
Stochastic Process (ENPC)
Monday, 23rd of January 2023 (2h30)

Vocabulary (english/français): positive = strictement positif ; stationary = stationnaire.

Questions 1, 2, 3, 4 and 6 are largely independent. Question 5 depends heavily on Question 4.

Problem (Exchangeability). In this problem, all the random variables are defined on a proba-
bility space (Ω,F ,P). We consider a (infinite) sequence X = (Xn, n ∈ N∗) of random variables,
and the corresponding future σ-fields Gn for n ∈ N∗ and tail-σ-field G∞ defined by:

Gn = σ(Xk, k ≥ n) and G∞ =
⋂
n∈N

Gn.

For example, when the random variables takes values in R, the event {limn→∞ X̄n exists} is
G∞-measurable, where for n ∈ N∗:

X̄n =
1

n

n∑
k=1

Xk.

We say that conditionally on G∞, the random variables (Xn, n ∈ N∗) are independent and
equally distributed if and only if for all n ∈ N∗ and any measurable bounded real-valued functions
φ1, . . . , φn, we have:

E

[
n∏

k=1

φk(Xk)
∣∣∣G∞

]
=

n∏
k=1

E [φk(X1) | G∞] .

We say the sequence X is exchangeable if for all n ∈ N∗, for all (deterministic) permutation
π ∈ Sn on {1, . . . , n}, the random vectors (Xπ(1), . . . , Xπ(n)) and (X1, . . . , Xn) have the same
distribution. The aim of this exercise is to prove de Finetti’s theorem1 (1931).

Theorem (de Finetti’s theorem). If the sequence X is exchangeable, then conditionally on G∞,
the random variables (Xn, n ∈ N∗) are independent and equally distributed.

I Examples

1. Assume that (Xn, n ∈ N∗) are independent random variables identically distributed. Set
Fn = σ(X1, . . . , Xn) for n ∈ N∗. Let A ∈ G∞.

(a) Prove that X is exchangeable.

(b) Prove that M = (Mn = E[1A | Fn], n ∈ N∗) is a martingale.

(c) Prove that M converges a.s. to 1A.

(d) Prove that E[1A1B] = P(A)P(B) for all B ∈ Fn and n ∈ N∗.

(e) Deduce that P(A) is equal to 0 or 1, which means that the tail σ-field G∞ is trivial, and
thus that conditionally on G∞, the random variables (Xn, n ∈ N∗) are independent
and equally distributed.

2. Let X = (Xn, n ∈ N∗) be a centered Gaussian process with covariance kernel K =
(K(n, k), (n, k) ∈ N2) and assume X is exchangeable.

1J. F. C. Kingman. Uses of exchangeability. Ann. Probab., 6: 183-197, 1978.
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(a) Prove there exists σ ≥ 0 and ρ ∈ [−σ2, σ2] such that for all n, k ∈ N∗:

K(n, k) = ρ1{n̸=k} + σ21{n=k}.

(b) Compute E[X̄2
n] for n ∈ N∗ and deduce that ρ ≥ 0.

Let (Zn, n ∈ N) be independent centered reduced Gaussian random variables and α, β ∈ R.
Set X ′

n = αZ0 + βZn for all n ∈ N∗.

(c) Find α and β such that X is distributed as X ′.

(d) Deduce that a.s. X̄∞ := limn→∞ X̄n exists and is G∞-measurable.

(e) Check that (Xn − X̄∞, n ∈ N∗) are independent and identically distributed, and de-
duce from the first part of Question 1e that G∞ and σ(X̄∞) coincide up to negligeable
events, so that conditionally on G∞, the random variables (Xn, n ∈ N∗) are i.i.d..

II Reversed martingales

Let G′ = (G′
n, n ∈ N∗) be a sequence of sub-σ-fields of F which is non-increasing, that is,

G′
n+1 ⊂ G′

n for all n ∈ N∗, and set G′
∞ =

⋂
n∈N∗ G′

n. Let M = (Mn, n ∈ N∗) be a sequence of
real-valued random variables. We say that M is a reversed martingale with respect to G′ if Mn

is integrable and G′
n measurable, and a.s. E[Mn | G′

n+1] = Mn+1 for all n ∈ N∗. We admit2 the
following result on reversed martingales:

Theorem (Convergence for reversed martingales). If M a reversed martingale with respect to
G′, then it converges a.s. and in L1 to M∞ := E[M1|G′

∞].

3. We give an application of the theorem on the convergence for reversed martingales. Assume
that X is a sequence of identically distributed integrable independent random variables.
Let G′

n = σ(X̄n) ∨ Gn+1 = σ(X̄n, Xn+1, Xn+2, . . .).

(a) Check that G′ = (G′
n, n ∈ N∗) is a non-increasing sequence of σ-fields.

(b) Prove that (X̄n, n ∈ N∗) is a reversed martingale with respect to G′. (Hint. Check
that E[Xk | G′

n] = E[Xn | G′
n] for all k ∈ {1, . . . , n}.)

(c) Deduce that a.s. X̄∞ := limn→∞ X̄n exists.

(d) Prove the strong law of large numbers using the first part of Question I.1e.

4. We consider the following technical properties. LetH ⊂ G ⊂ F be two σ-fields and V ∈ L2.

(a) Assume that E[V |H] and E[V | G] have the same distribution. After computing

E
[
(E[V |H]− E[V | G])2

]
, deduce that a.s. E[V |H] = E[V | G].

(b) Let (V, Y ) and (V ′, Y ′) be random variables with the same distribution. We recall
that a.s. E[V |Y ] = φ(Y ) for some real-valued measurable function φ. Prove that,
for all measurable sets A, E[V ′1{Y ′∈A}] = E[φ(Y ′)1{Y ′∈A}], and deduce that E[V |Y ]
and E[V ′ |Y ′] have the same distribution.

(c) Let Y be a random variable. We say that Y is independent of H conditionally on G∞
if for all bounded real-valued measurable functions φ and all B ∈ H, a.s. we have:

E [φ(Y )1B | G∞] = E [φ(Y ) | G∞] E [1B | G∞] .

2The proof of convergence for reversed martingales is similar to the proof of convergence for martingales.
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Prove that Y is independent of H conditionally on G∞ if for all bounded real-valued
measurable function φ, a.s. we have:

E [φ(Y )|H ∨ G∞] = E [φ(Y ) | G∞] .

5. We shall prove de Finetti’s theorem3. Assume that X is exchangeable. Let φ be a bounded
real-valued measurable function and set for n ∈ N∗ ∪ {∞}:

Mn = E[φ(X1) | Gn].

(a) Using reversed martingales, prove that (Mn, n ∈ N∗) converges a.s. to M∞.

(b) Using Question 4b, prove that the random variables (Mn, 2 ≤ n < ∞) have the same
distribution and then that E[φ(X1) | G2] and E[φ(X1) | G∞] have the same distribution.

(c) Using Questions 4a and 4c, prove that X1 is independent of G2 conditionally on G∞.

(d) Prove de Finetti’s theorem.

III Pólya urn 4

Consider an urn at time n = 0 with r ∈ N∗ red balls and b ∈ N∗ blue balls. At time n ∈ N∗, draw
a ball uniformly at random from the urn and then return it to the urn, and add an additional
ball of the same color. Set Xn = 1 if the new ball added at time n ∈ N∗ is red and 0 otherwise.
So at time n there are r + b+ n balls in the urn and Rn = r +

∑n
k=1Xk among them are red.

6. We shall determine limit of the fraction of red balls when the Pólya urn is filled.

(a) Let n ∈ N∗. Prove that:

P (Xn+1 = 1 |X1, . . . , Xn) = P (Xn+1 = 1 |R1, . . . , Rn) =
Rn

r + b+ n
·

(b) For n ∈ N∗ and (x1, . . . , xn) ∈ {0, 1}n, prove that:

P(X1 = x1, . . . , Xn = xn) =

∏sn
k=1(r + k − 1)

∏n−sn
k=1 (b+ k − 1)∏n

k=1(r + b+ k − 1)
,

with sn =
∑n

k=1 xk and the convention
∏0

k=1 = 1.

(c) Deduce that X is exchangeable.

(d) Prove that conditionally on G∞, the random variables (Xn, n ∈ N∗) are independent
Bernoulli random variables with G∞-measurable random parameter U ∈ [0, 1].

We recall that a [0, 1]-valued random variable V has the β(r, b) distribution if and only if
for all n ∈ N∗:

E[V n] =
(r + n− 1)!

(r − 1)!

(r + b− 1)!

(r + b+ n− 1)!
·

(e) Prove that P(X1 = 1, . . . , Xn = 1) = E [Un], and identify the distribution of U .

(f) Give the law of Rn conditionally on U , and the a.s. limit of the fraction of red balls
limn→∞Rn/(r + b+ n).

△

3D. Aldous. Exchangeability and related topics. École d’été de probabilités de Saint-Flour, XIII-1983. Lecture
Notes in Math., Springer, 1117: 1-198, 1985.

4N. Johnson and S. Kotz. Urn models and their application. Wiley, 1977.
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Correction

Problem

I Examples

1. (a) Clearly (Xπ(1), . . . , Xπ(n)) is a sequence of independent identically distributed random
variable, so with the same distribution as (X1, . . . , Xn).

(b) This is a closed martingale.

(c) As M is a closed martingale, it converges a.s. to M∞ = E[1A | F∞] = 1A, where for
the last equality, we used that A belongs to G∞ ⊂ F∞.

(d) Since A ∈ Gn+1 and B ∈ Fn, and Gn+1 is independent of Fn (as (Xn + k, k ∈ N∗) is
independent of (X1, . . . , Xn)), we have:

E[1A1B] = E[1A]E[1B] = P(A)P(B).

(e) We deduce that:

E [Mn1B] = E [E[M∞ | Fn]1B] = E [M∞1B] = P(A)P(B).

This implies that a.s. Mn = P(A) and thus a.s. 1A = P(A), that is, P(A) is equal to
0 or 1.

2. (a) By exchangeability, we deduce that for n ̸= k the random variables Xn and X1 as
well as (Xn, Xk) and (X1, X2) have the same distribution. This implies that K(n, n)
does not depend on n, and K(n, k) does not depend on n ̸= k. To conclude, deduce
by Cauchy-Schwarz that:

ρ2 = E[X1X2]
2 ≤ E[X2

1 ]E[X2
2 ] = σ4.

(b) We have:

E[X̄2
n] =

n− 1

n
ρ+

1

n
σ2.

Since E[X̄2
n] ≥ 0, we deduce that ρ ≥ −σ2/(n − 1) for all n ≥ 2. Letting n goes to

infinity, we get that ρ ≥ 0.

(c) The process X ′ is Gaussian, centered with covariance process K ′ with, for n ∈ N∗:

K ′(n, n) = E[(αZ0 + βZn)
2] = α2 + β2,

and for n ̸= k ∈ N∗:

K ′(n, k) = E[(αZ0 + βZn)(αZ0 + βZk)] = α2.

We deduce that for α = σ and β =
√
σ2 − ρ the covariance process K ′ and K are

equal. Since centered Gaussian process are characterized by they covariance process,
we deduce that X ′ and X have the same distribution.

(d) By the strong law of large number, we get that a.s. limn→∞ X̄ ′
n = X ′

0. Since X is
distributed as X ′, we deduce that limn→∞ X̄n a.s. exists. Let us denote it by X∞.
Let n0 ∈ N∗. We also have that a.s. X̄∞ = limn→∞(n + n0)

−1
∑n

k=n0+1Xk, so that
X̄∞ is Gn0 measurable. Since n0 is arbitrary, we deduce that X̄∞ is G∞-measurable.
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(e) Set Y = (Xn − X̄∞, n ∈ N∗) and Y ′ = (X ′
n − X̄ ′

∞ = Zn, n ∈ N∗). Since X and X ′

have the same distribution, we deduce that (Y, X̄∞) and (Y ′, X̄ ′
∞ = Z0) have the same

distribution. This implies that (Xn − X̄∞, n ∈ N∗) are independent random centered
Gaussian variables with variance σ2, which are independent from X̄∞. Since X̄∞ is
G∞ measurable, we deduce that Gn = σ(X̄∞)∨Hn, where Hn = σ(Xk − X̄∞, k ≥ n).
Using the first part of Question 1e for the last equality, we get that:

G∞ =
⋂
n∈N

Gn = σ(X̄∞) ∨
⋂
n∈N

Hn = σ(X̄∞) ∨H∞,

where the sets in H∞ are of probability 0 or 1. This proves the result.

II Reversed martingales

3. (a) As (n + 1)X̄n+1 = nX̄n + Xn+1, that is, X̄n+1 is G′
n-measurable, we deduce that

G′
n+1 ⊂ G′

n.

(b) The random variable X̄n is integrable as the Xk’s are integrable; it is also clearly
G′
n-measurable. We have:

E[X̄n | G′
n+1] =

n+ 1

n
X̄n+1 −

1

n
E[Xn+1 | G′

n+1]. (1)

Since X is exchangeable, we get that a.s. for all k ∈ {1, . . . , n+ 1}:

E[Xk | G′
n+1] = E[Xn+1 | G′

n+1].

Summing over k ∈ {1, . . . , n+ 1} gives that:

(n+ 1)X̄n+1 =

n+1∑
k=1

E[Xk | G′
n+1] = (n+ 1)E[Xn+1 | G′

n+1].

Plugging this in (1), we deduce that:

E[X̄n | G′
n+1] =

n+ 1

n
X̄n+1 −

1

n
X̄n+1 = X̄n.

In conclusion, we get that (X̄n, n ∈ N∗) is a reversed martingale with respect to G′.

(c) This is a direct consequence of the theorem on reverse martingales.

(d) Since the random variable X̄∞ is G∞-measurable, we deduce from Question I.1e, that
it is constant. The theorem on reverse martingales implies also that X̄n converges
also in L1 to X̄∞. This gives:

lim
n→∞

E[X̄n] = E[X̄∞].

This readily gives that a.s. X̄∞ = E[X1], which proves the strong law of large
numbers.

4. (a) If X is H-measurable and Y is G-measurable, and X,Y are square integrable, we get
that E[XY ] = E [E[XY |H]] = E [XE[Y |H]]. This gives that:

E [E[V |H]E[V | G]] = E
[
(E[V |H])2

]
= E

[
(E[V | G])2

]
,

where for the last equality, we used that E[V |H] and E[V | G] have the same dis-
tribution and thus the same expectation of their square. This readily implies that

E
[
(E[V |H]− E[V | G])2

]
= 0 and thus a.s. E[V |H] = E[V | G].
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(b) We have:

E[V ′1{Y ′∈A}] = E[V 1{Y ∈A}] = E
[
E[V |Y ]1{Y ∈A}

]
= E[φ(Y )1{Y ∈A}]

= E[φ(Y ′)1{Y ′∈A}],

where for the first and last equalities, we used that (V ′, Y ′) and (V, Y ) have the same
distribution. By the characterization of the conditional expectation, we deduce that
a.s E[V ′ |Y ′] = φ(Y ′), and thus E[V |Y ] and E[V ′ |Y ′] have the same distribution.

(c) Assume that for all bounded real-valued measurable function φ, a.s. we have:

E [φ(Y )|H ∨ G∞] = E [φ(Y ) | G∞] .

Let B ∈ H. We have:

E [φ(Y )1B | G∞] = E [E [φ(Y )1B |H ∨ G∞] | G∞]

= E [1BE [φ(Y ) |H ∨ G∞] | G∞]

= E [1BE [φ(Y ) | G∞] | G∞]

= E [1B | G∞] E [φ(Y ) | G∞] .

This gives that Y is independent of H conditionally on G∞.

5. (a) Clearly the process (Mn, n ∈ N∗) is a reverse martingale with respect to G, and thus,
as M1 = φ(X1), it converges a.s. and in L1 towards:

M∞ = E[M1 | G∞] = E[φ(X1) | G∞].

(b) Let n ≥ 2 and n′ ≥ 2. Set V ′ = V = φ(X1), Y = (Xn+k, k ≥ 0) and Y ′ =
(Xn′+k, k ≥ 0). Since X is exchangeable, we deduce that (V, Y ) and (V ′, Y ′) have
the same distribution. We deduce from Question 4b, that the random variables Mn

and Mn′ have the same distribution. Hence, the random variables (Mn, 2 ≤ n < ∞)
have the same distribution. Then use the previous question to deduce that they also
have the same distribution as M∞ (because the distribution of M∞ is the limit of the
distribution of the Mn’s).

(c) From Question 4a, we deduce that a.s.:

E[φ(X1) | G2] = E[φ(X1) | G∞]. (2)

From Question 4c with Y = X1 and H = G2, we get that X1 is independent of G2

conditionally on G∞.

(d) By iteration, using the previous question we get that Xn is independent of Gn con-
ditionally on G∞, for all n ∈ N∗. This gives that (X1, . . . , Xn) are independent
conditionally on G∞. Then use the exchangeability to get that a.s. E[φ(X1) | Gn+1] =
E[φ(Xn) | Gn+1] and then use (2) to conclude that a.s. E[φ(X1) | G∞] = E[φ(Xn) | G∞].
This gives de Finetti’s theorem.

III Pólya urn

6. (a) Since Xn = Rn − Rn−1 and Rn = r +
∑n

k=1Xk for n ∈ N∗, we deduce that
σ(X1, . . . , Xn) = σ(R1, . . . , Rn). This gives the first equality. From the description
of the process, we get that:

P (Xn+1 = 1 |R1, . . . , Rn) = P (Xn+1 = 1 |Rn) =
Rn

r + b+ n
·
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(b) An elementary recurrence gives, with sn =
∑n

k=1 xk and the convention
∏0

k=1 = 1:

P(X1 = x1, . . . , Xn = xn) =

∏sn
k=1(r + k − 1)

∏n−sn
k=1 (b+ k − 1)∏n

k=1(r + b+ k − 1)
· (3)

(c) From the previous formula, we get that the distribution of (X1, . . . , Xn) depends only
on

∑n
k=1Xk. This implies that (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) have the same

distribution. Thus X is exchangeable.

(d) According to de Finetti’s theorem, the random variables (Xn, n ∈ N∗) are, condition-
ally on G∞, independent with the same distribution. Since Xn ∈ {0, 1}, we deduce
that conditionally on G∞, Xn is Bernoulli, with a random parameter U taking values
in [0, 1].

(e) We deduce from (3) that:

E[Un] = E
[
E[1{X1=1,...,Xn=1} |U ]

]
= P(X1 = 1, . . . , Xn = 1)

=

∏n
k=1(r + k − 1)∏n

k=1(r + b+ k − 1)

=
(r + n− 1)!

(r − 1)!

(r + b− 1)!

(r + b+ n− 1)!
·

We deduce that U has the β(r, b) distribution.

(f) The random variable Rn is distributed as r + Sn, where conditionally on U , Sn is
binomial with parameter (n,U). From the law of large numbers, we deduce that a.s.
limn→∞ Sn/n = U . This implies that a.s. limn→∞Rn/n = U .
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