Stochastic Process (ENPC)
 Monday, 22rd of January 2024 (2h30)

Vocabulary (english/français): positive $=$ strictement positif; cumulative distribution functio $=$ fonction de répartition.

We write $x_{+}=\max (x, 0)$ the nonnegative part of $x \in \mathbb{R}$ and use the convention $\inf \emptyset=+\infty$.
Exercise 1 (Lindley processes). We shall study the stability of queueing model where services take place at discrete times $n \in \mathbb{N}$. We denote by X_{n} the queue length at time n, A_{n+1} the number of new customers arriving between time n and $n+1$, and D_{n+1} the number of maximal customers that can be served between time n and $n+1$; so that, with $V_{n+1}=A_{n+1}-D_{n+1}$, we have the Lindley equation ${ }^{1}$ for the process $\mathbf{X}=\left(X_{n}, n \in \mathbb{N}\right)$:

$$
\begin{equation*}
X_{n+1}=\left(X_{n}+V_{n+1}\right)_{+} \quad \text { for } n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

We assume that X_{0} is a random variable taking values in \mathbb{N}, that the random variables $\left(V_{n}, n \in \mathbb{N}^{*}\right)$ are independent with the same distribution as a random variable V taking values in \mathbb{Z}, and are independent of X_{0}.

1. Check that \mathbf{X} is a Markov process on \mathbb{N} with respect to a filtration which has to be precised.

We also consider the random walk $\mathbf{S}=\left(S_{n}, n \in \mathbb{N}\right)$ on \mathbb{Z} defined by $S_{0}=0$ and:

$$
S_{n+1}=S_{n}+V_{n+1} \quad \text { for } n \in \mathbb{N} .
$$

2. We set $M_{n}=\max _{n \geq k \geq 0} S_{k}$ for $k \in \mathbb{N}$.
(a) Check that $X_{n}-X_{n-k} \geq S_{n}-S_{n-k}$ for $n \geq k \geq 0$.
(b) Deduce that for all $n \in \mathbb{N}$:

$$
X_{n}=\max \left(X_{0}+S_{n}, S_{n}-S_{1}, \ldots, S_{n}-S_{n-1}, 0\right) .
$$

(c) Let $n \in \mathbb{N}$. Prove that X_{n} and $\max \left(X_{0}+S_{n}, M_{n-1}\right)$ have the same distribution.

We assume that V is integrable and set $\mu=\mathbb{E}[V]$.
3. Assume that $\mu>0$. Prove that a.s. $\lim _{n \rightarrow \infty} X_{n}=+\infty$, and then that \mathbf{X} is transient.
4. Assume that $\mu<0$ and that \mathbf{X} is irreducible. We set $M=\sup _{k \in \mathbb{N}} S_{k}$.
(a) Prove that a.s. M is finite.
(b) Using Question 2c, prove that \mathbf{X} converges in distribution to M.
(c) Deduce that \mathbf{X} is positive recurrent and the invariant distribution is the law of M.

Exercise 2 (Lyapounov functions). Let $\mathbf{X}=\left(X_{n}, n \in \mathbb{N}\right)$ be an irreducible homogeneous Markov chain on a discrete countable space E with transition matrix P, and $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ its natural filtration. We recall that \mathbb{P}_{x}-a.s. we have $X_{0}=x$. Let \mathcal{B}_{+}denote the set of finite nonnegative functions defined on E. For $h \in \mathcal{B}_{+}$, we write $\lim _{x \rightarrow \infty} h(x)=+\infty$ if for all $n \in \mathbb{N}$, the set $\{x \in E: h(x) \leq n\}$ is finite.

We say that a function $h \in \mathcal{B}_{+}$is harmonic (resp. super-harmonic) if $P h=h$ (resp. $P h \leq h$).

[^0]1. Assume $h \in \mathcal{B}_{+}$is harmonic (resp. super-harmonic). Prove that $\left(h\left(X_{n}\right), n \in \mathbb{N}\right)$ is a martingale (resp. super-martingale) provided that $\mathbb{E}\left[h\left(X_{0}\right)\right]<\infty$.
2. Assume that \mathbf{X} is recurrent. Recall the cardinal of $\left\{n \in \mathbb{N}: X_{n}=x\right\}$ for $x \in E$. Prove that any function in \mathcal{B}_{+}which is super-harmonic is then constant.
3. Let $x_{0} \in E$. For $h \in \mathcal{B}_{+}$, we consider the condition:

$$
\begin{equation*}
\operatorname{Ph}(x)=h(x) \quad \text { for } x \neq x_{0} \tag{2}
\end{equation*}
$$

(a) Assume that $h \in \mathcal{B}_{+}$is bounded non constant and satisfies (2). Using Question 2 prove that \mathbf{X} is transient.
(b) Assume that \mathbf{X} is transient. Set $\tau_{0}=\inf \left\{n \in \mathbb{N}: X_{n}=x_{0}\right\}$. Prove that the function $h \in \mathcal{B}_{+}$, defined by $h(x)=\mathbb{P}_{x}\left(\tau_{0}=\infty\right)$ for $x \in E$, satisfies (2) and is non constant.

Let $E_{0} \subset E$ be finite and non-empty and set $\tau=\inf \left\{n \in \mathbb{N}: X_{n} \in E_{0}\right\}$. Let $h \in \mathcal{B}_{+}$and set $\mathbf{Y}=\left(Y_{n}, n \in \mathbb{N}\right)$ with $Y_{n}=h\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}}$.
4. Assume that $h \in \mathcal{B}_{+}$is such that:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} h(x)=+\infty \quad \text { and } \quad \operatorname{Ph}(x) \leq h(x) \quad \text { for } x \notin E_{0} \tag{3}
\end{equation*}
$$

(a) Check that τ is a stopping time.
(b) Let $x \notin E_{0}$. Prove that \mathbf{Y} is a super-martingale under \mathbb{P}_{x}.
(c) Prove by contradiction that \mathbf{X} is recurrent.
5. (Facultatif) Let $\delta>0$. Assume that $h \in \mathcal{B}_{+}$is such that:

$$
\begin{equation*}
\operatorname{Ph}(x)<+\infty \quad \text { for } x \in E_{0} \quad \text { and } \quad \operatorname{Ph}(x) \leq h(x)-\delta \quad \text { for } x \notin E_{0} \tag{4}
\end{equation*}
$$

(a) Let $x \notin E_{0}$. Prove that $\mathbb{E}_{x}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \leq Y_{n}-\delta \mathbf{1}_{\{\tau>n\}}$ for $n \in \mathbb{N}$.
(b) Let $x \in E$. Prove that $\mathbb{E}_{x}[\tau]=\sum_{n \in \mathbb{N}} \mathbb{P}_{x}(\tau>n)$ and deduce that $\mathbb{E}_{x}[\tau] \leq \delta^{-1} h(x)$.

We consider the successive visiting times of E_{0} by $T_{0}=\tau$ and for $k \in \mathbb{N}, T_{k+1}=\inf \{n>$ $\left.T_{k}: X_{n} \in E_{0}\right\}$. Define the restriction of the Markov chain \mathbf{X} to E_{0} by $\mathbf{X}^{0}=\left(X_{n}^{0}=\right.$ $\left.X_{T_{n}}, n \in \mathbb{N}\right)$.
(c) Prove that \mathbf{X}^{0} is a Markov chain with respect to a filtration which shall be defined.
(d) Prove that \mathbf{X}^{0} is irreducible and positive recurrent.
(e) Prove that for all $y \in E_{0}, \mathbb{E}_{y}\left[T_{1}\right] \leq 1+\mathbb{E}_{y}\left[\mathbb{E}_{X_{1}}[\tau]\right] \leq 1+\delta^{-1} \operatorname{Ph}(y)$.
(f) Prove that \mathbf{X} is positive recurrent.
6. Consider the queueing model of Exercise 1 with $E=\mathbb{N}$ and \mathbf{X} given by (1). Assume that \mathbf{X} is irreducible and V is integrable with $\mathbb{E}[V]<0$.
(a) Prove there exists $n_{0} \geq 2$ such that $\mathbb{E}\left[V \mathbf{1}_{\left\{V>-n_{0}\right\}}\right]<0$.
(b) Check that the identity function satisfies (4) with $E_{0}=\left\{0, \ldots, n_{0}\right\}$ and, using Question 5 f , deduce that \mathbf{X} is positive recurrent.

Correction

Exercise 1

1. The process \mathbf{X} is a stochastic dynamical system and thus a Markov chain with respect to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ with $\mathcal{F}_{0}=\sigma\left(X_{0}\right)$ and $\mathcal{F}_{n}=\sigma\left(X_{0}, V_{1}, \ldots, V_{n}\right)$ for $n \geq 1$.
2. (a) We have $X_{n+1} \geq X_{n}+V_{n+1}$ for all $n \in \mathbb{N}$ and thus $X_{n} \geq X_{n-k}+V_{n}+\ldots+V_{n-k+1}=$ $X_{n-k}+S_{n}-S_{k}$.
(b) We deduce from the previous question that:

$$
X_{n} \geq \max \left(X_{0}+S_{n}, S_{n}-S_{1}, \ldots, S_{n}-S_{n-1}, 0\right)
$$

To get the equality, we consider the last zero of the sequence $X_{0}, \ldots, X_{n}: L=$ $\sup \left\{k \in\{0, \ldots, n\}: X_{k}=0\right\}$ with the convention that $\sup \emptyset=0$. Notice that L is not a stopping time. By construction of L, we have that if $L=n$ then $X_{n}=0$, if $L=0$, then $X_{n}=X_{0}+S_{n}$ and otherwise $X_{n}=V_{L+1}+\cdots V_{n}=S_{n}-S_{L}$. This gives the equality.
(c) Notice that $\left(S_{n}, S_{n}-S_{1}, \ldots, S_{n}-S_{n-1}, 0\right)$ is distributed as $\left(S_{n}, S_{n-1}, \ldots, S_{1}, 0\right)$ as $\left(V_{1}, \ldots, V_{n}\right)$ is distributed as $\left(V_{n}, \ldots, V_{1}\right)$. This gives the result.
3. We deduce from the strong law of large number that a.s. $\lim _{n \rightarrow \infty} S_{n} / n=\mu>0$ and thus that a.s. $\lim _{n \rightarrow \infty} S_{n}=\infty$. Since $X_{n} \geq X_{0}+S_{n} \geq S_{n}$, we also deduce that a.s. $\lim _{n \rightarrow \infty} X_{n}=\infty$ and thus \mathbf{X} is transient.
4. (a) Arguing as in the previous question, we deduce that a.s. $\lim _{n \rightarrow \infty} S_{n}=-\infty$ and thus a.s. M is finite.
(b) From the previous question, we deduce that a.s. $\lim _{n \rightarrow \infty} \max \left(X_{0}+S_{n}, M_{n}\right)=M$. This and Question 2c readily implies that \mathbf{X} converges in distribution to M (for details notice that if h is continuous bounded, we have: $\mathbb{E}\left[h\left(X_{n}\right)\right]=\mathbb{E}\left[h\left(\max \left(X_{0}+\right.\right.\right.$ $\left.\left.\left.S_{n}, M_{n}\right)\right)\right] \rightarrow \mathbb{E}[h(M)]$ as n goes to infinity).
(c) Since \mathbf{X} converges in distribution, we deduce that $\lim _{k \rightarrow \infty} \nu_{0} P^{k} \mathbf{1}_{\{x\}}=\mathbb{P}(M=$ $x)$ for any initial probability distribution ν_{0} and any $x \in \mathbb{N}$. Thus we get that $\lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} \nu_{0} P^{k} \mathbf{1}_{\{x\}}=\mathbb{P}(M=x)$. From the ergodic theorem and dominated convergence we also get that $\lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} \nu_{0} P^{k} \mathbf{1}_{\{x\}}=\pi(x)$, with $\pi(x)=$ $1 / \mathbb{E}\left[T_{x}\right]$ and T_{x} the first return time at x. This implies that π is a probability distribution and thus that \mathbf{X} is recurrent positive. Since \mathbf{X} is recurrent positive, we also get that π and thus the probability distribution of M is invariant.

Exercise 2

1. The process $\left(h\left(X_{n}\right), n \in \mathbb{N}\right)$ is adapted to the natural filtration of \mathbf{X}. Since $h\left(X_{n+1}\right)$ is non-negative, we can compute, using the Markov property for the second equality:

$$
\mathbb{E}\left[h\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[h\left(X_{n+1}\right) \mid X_{n}\right]=\operatorname{Ph}\left(X_{n}\right) \leq h\left(X_{n}\right) .
$$

Taking the expectation we get $\mathbb{E}\left[h\left(X_{n+1}\right)\right] \leq \mathbb{E}\left[h\left(X_{n}\right)\right]$ and by iteration that $\mathbb{E}\left[h\left(X_{n}\right)\right] \leq$ $\mathbb{E}\left[h\left(X_{0}\right)\right]$. Thus if $\mathbb{E}\left[h\left(X_{0}\right)\right]<\infty$, we deduce that $h\left(X_{n}\right)$ is integrable for all $n \in \mathbb{N}$. This gives that ($h\left(X_{n}\right), n \in \mathbb{N}$) is a super-martingale.
2. Recall that $X_{0}=x$ under \mathbb{P}_{x}. Since $\mathbb{E}_{x}\left[h\left(X_{0}\right)\right]=h(x)<\infty$, we deduce that $\left(h\left(X_{n}\right), n \in \mathbb{N}\right)$ is a super-martingale under \mathbb{P}_{x}. Since it is non-negative it converges a.s. to a limit say Z which is integrable. Since \mathbf{X} is recurrent, it visits a.s. $y \in E$ infinitely often. This implies that a.s. $h(y)=Z$. Since this holds for any $y \in E$, we deduce that h is constant.
3. (a) Since h is bounded, we get that $\operatorname{Ph}\left(x_{0}\right)$ is finite. If $\operatorname{Ph}\left(x_{0}\right) \leq h\left(x_{0}\right)$ we get that h is super-harmonic. By contraposition of Question 2, we deduce that \mathbf{X} is not recurrent, and, as it is irreducible, it has to be transient. If $\operatorname{Ph}\left(x_{0}\right) \geq h\left(x_{0}\right)$ then the function $g=-h+\max h$ belongs to \mathcal{B}_{+}, is bounded satisfies (2) as well as $P g\left(x_{0}\right) \leq g\left(x_{0}\right)$, since $P \mathbf{1}=\mathbf{1}$. Thus the function g is super-harmonic. Similarly, we deduce that \mathbf{X} is transient. In conclusion \mathbf{X} is transient.
(b) We have $h\left(x_{0}\right)=0$, while $h(x)>0$ for all $x \neq x_{0}$ as \mathbf{X} is irreducible and transient. Furthermore, we have for $x \neq x_{0}$ that $\tau_{0}>0$ and thus:

$$
\mathbb{E}_{x}\left[\mathbf{1}_{\left\{\tau_{0}=\infty\right\}} \mid \mathcal{F}_{1}\right]=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{\tau_{0}=\infty\right\}} \mid X_{1}\right]=h\left(X_{1}\right),
$$

where we used the Markov property for each equality. Taking the expectation in the last equalities, we get for $x \neq x_{0}$ that:

$$
h(x)=\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\mathbf{1}_{\left\{\tau_{0}=\infty\right\}} \mid \mathcal{F}_{1}\right]\right]=\mathbb{E}_{x}\left[h\left(X_{1}\right)\right]=\operatorname{Ph}(x)
$$

4. (a) Since $\{\tau \leq n\}=\cup_{k=0}^{n}\left\{X_{k} \in E_{0}\right\}$ belongs to \mathcal{F}_{n}, we deduce that τ is a stopping time.
(b) From the previous question, we get that Y_{n} is \mathcal{F}_{n} measurable. Let $x \notin E_{0}$. Since Y_{n+1} is nonnegative, we can compute:

$$
\begin{align*}
\mathbb{E}_{x}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}_{x}\left[h\left(X_{n+1}\right) \mathbf{1}_{\{\tau>n+1\}} \mid \mathcal{F}_{n}\right] \\
& \leq \mathbb{E}_{x}\left[h\left(X_{n+1}\right) \mathbf{1}_{\{\tau>n\}} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}_{x}\left[h\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \mathbf{1}_{\{\tau>n\}} \\
& =\mathbb{E}_{x}\left[h\left(X_{n+1}\right) \mid X_{n}\right] \mathbf{1}_{\{\tau>n\}} \\
& =\operatorname{Ph}\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}} \tag{5}\\
& =Y_{n},
\end{align*}
$$

where we used that h is nonnegative for the inequality, that τ is a stopping time for the second equality, the Markov property for the third and fourth equalities.
Taking the expectation we get $\mathbb{E}_{x}\left[Y_{n+1}\right] \leq \mathbb{E}_{x}\left[Y_{n}\right]$ and by iteration that $\mathbb{E}_{x}\left[Y_{n}\right] \leq$ $\mathbb{E}_{x}\left[Y_{0}\right]=h(x)<\infty$, as, since $x \notin E_{0}$, we get that \mathbb{P}_{x}-a.s. $\tau>0$. Thus, we deduce that Y_{n} is integrable for all $n \in \mathbb{N}$. This gives that \mathbf{Y} is a super-martingale under \mathbb{P}_{x}.
(c) Recall $x \notin E_{0}$. Since \mathbf{Y} is a nonnegative super-martingale under \mathbb{P}_{x}, we get that its converges \mathbb{P}_{x}-a.s. towards an integrable limit, say Z. If \mathbf{X} is transient, in this case, a.s. \mathbf{X} does not belong in any finite set. This implies that \mathbb{P}_{x}-a.s. we have $\lim _{n \rightarrow \infty} h\left(X_{n}\right)=+\infty$ for all $x \notin E_{0}$. We deduce that \mathbb{P}_{x}-a.s. τ is finite for all $x \notin E_{0}$. Using the strong Markov properties at the exit times of E_{0}, we deduce that the number of visits of E_{0} is a.s. infinite. Since E_{0} is finite and \mathbf{X} is transient, we get a contradiction, and thus deduce that \mathbf{X} is recurrent.
5. (a) Notice that (5) still holds, so that, thanks to (4) for the second inequality, we get:

$$
\mathbb{E}_{x}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \leq \operatorname{Ph}\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}} \leq Y_{n}-\delta \mathbf{1}_{\{\tau>n\}}
$$

(b) Since \mathbb{P}_{x}-a.s. $\tau=0$ if $x \in E_{0}$, we therefore only need to consider the case $x \notin E_{0}$. From the previous question, we get that $\delta \mathbf{1}_{\{\tau>n\}}+\mathbb{E}_{x}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \leq Y_{n}$. Taking the expectation, we get by recurrence that $\delta \sum_{k=0}^{n} \mathbb{P}(\tau>k)+\mathbb{E}_{x}\left[Y_{n+1}\right] \leq \mathbb{E}_{x}\left[Y_{0}\right]=h(x)$ for all $n \in \mathbb{N}$. This gives $\sum_{k=0}^{n} \mathbb{P}_{x}(\tau>k) \leq \delta^{-1} h(x)$ for all $n \in \mathbb{N}$, and letting n goes to infinity, we obtain that $\sum_{k \in \mathbb{N}} \mathbb{P}_{x}(\tau>k) \leq \delta^{-1} h(x)<\infty$. By Fubini, we have:

$$
\sum_{k \in \mathbb{N}} \mathbb{P}_{x}(\tau>k)=\sum_{k \in \mathbb{N}} \mathbb{E}_{x}\left[\mathbf{1}_{\{\tau>k\}}\right]=\mathbb{E}_{x}\left[\sum_{k \in \mathbb{N}} \mathbf{1}_{\{\tau>k\}}\right]=\mathbb{E}_{x}[\tau] .
$$

In conclusion, we have obtained that $\mathbb{E}_{x}[\tau] \leq \delta^{-1} h(x)$.
(c) First notice that all the random times are stopping times. From the previous question we get that \mathbb{P}_{x}-a.s. T_{0} is finite. By construction $T_{0}=0 \mathbb{P}_{x}$-a.s. for $x \in E_{0}$. So we deduce that T_{0} is a.s. finite. By the strong Markov property, we deduce that the process $\left(X_{T_{0}+n}, n \in \mathbb{N}\right)$ is conditionally on $X_{T_{0}}$ independent of $\mathcal{F}_{T_{0}}$. Then notice that conditionally on $X_{T_{0}}$ we have $T_{1}-T_{0}$ is distributed as τ if $X_{T_{0}} \notin E_{0}$ and equal to 1 if $X_{T_{0}} \in E_{0}$. This implies that $T_{1}-T_{0}$, as well as T_{1}, are a.s. finite. By recurrence, we get that the stopping times T_{n} are a.s. finite for all $n \in \mathbb{N}$. Using again the strong Markov property, we deduce that \mathbf{X}^{0} is a Markov chain with respect to the filtration $\left(\mathcal{G}_{n}, n \in \mathbb{N}\right)$ where $\mathcal{G}_{n}=\mathcal{F}_{T_{n}}$.
(d) For all $x, y \in E_{0}$ there is a path for \mathbf{X} from x to y with positive probability. The trace on E_{0} of this path is thus a path for \mathbf{X}^{0} from x to y with positive probability. This gives that \mathbf{X}^{0} is irreducible on E_{0}. Since E_{0} is finite, we get that \mathbf{X}^{0} is positive recurrent.
(e) For $y \in E_{0}$, we have:

$$
\mathbb{E}_{y}\left[T_{1}\right]=1+\mathbb{E}_{y}\left[\mathbb{E}_{X_{1}}[\tau] \mathbf{1}_{\left\{X_{1} \notin E_{0}\right\}}\right] \leq 1+\delta^{-1} \mathbb{E}_{y}\left[h\left(X_{1}\right)\right]=1+\delta^{-1} \operatorname{Ph}(y),
$$

where we used the Markov property at time $n=1$ for \mathbf{X} and a decomposition according to $X_{1} \in E_{0}$ and $X_{1} \notin E_{0}$ for the first equality, and Question 5 b for the inequality.
(f) Let $x \in E_{0}$ and $\sigma=\inf \left\{n \geq 1: X_{n}^{0}=x\right\}$ be the first return time to x for \mathbf{X}^{0}. Notice that σ is a stopping time with respect to the filtration $\left(\mathcal{G}_{n}, n \in \mathbb{N}\right)$. Since \mathbf{X}^{0} is positive recurrent, we have $\mathbb{E}_{x}[\sigma]<\infty$. Let $T^{x}=\inf \left\{n \geq 1: X_{n}=x\right\}$ be the first return time to x for \mathbf{X}. We shall prove that $\mathbb{E}_{x}\left[T^{x}\right]<\infty$ to deduce that \mathbf{X} is positive recurrent. Under \mathbb{P}_{x}, we have that $T^{x}=T_{\sigma}=\sum_{k=1}^{\sigma}\left(T_{k}-T_{k-1}\right)$. This gives:

$$
\mathbb{E}_{x}\left[T^{x}\right]=\sum_{k=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\sigma \geq k\}}\left(T_{k}-T_{k-1}\right)\right]=\sum_{k=1}^{\infty} \mathbb{E}_{x}\left[\mathbb{E}_{X_{T_{k-1}}}\left[T_{1}\right] \mathbf{1}_{\{\sigma \geq k\}}\right],
$$

where we conditioned by $\mathcal{G}_{k-1}=\mathcal{F}_{T_{k-1}}$ with $\{\sigma \geq k\} \in \mathcal{G}_{k-1}$ and use the strong Markov property for \mathbf{X} at time T_{k-1}.
We set $M=1+\max _{y \in E_{0}} P h(y)$ which is finite by the first part of (4) and since E_{0} is finite. Using the previous question, we get:

$$
\mathbb{E}_{x}\left[T^{x}\right] \leq \sum_{k=1}^{\infty} M \mathbb{E}_{x}\left[\mathbf{1}_{\{\sigma \geq k\}}\right]=M \mathbb{E}_{x}[\sigma]<\infty
$$

This finishes the proof.
6. (a) Since V is integrable, we deduce by dominated convergence that $\lim _{n \rightarrow \infty} \mathbb{E}\left[V \mathbf{1}_{\{V>-n\}}\right]=$ $\mathbb{E}[V]$. Use that $\mathbb{E}[V]<0$ to conclude at the existence of such n_{0}.
(b) Let h be the identity function on \mathbb{N}. Set $\delta=-\mathbb{E}\left[V \mathbf{1}_{\left\{V>-n_{0}\right\}}\right]>0$. We have for $n>n_{0}$ that:

$$
P h(n)=\mathbb{E}\left[(n+V)_{+}\right]=\mathbb{E}\left[(n+V) \mathbf{1}_{\{V>-n\}}\right] \leq n-\delta=h(n)-\delta .
$$

For $n \in E_{0}$, we also have $\operatorname{Ph}(n)=\mathbb{E}\left[(n+V)_{+}\right] \leq \mathbb{E}[(n+V)]=n+\mu \leq n<\infty$. Hence, the function h belongs to \mathcal{B}_{+}and satisfies (4). We deduce from Question $5 f$ that \mathbf{X} is positive recurrent.

[^0]: ${ }^{1}$ S. Asmussen. Applied Probability and Queues. Springer-Verlag, 2003.

