Stochastic Process (ENPC) Monday, 22rd of January 2024 (2h30)

Vocabulary (english/français): positive = strictement positif; cumulative distribution functio = fonction de répartition.

We write $x_{+} = \max(x, 0)$ the nonnegative part of $x \in \mathbb{R}$ and use the convention $\inf \emptyset = +\infty$.

Exercise 1 (Lindley processes). We shall study the stability of queueing model where services take place at discrete times $n \in \mathbb{N}$. We denote by X_n the queue length at time n, A_{n+1} the number of new customers arriving between time n and n+1, and D_{n+1} the number of maximal customers that can be served between time n and n+1; so that, with $V_{n+1} = A_{n+1} - D_{n+1}$, we have the Lindley equation¹ for the process $\mathbf{X} = (X_n, n \in \mathbb{N})$:

$$X_{n+1} = (X_n + V_{n+1})_+ \quad \text{for } n \in \mathbb{N}.$$
 (1)

We assume that X_0 is a random variable taking values in \mathbb{N} , that the random variables $(V_n, n \in \mathbb{N}^*)$ are independent with the same distribution as a random variable V taking values in \mathbb{Z} , and are independent of X_0 .

1. Check that \mathbf{X} is a Markov process on \mathbb{N} with respect to a filtration which has to be precised.

We also consider the random walk $\mathbf{S} = (S_n, n \in \mathbb{N})$ on \mathbb{Z} defined by $S_0 = 0$ and:

$$S_{n+1} = S_n + V_{n+1} \quad \text{for } n \in \mathbb{N}.$$

- 2. We set $M_n = \max_{n \ge k \ge 0} S_k$ for $k \in \mathbb{N}$.
 - (a) Check that $X_n X_{n-k} \ge S_n S_{n-k}$ for $n \ge k \ge 0$.
 - (b) Deduce that for all $n \in \mathbb{N}$:

$$X_n = \max (X_0 + S_n, S_n - S_1, \dots, S_n - S_{n-1}, 0).$$

(c) Let $n \in \mathbb{N}$. Prove that X_n and $\max(X_0 + S_n, M_{n-1})$ have the same distribution.

We assume that V is integrable and set $\mu = \mathbb{E}[V]$.

- 3. Assume that $\mu > 0$. Prove that a.s. $\lim_{n\to\infty} X_n = +\infty$, and then that **X** is transient.
- 4. Assume that $\mu < 0$ and that **X** is irreducible. We set $M = \sup_{k \in \mathbb{N}} S_k$.
 - (a) Prove that a.s. M is finite.
 - (b) Using Question 2c, prove that \mathbf{X} converges in distribution to M.
 - (c) Deduce that \mathbf{X} is positive recurrent and the invariant distribution is the law of M.

 \triangle

Exercise 2 (Lyapounov functions). Let $\mathbf{X} = (X_n, n \in \mathbb{N})$ be an irreducible homogeneous Markov chain on a discrete countable space E with transition matrix P, and $(\mathcal{F}_n, n \in \mathbb{N})$ its natural filtration. We recall that \mathbb{P}_x -a.s. we have $X_0 = x$. Let \mathcal{B}_+ denote the set of finite nonnegative functions defined on E. For $h \in \mathcal{B}_+$, we write $\lim_{x\to\infty} h(x) = +\infty$ if for all $n \in \mathbb{N}$, the set $\{x \in E : h(x) \leq n\}$ is finite.

We say that a function $h \in \mathcal{B}_+$ is harmonic (resp. super-harmonic) if Ph = h (resp. $Ph \leq h$).

¹S. Asmussen. Applied Probability and Queues. Springer-Verlag, 2003.

- 1. Assume $h \in \mathcal{B}_+$ is harmonic (resp. super-harmonic). Prove that $(h(X_n), n \in \mathbb{N})$ is a martingale (resp. super-martingale) provided that $\mathbb{E}[h(X_0)] < \infty$.
- 2. Assume that **X** is recurrent. Recall the cardinal of $\{n \in \mathbb{N} : X_n = x\}$ for $x \in E$. Prove that any function in \mathcal{B}_+ which is super-harmonic is then constant.
- 3. Let $x_0 \in E$. For $h \in \mathcal{B}_+$, we consider the condition:

$$Ph(x) = h(x) \quad \text{for } x \neq x_0.$$
 (2)

- (a) Assume that $h \in \mathcal{B}_+$ is bounded non constant and satisfies (2). Using Question 2 prove that **X** is transient.
- (b) Assume that **X** is transient. Set $\tau_0 = \inf\{n \in \mathbb{N} : X_n = x_0\}$. Prove that the function $h \in \mathcal{B}_+$, defined by $h(x) = \mathbb{P}_x(\tau_0 = \infty)$ for $x \in E$, satisfies (2) and is non constant.

Let $E_0 \subset E$ be finite and non-empty and set $\tau = \inf\{n \in \mathbb{N} : X_n \in E_0\}$. Let $h \in \mathcal{B}_+$ and set $\mathbf{Y} = (Y_n, n \in \mathbb{N})$ with $Y_n = h(X_n)\mathbf{1}_{\{\tau > n\}}$.

4. Assume that $h \in \mathcal{B}_+$ is such that:

$$\lim_{x \to \infty} h(x) = +\infty \quad \text{and} \quad Ph(x) \le h(x) \quad \text{for } x \notin E_0.$$
(3)

- (a) Check that τ is a stopping time.
- (b) Let $x \notin E_0$. Prove that **Y** is a super-martingale under \mathbb{P}_x .
- (c) Prove by contradiction that **X** is recurrent.
- 5. (FACULTATIF) Let $\delta > 0$. Assume that $h \in \mathcal{B}_+$ is such that:

$$Ph(x) < +\infty$$
 for $x \in E_0$ and $Ph(x) \le h(x) - \delta$ for $x \notin E_0$. (4)

- (a) Let $x \notin E_0$. Prove that $\mathbb{E}_x[Y_{n+1}|\mathcal{F}_n] \leq Y_n \delta \mathbf{1}_{\{\tau > n\}}$ for $n \in \mathbb{N}$.
- (b) Let $x \in E$. Prove that $\mathbb{E}_x[\tau] = \sum_{n \in \mathbb{N}} \mathbb{P}_x(\tau > n)$ and deduce that $\mathbb{E}_x[\tau] \le \delta^{-1} h(x)$.

We consider the successive visiting times of E_0 by $T_0 = \tau$ and for $k \in \mathbb{N}$, $T_{k+1} = \inf\{n > T_k : X_n \in E_0\}$. Define the restriction of the Markov chain **X** to E_0 by $\mathbf{X}^0 = (X_n^0 = X_{T_n}, n \in \mathbb{N})$.

- (c) Prove that \mathbf{X}^0 is a Markov chain with respect to a filtration which shall be defined.
- (d) Prove that \mathbf{X}^0 is irreducible and positive recurrent.
- (e) Prove that for all $y \in E_0$, $\mathbb{E}_y[T_1] \leq 1 + \mathbb{E}_y[\mathbb{E}_{X_1}[\tau]] \leq 1 + \delta^{-1}Ph(y)$.
- (f) Prove that **X** is positive recurrent.
- 6. Consider the queueing model of Exercise 1 with $E = \mathbb{N}$ and **X** given by (1). Assume that **X** is irreducible and V is integrable with $\mathbb{E}[V] < 0$.
 - (a) Prove there exists $n_0 \ge 2$ such that $\mathbb{E}[V\mathbf{1}_{\{V>-n_0\}}] < 0$.
 - (b) Check that the identity function satisfies (4) with $E_0 = \{0, ..., n_0\}$ and, using Question 5f, deduce that **X** is positive recurrent.

Correction

Exercise 1

- 1. The process **X** is a stochastic dynamical system and thus a Markov chain with respect to the filtration $(\mathcal{F}_n, n \in \mathbb{N})$ with $\mathcal{F}_0 = \sigma(X_0)$ and $\mathcal{F}_n = \sigma(X_0, V_1, \ldots, V_n)$ for $n \ge 1$.
- 2. (a) We have $X_{n+1} \ge X_n + V_{n+1}$ for all $n \in \mathbb{N}$ and thus $X_n \ge X_{n-k} + V_n + \ldots + V_{n-k+1} = X_{n-k} + S_n S_k$.
 - (b) We deduce from the previous question that:

$$X_n \ge \max (X_0 + S_n, S_n - S_1, \dots, S_n - S_{n-1}, 0).$$

To get the equality, we consider the last zero of the sequence X_0, \ldots, X_n : $L = \sup\{k \in \{0, \ldots, n\} : X_k = 0\}$ with the convention that $\sup \emptyset = 0$. Notice that L is not a stopping time. By construction of L, we have that if L = n then $X_n = 0$, if L = 0, then $X_n = X_0 + S_n$ and otherwise $X_n = V_{L+1} + \cdots + V_n = S_n - S_L$. This gives the equality.

- (c) Notice that $(S_n, S_n S_1, \ldots, S_n S_{n-1}, 0)$ is distributed as $(S_n, S_{n-1}, \ldots, S_1, 0)$ as (V_1, \ldots, V_n) is distributed as (V_n, \ldots, V_1) . This gives the result.
- 3. We deduce from the strong law of large number that a.s. $\lim_{n\to\infty} S_n/n = \mu > 0$ and thus that a.s. $\lim_{n\to\infty} S_n = \infty$. Since $X_n \ge X_0 + S_n \ge S_n$, we also deduce that a.s. $\lim_{n\to\infty} X_n = \infty$ and thus **X** is transient.
- 4. (a) Arguing as in the previous question, we deduce that a.s. $\lim_{n\to\infty} S_n = -\infty$ and thus a.s. *M* is finite.
 - (b) From the previous question, we deduce that a.s. $\lim_{n\to\infty} \max(X_0 + S_n, M_n) = M$. This and Question 2c readily implies that **X** converges in distribution to M (for details notice that if h is continuous bounded, we have: $\mathbb{E}[h(X_n)] = \mathbb{E}[h(\max(X_0 + S_n, M_n))] \to \mathbb{E}[h(M)]$ as n goes to infinity).
 - (c) Since **X** converges in distribution, we deduce that $\lim_{k\to\infty} \nu_0 P^k \mathbf{1}_{\{x\}} = \mathbb{P}(M = x)$ for any initial probability distribution ν_0 and any $x \in \mathbb{N}$. Thus we get that $\lim_{n\to\infty} n^{-1} \sum_{k=1}^{n} \nu_0 P^k \mathbf{1}_{\{x\}} = \mathbb{P}(M = x)$. From the ergodic theorem and dominated convergence we also get that $\lim_{n\to\infty} n^{-1} \sum_{k=1}^{n} \nu_0 P^k \mathbf{1}_{\{x\}} = \pi(x)$, with $\pi(x) = 1/\mathbb{E}[T_x]$ and T_x the first return time at x. This implies that π is a probability distribution and thus that **X** is recurrent positive. Since **X** is recurrent positive, we also get that π and thus the probability distribution of M is invariant.

Exercise 2

1. The process $(h(X_n), n \in \mathbb{N})$ is adapted to the natural filtration of **X**. Since $h(X_{n+1})$ is non-negative, we can compute, using the Markov property for the second equality:

$$\mathbb{E}[h(X_{n+1}) \mid \mathcal{F}_n] = \mathbb{E}[h(X_{n+1}) \mid X_n] = Ph(X_n) \le h(X_n).$$

Taking the expectation we get $\mathbb{E}[h(X_{n+1})] \leq \mathbb{E}[h(X_n)]$ and by iteration that $\mathbb{E}[h(X_n)] \leq \mathbb{E}[h(X_0)]$. Thus if $\mathbb{E}[h(X_0)] < \infty$, we deduce that $h(X_n)$ is integrable for all $n \in \mathbb{N}$. This gives that $(h(X_n), n \in \mathbb{N})$ is a super-martingale.

- 2. Recall that $X_0 = x$ under \mathbb{P}_x . Since $\mathbb{E}_x[h(X_0)] = h(x) < \infty$, we deduce that $(h(X_n), n \in \mathbb{N})$ is a super-martingale under \mathbb{P}_x . Since it is non-negative it converges a.s. to a limit say Z which is integrable. Since **X** is recurrent, it visits a.s. $y \in E$ infinitely often. This implies that a.s. h(y) = Z. Since this holds for any $y \in E$, we deduce that h is constant.
- 3. (a) Since h is bounded, we get that $Ph(x_0)$ is finite. If $Ph(x_0) \leq h(x_0)$ we get that h is super-harmonic. By contraposition of Question 2, we deduce that **X** is not recurrent, and, as it is irreducible, it has to be transient. If $Ph(x_0) \geq h(x_0)$ then the function $g = -h + \max h$ belongs to \mathcal{B}_+ , is bounded satisfies (2) as well as $Pg(x_0) \leq g(x_0)$, since $P\mathbf{1} = \mathbf{1}$. Thus the function g is super-harmonic. Similarly, we deduce that **X** is transient. In conclusion **X** is transient.
 - (b) We have $h(x_0) = 0$, while h(x) > 0 for all $x \neq x_0$ as **X** is irreducible and transient. Furthermore, we have for $x \neq x_0$ that $\tau_0 > 0$ and thus:

$$\mathbb{E}_{x}[\mathbf{1}_{\{\tau_{0}=\infty\}} \,|\, \mathcal{F}_{1}] = \mathbb{E}_{x}[\mathbf{1}_{\{\tau_{0}=\infty\}} \,|\, X_{1}] = h(X_{1}),$$

where we used the Markov property for each equality. Taking the expectation in the last equalities, we get for $x \neq x_0$ that:

$$h(x) = \mathbb{E}_x[\mathbb{E}_x[\mathbf{1}_{\{\tau_0=\infty\}} | \mathcal{F}_1]] = \mathbb{E}_x[h(X_1)] = Ph(x).$$

- 4. (a) Since $\{\tau \leq n\} = \bigcup_{k=0}^{n} \{X_k \in E_0\}$ belongs to \mathcal{F}_n , we deduce that τ is a stopping time.
 - (b) From the previous question, we get that Y_n is \mathcal{F}_n measurable. Let $x \notin E_0$. Since Y_{n+1} is nonnegative, we can compute:

$$\mathbb{E}_{x}[Y_{n+1} | \mathcal{F}_{n}] = \mathbb{E}_{x}[h(X_{n+1})\mathbf{1}_{\{\tau > n+1\}} | \mathcal{F}_{n}]$$

$$\leq \mathbb{E}_{x}[h(X_{n+1})\mathbf{1}_{\{\tau > n\}} | \mathcal{F}_{n}]$$

$$= \mathbb{E}_{x}[h(X_{n+1}) | \mathcal{F}_{n}]\mathbf{1}_{\{\tau > n\}}$$

$$= \mathbb{E}_{x}[h(X_{n+1}) | X_{n}]\mathbf{1}_{\{\tau > n\}}$$

$$= Ph(X_{n})\mathbf{1}_{\{\tau > n\}}$$

$$= Y_{n},$$
(5)

where we used that h is nonnegative for the inequality, that τ is a stopping time for the second equality, the Markov property for the third and fourth equalities.

Taking the expectation we get $\mathbb{E}_x[Y_{n+1}] \leq \mathbb{E}_x[Y_n]$ and by iteration that $\mathbb{E}_x[Y_n] \leq \mathbb{E}_x[Y_0] = h(x) < \infty$, as, since $x \notin E_0$, we get that \mathbb{P}_x -a.s. $\tau > 0$. Thus, we deduce that Y_n is integrable for all $n \in \mathbb{N}$. This gives that **Y** is a super-martingale under \mathbb{P}_x .

- (c) Recall $x \notin E_0$. Since **Y** is a nonnegative super-martingale under \mathbb{P}_x , we get that its converges \mathbb{P}_x -a.s. towards an integrable limit, say Z. If **X** is transient, in this case, a.s. **X** does not belong in any finite set. This implies that \mathbb{P}_x -a.s. we have $\lim_{n\to\infty} h(X_n) = +\infty$ for all $x \notin E_0$. We deduce that \mathbb{P}_x -a.s. τ is finite for all $x \notin E_0$. Using the strong Markov properties at the exit times of E_0 , we deduce that the number of visits of E_0 is a.s. infinite. Since E_0 is finite and **X** is transient, we get a contradiction, and thus deduce that **X** is recurrent.
- 5. (a) Notice that (5) still holds, so that, thanks to (4) for the second inequality, we get:

$$\mathbb{E}_x[Y_{n+1} \mid \mathcal{F}_n] \le Ph(X_n)\mathbf{1}_{\{\tau > n\}} \le Y_n - \delta\mathbf{1}_{\{\tau > n\}}.$$

(b) Since \mathbb{P}_x -a.s. $\tau = 0$ if $x \in E_0$, we therefore only need to consider the case $x \notin E_0$. From the previous question, we get that $\delta \mathbf{1}_{\{\tau > n\}} + \mathbb{E}_x[Y_{n+1} | \mathcal{F}_n] \leq Y_n$. Taking the expectation, we get by recurrence that $\delta \sum_{k=0}^n \mathbb{P}(\tau > k) + \mathbb{E}_x[Y_{n+1}] \leq \mathbb{E}_x[Y_0] = h(x)$ for all $n \in \mathbb{N}$. This gives $\sum_{k=0}^n \mathbb{P}_x(\tau > k) \leq \delta^{-1} h(x)$ for all $n \in \mathbb{N}$, and letting n goes to infinity, we obtain that $\sum_{k \in \mathbb{N}} \mathbb{P}_x(\tau > k) \leq \delta^{-1} h(x) < \infty$. By Fubini, we have:

$$\sum_{k\in\mathbb{N}} \mathbb{P}_x(\tau > k) = \sum_{k\in\mathbb{N}} \mathbb{E}_x[\mathbf{1}_{\{\tau > k\}}] = \mathbb{E}_x[\sum_{k\in\mathbb{N}} \mathbf{1}_{\{\tau > k\}}] = \mathbb{E}_x[\tau].$$

In conclusion, we have obtained that $\mathbb{E}_x[\tau] \leq \delta^{-1} h(x)$.

- (c) First notice that all the random times are stopping times. From the previous question we get that \mathbb{P}_x -a.s. T_0 is finite. By construction $T_0 = 0 \mathbb{P}_x$ -a.s. for $x \in E_0$. So we deduce that T_0 is a.s. finite. By the strong Markov property, we deduce that the process $(X_{T_0+n}, n \in \mathbb{N})$ is conditionally on X_{T_0} independent of \mathcal{F}_{T_0} . Then notice that conditionally on X_{T_0} we have $T_1 - T_0$ is distributed as τ if $X_{T_0} \notin E_0$ and equal to 1 if $X_{T_0} \in E_0$. This implies that $T_1 - T_0$, as well as T_1 , are a.s. finite. By recurrence, we get that the stopping times T_n are a.s. finite for all $n \in \mathbb{N}$. Using again the strong Markov property, we deduce that \mathbf{X}^0 is a Markov chain with respect to the filtration $(\mathcal{G}_n, n \in \mathbb{N})$ where $\mathcal{G}_n = \mathcal{F}_{T_n}$.
- (d) For all $x, y \in E_0$ there is a path for **X** from x to y with positive probability. The trace on E_0 of this path is thus a path for \mathbf{X}^0 from x to y with positive probability. This gives that \mathbf{X}^0 is irreducible on E_0 . Since E_0 is finite, we get that \mathbf{X}^0 is positive recurrent.
- (e) For $y \in E_0$, we have:

$$\mathbb{E}_{y}[T_{1}] = 1 + \mathbb{E}_{y}[\mathbb{E}_{X_{1}}[\tau]\mathbf{1}_{\{X_{1}\notin E_{0}\}}] \le 1 + \delta^{-1}\mathbb{E}_{y}[h(X_{1})] = 1 + \delta^{-1}Ph(y),$$

where we used the Markov property at time n = 1 for **X** and a decomposition according to $X_1 \in E_0$ and $X_1 \notin E_0$ for the first equality, and Question 5b for the inequality.

(f) Let $x \in E_0$ and $\sigma = \inf\{n \ge 1 : X_n^0 = x\}$ be the first return time to x for \mathbf{X}^0 . Notice that σ is a stopping time with respect to the filtration $(\mathcal{G}_n, n \in \mathbb{N})$. Since \mathbf{X}^0 is positive recurrent, we have $\mathbb{E}_x[\sigma] < \infty$. Let $T^x = \inf\{n \ge 1 : X_n = x\}$ be the first return time to x for \mathbf{X} . We shall prove that $\mathbb{E}_x[T^x] < \infty$ to deduce that \mathbf{X} is positive recurrent. Under \mathbb{P}_x , we have that $T^x = T_\sigma = \sum_{k=1}^{\sigma} (T_k - T_{k-1})$. This gives:

$$\mathbb{E}_x[T^x] = \sum_{k=1}^{\infty} \mathbb{E}[\mathbf{1}_{\{\sigma \ge k\}}(T_k - T_{k-1})] = \sum_{k=1}^{\infty} \mathbb{E}_x \left[\mathbb{E}_{X_{T_{k-1}}}[T_1] \mathbf{1}_{\{\sigma \ge k\}} \right],$$

where we conditioned by $\mathcal{G}_{k-1} = \mathcal{F}_{T_{k-1}}$ with $\{\sigma \geq k\} \in \mathcal{G}_{k-1}$ and use the strong Markov property for **X** at time T_{k-1} .

We set $M = 1 + \max_{y \in E_0} Ph(y)$ which is finite by the first part of (4) and since E_0 is finite. Using the previous question, we get:

$$\mathbb{E}_x[T^x] \le \sum_{k=1}^{\infty} M \mathbb{E}_x \left[\mathbf{1}_{\{\sigma \ge k\}} \right] = M \mathbb{E}_x[\sigma] < \infty.$$

This finishes the proof.

- 6. (a) Since V is integrable, we deduce by dominated convergence that $\lim_{n\to\infty} \mathbb{E}[V\mathbf{1}_{\{V>-n\}}] = \mathbb{E}[V]$. Use that $\mathbb{E}[V] < 0$ to conclude at the existence of such n_0 .
 - (b) Let *h* be the identity function on N. Set $\delta = -\mathbb{E}[V\mathbf{1}_{\{V>-n_0\}}] > 0$. We have for $n > n_0$ that:

$$Ph(n) = \mathbb{E}[(n+V)_{+}] = \mathbb{E}[(n+V)\mathbf{1}_{\{V>-n\}}] \le n-\delta = h(n) - \delta.$$

For $n \in E_0$, we also have $Ph(n) = \mathbb{E}[(n+V)_+] \leq \mathbb{E}[(n+V)] = n + \mu \leq n < \infty$. Hence, the function h belongs to \mathcal{B}_+ and satisfies (4). We deduce from Question 5f that **X** is positive recurrent.