mathbb{P}\left(X_{n+1}=1 \mid X_{1}, \ldots, X_{n}\right)=\mathbb{P}\left(X_{n+1}=1 \mid R_{1}, \ldots, R_{n}\right)=\frac{R_{n}}{r+b+n}
$$

(b) For $n \in \mathbb{N}^{*}$ and $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$, prove that:

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{\prod_{k=1}^{s_{n}}(r+k-1) \prod_{k=1}^{n-s_{n}}(b+k-1)}{\prod_{k=1}^{n}(r+b+k-1)}
$$

with $s_{n}=\sum_{k=1}^{n} x_{k}$ and the convention $\prod_{k=1}^{0}=1$.
(c) Deduce that X is exchangeable.
(d) Prove that conditionally on \mathcal{G}_{∞}, the random variables $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ are independent Bernoulli random variables with \mathcal{G}_{∞}-measurable random parameter $U \in[0,1]$.

We recall that a $[0,1]$-valued random variable V has the $\beta(r, b)$ distribution if and only if for all $n \in \mathbb{N}^{*}$:

$$
\mathbb{E}\left[V^{n}\right]=\frac{(r+n-1)!}{(r-1)!} \frac{(r+b-1)!}{(r+b+n-1)!}
$$

(e) Prove that $\mathbb{P}\left(X_{1}=1, \ldots, X_{n}=1\right)=\mathbb{E}\left[U^{n}\right]$, and identify the distribution of U.
(f) Give the law of R_{n} conditionally on U, and the a.s. limit of the fraction of red balls $\lim _{n \rightarrow \infty} R_{n} /(r+b+n)$.

[^2]
Correction

Problem

I Examples

1. (a) Clearly $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ is a sequence of independent identically distributed random variable, so with the same distribution as $\left(X_{1}, \ldots, X_{n}\right)$.
(b) This is a closed martingale.
(c) As M is a closed martingale, it converges a.s. to $M_{\infty}=\mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{F}_{\infty}\right]=\mathbf{1}_{A}$, where for the last equality, we used that A belongs to $\mathcal{G}_{\infty} \subset \mathcal{F}_{\infty}$.
(d) Since $A \in \mathcal{G}_{n+1}$ and $B \in \mathcal{F}_{n}$, and \mathcal{G}_{n+1} is independent of \mathcal{F}_{n} (as $\left(X_{n}+k, k \in \mathbb{N}^{*}\right)$ is independent of $\left(X_{1}, \ldots, X_{n}\right)$), we have:

$$
\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B}\right]=\mathbb{E}\left[\mathbf{1}_{A}\right] \mathbb{E}\left[\mathbf{1}_{B}\right]=\mathbb{P}(A) \mathbb{P}(B)
$$

(e) We deduce that:

$$
\mathbb{E}\left[M_{n} \mathbf{1}_{B}\right]=\mathbb{E}\left[\mathbb{E}\left[M_{\infty} \mid \mathcal{F}_{n}\right] \mathbf{1}_{B}\right]=\mathbb{E}\left[M_{\infty} \mathbf{1}_{B}\right]=\mathbb{P}(A) \mathbb{P}(B) .
$$

This implies that a.s. $M_{n}=\mathbb{P}(A)$ and thus a.s. $\mathbf{1}_{A}=\mathbb{P}(A)$, that is, $\mathbb{P}(A)$ is equal to 0 or 1 .
2. (a) By exchangeability, we deduce that for $n \neq k$ the random variables X_{n} and X_{1} as well as $\left(X_{n}, X_{k}\right)$ and $\left(X_{1}, X_{2}\right)$ have the same distribution. This implies that $K(n, n)$ does not depend on n, and $K(n, k)$ does not depend on $n \neq k$. To conclude, deduce by Cauchy-Schwarz that:

$$
\rho^{2}=\mathbb{E}\left[X_{1} X_{2}\right]^{2} \leq \mathbb{E}\left[X_{1}^{2}\right] \mathbb{E}\left[X_{2}^{2}\right]=\sigma^{4}
$$

(b) We have:

$$
\mathbb{E}\left[\bar{X}_{n}^{2}\right]=\frac{n-1}{n} \rho+\frac{1}{n} \sigma^{2} .
$$

Since $\mathbb{E}\left[\bar{X}_{n}^{2}\right] \geq 0$, we deduce that $\rho \geq-\sigma^{2} /(n-1)$ for all $n \geq 2$. Letting n goes to infinity, we get that $\rho \geq 0$.
(c) The process X^{\prime} is Gaussian, centered with covariance process K^{\prime} with, for $n \in \mathbb{N}^{*}$:

$$
K^{\prime}(n, n)=\mathbb{E}\left[\left(\alpha Z_{0}+\beta Z_{n}\right)^{2}\right]=\alpha^{2}+\beta^{2},
$$

and for $n \neq k \in \mathbb{N}^{*}$:

$$
K^{\prime}(n, k)=\mathbb{E}\left[\left(\alpha Z_{0}+\beta Z_{n}\right)\left(\alpha Z_{0}+\beta Z_{k}\right)\right]=\alpha^{2} .
$$

We deduce that for $\alpha=\sigma$ and $\beta=\sqrt{\sigma^{2}-\rho}$ the covariance process K^{\prime} and K are equal. Since centered Gaussian process are characterized by they covariance process, we deduce that X^{\prime} and X have the same distribution.
(d) By the strong law of large number, we get that a.s. $\lim _{n \rightarrow \infty} \bar{X}_{n}^{\prime}=X_{0}^{\prime}$. Since X is distributed as X^{\prime}, we deduce that $\lim _{n \rightarrow \infty} \bar{X}_{n}$ a.s. exists. Let us denote it by X_{∞}. Let $n_{0} \in \mathbb{N}^{*}$. We also have that a.s. $\bar{X}_{\infty}=\lim _{n \rightarrow \infty}\left(n+n_{0}\right)^{-1} \sum_{k=n_{0}+1}^{n} X_{k}$, so that \bar{X}_{∞} is $\mathcal{G}_{n_{0}}$ measurable. Since n_{0} is arbitrary, we deduce that \bar{X}_{∞} is \mathcal{G}_{∞}-measurable.
(e) Set $Y=\left(X_{n}-\bar{X}_{\infty}, n \in \mathbb{N}^{*}\right)$ and $Y^{\prime}=\left(X_{n}^{\prime}-\bar{X}_{\infty}^{\prime}=Z_{n}, n \in \mathbb{N}^{*}\right)$. Since X and X^{\prime} have the same distribution, we deduce that $\left(Y, \bar{X}_{\infty}\right)$ and $\left(Y^{\prime}, \bar{X}_{\infty}^{\prime}=Z_{0}\right)$ have the same distribution. This implies that $\left(X_{n}-\bar{X}_{\infty}, n \in \mathbb{N}^{*}\right)$ are independent random centered Gaussian variables with variance σ^{2}, which are independent from \bar{X}_{∞}. Since \bar{X}_{∞} is \mathcal{G}_{∞} measurable, we deduce that $\mathcal{G}_{n}=\sigma\left(\bar{X}_{\infty}\right) \vee \mathcal{H}_{n}$, where $\mathcal{H}_{n}=\sigma\left(X_{k}-\bar{X}_{\infty}, k \geq n\right)$. Using the first part of Question 1e for the last equality, we get that:

$$
\mathcal{G}_{\infty}=\bigcap_{n \in \mathbb{N}} \mathcal{G}_{n}=\sigma\left(\bar{X}_{\infty}\right) \vee \bigcap_{n \in \mathbb{N}} \mathcal{H}_{n}=\sigma\left(\bar{X}_{\infty}\right) \vee \mathcal{H}_{\infty}
$$

where the sets in \mathcal{H}_{∞} are of probability 0 or 1 . This proves the result.

II Reversed martingales

3. (a) As $(n+1) \bar{X}_{n+1}=n \bar{X}_{n}+X_{n+1}$, that is, \bar{X}_{n+1} is \mathcal{G}_{n}^{\prime}-measurable, we deduce that $\mathcal{G}_{n+1}^{\prime} \subset \mathcal{G}_{n}^{\prime}$.
(b) The random variable \bar{X}_{n} is integrable as the X_{k} 's are integrable; it is also clearly \mathcal{G}_{n}^{\prime}-measurable. We have:

$$
\begin{equation*}
\mathbb{E}\left[\bar{X}_{n} \mid \mathcal{G}_{n+1}^{\prime}\right]=\frac{n+1}{n} \bar{X}_{n+1}-\frac{1}{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{G}_{n+1}^{\prime}\right] \tag{1}
\end{equation*}
$$

Since X is exchangeable, we get that a.s. for all $k \in\{1, \ldots, n+1\}$:

$$
\mathbb{E}\left[X_{k} \mid \mathcal{G}_{n+1}^{\prime}\right]=\mathbb{E}\left[X_{n+1} \mid \mathcal{G}_{n+1}^{\prime}\right]
$$

Summing over $k \in\{1, \ldots, n+1\}$ gives that:

$$
(n+1) \bar{X}_{n+1}=\sum_{k=1}^{n+1} \mathbb{E}\left[X_{k} \mid \mathcal{G}_{n+1}^{\prime}\right]=(n+1) \mathbb{E}\left[X_{n+1} \mid \mathcal{G}_{n+1}^{\prime}\right]
$$

Plugging this in (1), we deduce that:

$$
\mathbb{E}\left[\bar{X}_{n} \mid \mathcal{G}_{n+1}^{\prime}\right]=\frac{n+1}{n} \bar{X}_{n+1}-\frac{1}{n} \bar{X}_{n+1}=\bar{X}_{n}
$$

In conclusion, we get that $\left(\bar{X}_{n}, n \in \mathbb{N}^{*}\right)$ is a reversed martingale with respect to \mathbb{G}^{\prime}.
(c) This is a direct consequence of the theorem on reverse martingales.
(d) Since the random variable \bar{X}_{∞} is \mathcal{G}_{∞}-measurable, we deduce from Question I.1e, that it is constant. The theorem on reverse martingales implies also that \bar{X}_{n} converges also in L^{1} to \bar{X}_{∞}. This gives:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\bar{X}_{n}\right]=\mathbb{E}\left[\bar{X}_{\infty}\right]
$$

This readily gives that a.s. $\bar{X}_{\infty}=\mathbb{E}\left[X_{1}\right]$, which proves the strong law of large numbers.
4. (a) If X is \mathcal{H}-measurable and Y is \mathcal{G}-measurable, and X, Y are square integrable, we get that $\mathbb{E}[X Y]=\mathbb{E}[\mathbb{E}[X Y \mid \mathcal{H}]]=\mathbb{E}[X \mathbb{E}[Y \mid \mathcal{H}]]$. This gives that:

$$
\mathbb{E}[\mathbb{E}[V \mid \mathcal{H}] \mathbb{E}[V \mid \mathcal{G}]]=\mathbb{E}\left[(\mathbb{E}[V \mid \mathcal{H}])^{2}\right]=\mathbb{E}\left[(\mathbb{E}[V \mid \mathcal{G}])^{2}\right]
$$

where for the last equality, we used that $\mathbb{E}[V \mid \mathcal{H}]$ and $\mathbb{E}[V \mid \mathcal{G}]$ have the same distribution and thus the same expectation of their square. This readily implies that $\mathbb{E}\left[(\mathbb{E}[V \mid \mathcal{H}]-\mathbb{E}[V \mid \mathcal{G}])^{2}\right]=0$ and thus a.s. $\mathbb{E}[V \mid \mathcal{H}]=\mathbb{E}[V \mid \mathcal{G}]$.
(b) We have:

$$
\begin{aligned}
\mathbb{E}\left[V^{\prime} \mathbf{1}_{\left\{Y^{\prime} \in A\right\}}\right]=\mathbb{E}\left[V \mathbf{1}_{\{Y \in A\}}\right]=\mathbb{E}\left[\mathbb{E}[V \mid Y] \mathbf{1}_{\{Y \in A\}}\right] & =\mathbb{E}\left[\varphi(Y) \mathbf{1}_{\{Y \in A\}}\right] \\
& =\mathbb{E}\left[\varphi\left(Y^{\prime}\right) \mathbf{1}_{\left\{Y^{\prime} \in A\right\}}\right],
\end{aligned}
$$

where for the first and last equalities, we used that $\left(V^{\prime}, Y^{\prime}\right)$ and (V, Y) have the same distribution. By the characterization of the conditional expectation, we deduce that a.s $\mathbb{E}\left[V^{\prime} \mid Y^{\prime}\right]=\varphi\left(Y^{\prime}\right)$, and thus $\mathbb{E}[V \mid Y]$ and $\mathbb{E}\left[V^{\prime} \mid Y^{\prime}\right]$ have the same distribution.
(c) Assume that for all bounded real-valued measurable function φ, a.s. we have:

$$
\mathbb{E}\left[\varphi(Y) \mid \mathcal{H} \vee \mathcal{G}_{\infty}\right]=\mathbb{E}\left[\varphi(Y) \mid \mathcal{G}_{\infty}\right] .
$$

Let $B \in \mathcal{H}$. We have:

$$
\begin{aligned}
\mathbb{E}\left[\varphi(Y) \mathbf{1}_{B} \mid \mathcal{G}_{\infty}\right] & =\mathbb{E}\left[\mathbb{E}\left[\varphi(Y) \mathbf{1}_{B} \mid \mathcal{H} \vee \mathcal{G}_{\infty}\right] \mid \mathcal{G}_{\infty}\right] \\
& =\mathbb{E}\left[\mathbf{1}_{B} \mathbb{E}\left[\varphi(Y) \mid \mathcal{H} \vee \mathcal{G}_{\infty}\right] \mid \mathcal{G}_{\infty}\right] \\
& =\mathbb{E}\left[\mathbf{1}_{B} \mathbb{E}\left[\varphi(Y) \mid \mathcal{G}_{\infty}\right] \mid \mathcal{G}_{\infty}\right] \\
& =\mathbb{E}\left[\mathbf{1}_{B} \mid \mathcal{G}_{\infty}\right] \mathbb{E}\left[\varphi(Y) \mid \mathcal{G}_{\infty}\right]
\end{aligned}
$$

This gives that Y is independent of \mathcal{H} conditionally on \mathcal{G}_{∞}.
5. (a) Clearly the process $\left(M_{n}, n \in \mathbb{N}^{*}\right)$ is a reverse martingale with respect to \mathbb{G}, and thus, as $M_{1}=\varphi\left(X_{1}\right)$, it converges a.s. and in L^{1} towards:

$$
M_{\infty}=\mathbb{E}\left[M_{1} \mid \mathcal{G}_{\infty}\right]=\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{\infty}\right] .
$$

(b) Let $n \geq 2$ and $n^{\prime} \geq 2$. Set $V^{\prime}=V=\varphi\left(X_{1}\right), Y=\left(X_{n+k}, k \geq 0\right)$ and $Y^{\prime}=$ $\left(X_{n^{\prime}+k}, k \geq 0\right)$. Since X is exchangeable, we deduce that (V, Y) and (V^{\prime}, Y^{\prime}) have the same distribution. We deduce from Question 4b, that the random variables M_{n} and $M_{n^{\prime}}$ have the same distribution. Hence, the random variables ($M_{n}, 2 \leq n<\infty$) have the same distribution. Then use the previous question to deduce that they also have the same distribution as M_{∞} (because the distribution of M_{∞} is the limit of the distribution of the M_{n} 's).
(c) From Question 4a, we deduce that a.s.:

$$
\begin{equation*}
\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{2}\right]=\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{\infty}\right] . \tag{2}
\end{equation*}
$$

From Question 4 c with $Y=X_{1}$ and $\mathcal{H}=\mathcal{G}_{2}$, we get that X_{1} is independent of \mathcal{G}_{2} conditionally on \mathcal{G}_{∞}.
(d) By iteration, using the previous question we get that X_{n} is independent of \mathcal{G}_{n} conditionally on \mathcal{G}_{∞}, for all $n \in \mathbb{N}^{*}$. This gives that $\left(X_{1}, \ldots, X_{n}\right)$ are independent conditionally on \mathcal{G}_{∞}. Then use the exchangeability to get that a.s. $\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{n+1}\right]=$ $\mathbb{E}\left[\varphi\left(X_{n}\right) \mid \mathcal{G}_{n+1}\right]$ and then use (2) to conclude that a.s. $\mathbb{E}\left[\varphi\left(X_{1}\right) \mid \mathcal{G}_{\infty}\right]=\mathbb{E}\left[\varphi\left(X_{n}\right) \mid \mathcal{G}_{\infty}\right]$. This gives de Finetti's theorem.

III Pólya urn

6. (a) Since $X_{n}=R_{n}-R_{n-1}$ and $R_{n}=r+\sum_{k=1}^{n} X_{k}$ for $n \in \mathbb{N}^{*}$, we deduce that $\sigma\left(X_{1}, \ldots, X_{n}\right)=\sigma\left(R_{1}, \ldots, R_{n}\right)$. This gives the first equality. From the description of the process, we get that:

$$
\mathbb{P}\left(X_{n+1}=1 \mid R_{1}, \ldots, R_{n}\right)=\mathbb{P}\left(X_{n+1}=1 \mid R_{n}\right)=\frac{R_{n}}{r+b+n} .
$$

(b) An elementary recurrence gives, with $s_{n}=\sum_{k=1}^{n} x_{k}$ and the convention $\prod_{k=1}^{0}=1$:

$$
\begin{equation*}
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{\prod_{k=1}^{s_{n}}(r+k-1) \prod_{k=1}^{n-s_{n}}(b+k-1)}{\prod_{k=1}^{n}(r+b+k-1)} \tag{3}
\end{equation*}
$$

(c) From the previous formula, we get that the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ depends only on $\sum_{k=1}^{n} X_{k}$. This implies that $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ have the same distribution. Thus X is exchangeable.
(d) According to de Finetti's theorem, the random variables ($X_{n}, n \in \mathbb{N}^{*}$) are, conditionally on \mathcal{G}_{∞}, independent with the same distribution. Since $X_{n} \in\{0,1\}$, we deduce that conditionally on $\mathcal{G}_{\infty}, X_{n}$ is Bernoulli, with a random parameter U taking values in $[0,1]$.
(e) We deduce from (3) that:

$$
\begin{aligned}
\mathbb{E}\left[U^{n}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{X_{1}=1, \ldots, X_{n}=1\right\}} \mid U\right]\right] & =\mathbb{P}\left(X_{1}=1, \ldots, X_{n}=1\right) \\
& =\frac{\prod_{k=1}^{n}(r+k-1)}{\prod_{k=1}^{n}(r+b+k-1)} \\
& =\frac{(r+n-1)!}{(r-1)!} \frac{(r+b-1)!}{(r+b+n-1)!} .
\end{aligned}
$$

We deduce that U has the $\beta(r, b)$ distribution.
(f) The random variable R_{n} is distributed as $r+S_{n}$, where conditionally on U, S_{n} is binomial with parameter (n, U). From the law of large numbers, we deduce that a.s. $\lim _{n \rightarrow \infty} S_{n} / n=U$. This implies that a.s. $\lim _{n \rightarrow \infty} R_{n} / n=U$.

[^0]: ${ }^{1}$ J. F. C. Kingman. Uses of exchangeability. Ann. Probab., 6: 183-197, 1978.

[^1]: ${ }^{2}$ The proof of convergence for reversed martingales is similar to the proof of convergence for martingales.

[^2]: ${ }^{3}$ D. Aldous. Exchangeability and related topics. École d'été de probabilités de Saint-Flour, XIII-1983. Lecture Notes in Math., Springer, 1117: 1-198, 1985.
 ${ }^{4}$ N. Johnson and S. Kotz. Urn models and their application. Wiley, 1977.

