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1 Measure theory and random variables

1.1 σ–fields

Exercise 1.1 (On σ-fields and topologies). Let Ω be a state space, for example Ω = R.

1. Describe the σ-field generated by one subset, that is by C = {A} for some A ⊂ Ω.

2. Describe the σ-field generated by the singletons, that is by C = {{x}, x ∈ Ω}. Prove
that if Ω is finite or countable then σ(C) = P(Ω). Is this the case if Ω is uncountable?

△

Exercise 1.2 (Generated σ-fields). Consider a real-valued function f defined on Ω = R (en-
dowed with its Borel σ-field) and σ(f), the σ-field generated by f .

1. Determine σ(f) for the functions f defined by: a) f(x) = 1A(x) for some Borel set
A ⊂ R; b) f(x) = x; c) f(x) = ⌊x⌋, where ⌊x⌋ is the integer part of x, that is the only
n ∈ Z such that n ≤ x < n+ 1.

2. Prove that a measurable real-valued function defined on Ω = R is σ(|x|)-measurable if
and only if it is an even real-valued function.

3. Prove that σ(|x|) = σ(x2) (where we write σ(f(x)) for σ(f)).

△

Exercise 1.3 (Generated fields and coin tossing). We model an infinite coin tossing game by
the set Ω = {0, 1}N = {ω = (ω1, ω2, . . .);ωi ∈ {0, 1}}, and the result of the n-th tossing is given
by the function Xn: Xn(ω) = ωn, where ω = (ω1, ω2, . . .). We denote by Fn = σ(X1, . . . , Xn)
the σ-field generated by X1, . . . , Xn. This corresponds to the information obtained when
looking at the first n coin tossing.

1. Determine F1 and F2.

2. Prove that X2 is not F1-measurable but that X2(1−X2) is F1-measurable.

3. Characterize all the real-valued functions defined on Ω which are F1 measurable and
more generally which are Fn-measurable.

△
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1.2 Independence

Exercise 1.4 (Independence). Let (Ω,F ,P) be a probability space. Let X1 and X2 be two
independent random variables taking values in {−1, 1} such that P(X1 = 1) = P(X2 = 1) =
1/2.

1. Determine σ(X2).

2. Prove that X1 and X1X2 are independent of σ(X2).

3. Check that (X1, X1X2) is not independent of σ(X2).

4. Deduce an example where A,B,C ∈ F are such that A and B are independent of C
but A ∩B is not independent1 of C.

△

1.3 Convergence theorems

Exercise 1.5 (Monotone convergence). Let fn(x) = n−1 |x| for n ∈ N∗ and x ∈ R. Check
that limn→∞

∫
R fn(x)λ(dx) ̸=

∫
R limn→∞ fn(x)λ(dx). Does this contradict the monotone

convergence theorem? △
Exercise 1.6 (Convergence of the integral). Let fn(x) = 1[n,n+1](x) for n ∈ N and x ∈ R.
Check that limn→∞

∫
R fn(x)λ(dx) and

∫
R limn→∞ fn(x)λ(dx) does not coincide. Does this

contradict the monotone convergence theorem, Fatou’s lemma or the dominated convergence
theorem? △
Exercise 1.7 (Characteristic function). The characteristic of X a R-valued random variable
is the ψX defined on R by ψX(u) = E[eiuX ].

1. Prove that |ψX(u)| ≤ 1.

2. Using dominated convergence prove that ψX is continuous on R.

3. Using dominated convergence, prove that if a sequence (Xn, n ∈ N) of R-valued random
variables converges a.s. to an R-valued random variable, then limn→∞ ψXn(u) = ψX(u)
for all u ∈ R.

△

2 Conditional expectation

Exercise 2.1 (Model for daily temperature). We consider the following auto-regressive model
for the daily temperature. Let Xn denote the temperature of day n ∈ N. We assume that
X0 is a given constant and Xn+1 = aXn + εn+1 for n ∈ N, where the random variables
(εn, n ∈ N∗) are independent integrable with the same mean µ. Compute E[Xn+1 |Xn]
(the best prevision of tomorrow daily temperature, knowing the today temperature) and
E[Xn+1 |X0, . . . , Xn] (the best prevision of tomorrow daily temperature, knowing the past
and today temperatures). △

1Taking C = {A,B}, this gives an example where all elements of C are independent of a σ-field G ⊂ F ,
but the σ-field σ(C) is not independent of G. However, if all elements of C are independent of a σ-field G ⊂ F
and C is stable by finite intersection, then using the monotone class theorem, one can prove that σ(C) is then
independent of G.
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Exercise 2.2 (Bernoulli random variables). Let X1 and X2 be two independent Bernoulli
random variables with parameter p ∈ (0, 1).

1. Compute E[X1 +X2 |X1].

2. Compute E[X1 |X1 +X2].

3. Compute E[X1X2 |X1 + X2] and deduce that X1 and X2 are not independent condi-
tionally on X1 +X2.

△

Exercise 2.3 (Geometric distribution). Let (Xn, n ∈ N∗) be independent Bernoulli random
variables with parameter p ∈ (0, 1). Let T = inf{n ≥ 1; Xn = 1} with the convention that
inf ∅ = +∞. (Notice that T has geometric distribution with parameter p.) Compute E[T |X1]
and deduce E[T ]. △

Exercise 2.4 (More and more precise). Let X be an R+-valued random variable defined on
a probability space (Ω,F ,P). Consider the σ-fields Fn = σ(⌊2nX⌋) for n ∈ N, where ⌊x⌋ is
the integer part of x, that is the only integer m such that m ≤ x < m + 1. The σ-fields Fn

corresponds to the observation of X with precision 2−n. We set Mn = E[X | Fn].

1. Check that ⌊2−1⌊2n+1x⌋⌋ = ⌊2nx⌋. Deduce that Fn ⊂ Fn+1 (which roughly means
that the amount of information increases with the precision). Deduce that Mn =
E[Mn+1 | Fn].

2. Check that 1{2nX∈[k,k+1)} is Fn measurable for every k ∈ N. (More generally, you can
further prove that Fn is generated by the events {2nX ∈ [k, k + 1)} for k ∈ N.)

3. We recall that E[X |A] = E[X1A]/P(A) for all A ∈ F , with the convention that 0/0 = 0.
Prove that:

Mn =
∑
k∈N

1{2nX∈[k,k+1)}E[X | 2nX ∈ [k, k + 1)].

4. Check that X − 2−n ≤ Mn ≤ X + 2−n and deduce that a.s. limn→∞Mn = X (that is
when the precision is infinite, everything is known).

△

Exercise 2.5 (Bernoulli random variables). Let (X1, . . . , Xn) be independent Bernoulli ran-
dom variables with parameter p ∈ (0, 1). Recall that Sn =

∑n
i=1Xi is binomial with param-

eter (n, p). .

1. Prove that conditionally on Sn, the distribution ofX1 is Bernoulli with parameter Sn/n.

2. Compute the distribution of (X1, . . . , Xn) conditionally on Sn.

3. Check that the random variables X1 and X2 are not independent conditionally on Sn
(for n ≥ 2).

△
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3 Markov chains

3.1 First computations

Exercise 3.1 (Examples of transition matrices). In what follows ∗ designs any positive quan-
tity, such that the matrices of size n considered are stochastic. For the following transition
matrices on {1, . . . , n}, indicate when ∗ takes the value 1, represent the corresponding tran-
sition graph, give the communicating classes and precise if they are open or closed and in the
latter case their period.

∗ ∗ 0
∗ ∗ ∗
0 0 ∗



0 ∗ ∗ 0
0 0 0 ∗
0 0 0 ∗
∗ 0 0 0



∗ 0 ∗ 0
0 0 ∗ 0
∗ 0 0 0
∗ ∗ 0 ∗





0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 ∗ 0 ∗ ∗
∗ 0 0 0 0 ∗ 0
∗ ∗ ∗ ∗ 0 ∗ ∗
0 0 0 0 0 ∗ 0
0 ∗ 0 0 0 0 0


△

Exercise 3.2 (Labyrinth). A mouse is in the labyrinth depicted in figure 1 with 9 squares.
We consider the three classes of squares: A = {1, 3, 7, 9} (the corners), B = {5} (the center)
and C = {2, 4, 6, 8} the other squares. At each step n ∈ N, the mouse is in a square and we
denote by Xn its number and Yn its class.

1 2 3

4 5 6

7 8 9

Figure 1: Labyrinth
.

1. At each step, the mouse choose an adjacent square at random (and uniformly). Prove
that X = (Xn, n ∈ N) is a Markov chain and represent its transition graph. Classify
the states of X.

2. Prove that Y = (Yn, n ∈ N) is a Markov chain and represent its transition graph.
Compute the invariant probability measure of Y and deduce the one of X.

3. In fact the mouse has some memory, and at each step, the mouse choose an adjacent
square at random (an uniformly), but not the one of the previous step. Prove that
X is not a Markov chain. Set Zn = (Xn−1, Xn) and W = (Yn−1, Yn). Prove that
Z = (Zn, n ∈ N∗) and W = (Wn, n ∈ N∗) are Markov chains and represent their
transition graph.

4. Compute the invariant probability measure of W and deduce the one of Z. Under this
invariant probability measure, what is the distribution of the first square and the second
square?
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△
Exercise 3.3 (2 states Markov chain). Let E = {a, b}. The most general stochastic matrix
can be written as:

P =

(
1− α α
β 1− β

)
with α, β ∈ [0, 1].

1. Compute the invariant probability distribution(s). Give a necessary and sufficient con-
dition for uniqueness of the invariant probability distribution.

2. Assume that α+ β > 0. Prove that for all n ∈ N:

Pn =

(
1− p p
1− p p

)
+ γn

(
p −p

−1 + p 1− p

)
,

for some p and γ which shall be computed.

3. Assume that α+ β ∈ (0, 2). Prove that for any probability measure µ0 on E, the limit
limn→+∞ µ0P

n exists and does not depend on µ0.

4. When is P irreducible? When is P periodic? When does P have only one closed
communicating class? When does P have an open communicating class?

△
Exercise 3.4 (Examples). Let (Xn, n ∈ N) be a Markov chain on E = {−1, 0, 1} with transi-
tion matrix P . Set Yn = |Xn| for n ∈ N.

1. Check that conditionally on {Yn = 0} the σ-fields σ(Yn+k, k ∈ N) and Fn = σ(Xk, 0 ≤
k ≤ n) are independent (that is for all A ∈ σ(Yn+k, k ∈ N) and B ∈ Fn, we have
P(A

⋂
B |Yn = 0) = P(A |Yn = 0)P(B |Yn = 0)).

2. Assume that P (0, 1) = P (−1,−1) = 0, P (−1, 1)P (0,−1) > 0 and P (−1, 0) ̸= P (1, 0).
Compute P(Yn+1 = 0 |Yn = 1, Yn−1 = 0) and P(Yn+1 = 0 |Yn = 1, Yn−1 = 1, Yn−2 = 0)
for n ≥ 2 and deduce that (Yn, n ∈ N) is not a Markov chain.

△
Exercise 3.5 (How many items will you buy?). You have an amount of X0 ∈ N euros to spent
in your favorite mall. Denote by Xk your wealth at step k. At step k+1, if Xk > 0, you buy
the most fancy item you just found whose cost is uniformly distributed on {1, . . . , Xk}; and
if Xk = 0 then you can buy nothing. Prove that (Xk, k ∈ N) is a Markov chain on N and
classify all its states. Give its transition probability and its transition graph. Let N be the
number of items you bought. Denoting En[•] = E[• |X0 = n], prove that for n ∈ N:

En[N ] =

n∑
ℓ=1

1

ℓ
·

△

3.2 Asymptotic behavior

Exercise 3.6 (Labyrinth (end)). We continue Exercise 3.2. Compute limn→∞ n−1
∑

k=1 f(Xk)
for the model given in Questions 1 and 3 and a function f defined on {1, . . . , 9}. △
Exercise 3.7 (Mean return time). Let X = (Xn, n ∈ N) be an irreducible Markov chain on a
space with a finite number N of elements.
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1. Explain why there exits a unique invariant probability measure π.

2. Compute, as an explicit function of N , the mean return time under π, that is E[T ],
where X0 is distributed as π and T = inf{n ∈ N∗, Xn = X0}.

△
Exercise 3.8 (Ferryman). Once upon a time, there was a dangerous river and only one brave
ferryman to cross it. The ferryman can take only one passenger from one bank to the other.
At each step n ∈ N, one customer may appear independently on the left (resp. right) bank
with probability p (resp. q) with 1 ≥ p > q > 0; during the same step the customer who
just arrived either embark on the ferryboat if the ferryboat just arrived or was waiting there,
or leaves if the ferryboat is not there. The embarkation and disembarkation of customers
take one step (and can happens one the same step), and the crossing of the river takes one
step. So, the possible states of the ferryman are: waiting or embarking on the left bank state
L; waiting or embarking on the right bank state R; crossing the river from the left bank to
the right state LR; crossing from the right bank to the left state RL. Thus, a very busy
period for the ferryman correspond to the sequence ...,LR,R,RL,L,LR, ..., corresponding
to ..., crossing, disembarking a customer and embarking an other one, crossing, disembarking
a customer and embarking an other one, crossing, .... For the ferryman, waiting cost nothing
but crossing has a cost c, and the price for the customer to cross is C > c. The ferryman
consider the strategy S[1]: waiting on the bank until there is a customer and then embarking
him and crossing; and strategy S[2]: waiting on the left bank until there is a customer and
then embarking him and crossing from the left bank to the right, and staying only one step
on the right bank for disembarking the customer on the ferryboat and also embarking a new
customer if there is any. So a typical sequence for S[1] would be:

L,L (and embarking a customer),LR,R,R,R (and embarking a customer),RL, ...,

while a typical sequence for S[2] would be:

L,L (and embarking a customer),LR,R (and possibly embarking nobody),RL, ..., .

We denote X
[i]
n the state of the ferryman at step n ∈ N with the strategy i.

1. Prove that X [i] = (X
[i]
n , n ∈ N) is Markov chain on E = {L,R,LR,RL} and represent

its transition graph.

2. Compute π[i] the invariant probability measure of X [i].

3. Denote by G
[i]
n the gain of the ferryman at step n with the strategy i. Check that

((X
[i]
n , G

[i]
n ), n ∈ N) is a Markov chain (notice there is nothing to do for i = 1, but one

needs to replace the state RL by two states for i = 2).

4. Deduce s[i] = limn→∞ n−1
∑n

k=1G
[i]
k the asymptotic gain averaged in time. Compare

the two strategies according to the values of C > c and p > q > 0 (consider in particular
the case C = 2c).

△
Exercise 3.9 (Emptying the urn). We consider an urn and the following mechanism. At step
n ∈ N, with probability p > 0 a ball is added to the urn; with probability 1− p > p a ball is
removed from the urn (and nothing happens if the urn is empty). Let Xn ∈ N be the number
of balls in the urn at step n.
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1. Check that X = (Xn, n ∈ N) is an irreducible aperiodic Markov chain.

2. Check that X is reversible with respect to the probability measure π on N defined by

π(k) =
1− 2p

1− p

(
p

1− p

)k

.

3. Compute the asymptotic proportion of time the urn is empty.

4. Compute the mean time to empty the urn starting from an empty urn and then from
an urn with only one ball.

△

Exercise 3.10 (House of cards). Consider the house of cards Markov chain2: the state space
is E = N and the transition matrix P is defined by P (k, k + 1) = pk, P (k, 0) = 1 − pk and
P (k, j) = 0 if j ̸∈ {0, k + 1}, where (pk, k ∈ N) is a sequence of elements of (0, 1). Check
the corresponding Markov chain is irreducible. Give an interpretation of

∏n
k=0 pk using the

Markov chain. Deduce that if
∏

k∈N pk > 0 the Markov chain is transient. △

4 Martingales

4.1 First computations

Exercise 4.1 (Sum of squares). Let (Xn, n ∈ N) be independent square integrable random
variables, such that E[Xn] = 0 for all n ∈ N. Set Mn = (

∑n
k=0Xk)

2−
∑n

k=0 E[X2
k ] for n ∈ N.

Prove that (Mn, n ∈ N) is a martingale (precise also the filtration). △

Exercise 4.2 (Wald formula). Let F = (Fn, n ∈ N) be filtration and X = (Xn, n ∈ N∗) a
real-valued adapted integrable process with constant mean µ (that is E[Xn] = µ for all n ∈ N)
and such that Xn+1 is independent of Fn for all n ∈ N. Set S0 = 0 and Sn =

∑n
k=1Xk for

n ∈ N. Let τ be a stopping time with respect to F. We say the Wald formula hold if

E[Sτ ] = µE[τ ].

1. Check that M = (Mn = Sn − nµ, n ∈ N) is a martingale.

2. Using the stopping time theorem, prove that E[Sn∧τ ] = µE[n ∧ τ ] for all n ∈ N.

3. Assume that Xn is non-negative for all n ∈ N. Deduce the Wald formula holds.

4. Assume thatX is bounded in L1 (that is µ0 = supn∈N∗ E[|Xn|] is finite) and E[τ ] < +∞.
Deduce the Wald formula holds.

5. We consider the Jacob Bernoulli’s game: a fair die is rolled, and if the result is N ∈
{1, . . . , 6}, then N dice are rolled. Give the expected total of the N dice.

△
2W. Feller. An introduction to probability theory and its applications. Vol. I. Third edition. John Wiley &

Sons, 1968. (See pages 381-382 (Examples 2.(l)), 390, 398, 403 and 408.)
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Exercise 4.3 (Model for daily temperature (2)). We consider the following auto-regressive
model for the daily temperature. Let Xn denote the temperature of day n ∈ N. We assume
that X0 is a given constant and Xn+1 = aXn + εn+1 for n ∈ N, where the random variables
(εn, n ∈ N∗) are independent integrable, defined on Ω, with the same mean µ. Let F =
(Fn, n ∈ N) be the filtration defined by F0 = {∅,Ω} and Fn be the σ-field generated by
(ε1, . . . , εn). On what condition on (a, µ) do we have that X = (Xn, n ∈ N) is a martingale.
Give a sufficient condition for X to be a non-negative sub-martingale. △
Exercise 4.4 (A game). We consider the game: bet every thing as long as you win in a
coin tossing game. Let (Xn, n ∈ N∗) be independent Bernoulli random variables such that
P(Xk = 1) = P(Xk = 0) = 1/2. We consider the corresponding gain process G = (Gn, n ∈ N)
given by G0 = 1, Gn = 2n

∏n
k=1Xk = 2XnGn−1 for n ∈ N∗. Let F be the natural filtration

of the process G.

1. Compute E[Gn] and prove that a.s. limn→∞Gn = 0.

2. Check that G is a non-negative martingale.

3. Using the stopping time theorem, prove that E[Gτ ] = 1 for any bounded stopping time.

4. Using Fatou’s lemma deduce that E[Gτ ] ≤ 1 for any stopping time. (There is no winning
strategy. And someone who is winning on average is thus cheating!)

5. Check that τ = inf{n ≥ 1; Gn = 0} is a (finite) stopping time and that it is distributed
as a geometric random variable.

6. Check that Gτ−1 = supn∈NGn = 2τ−1 and E[supn∈NGn] = +∞. (The mean gain for
someone who can foresee one step ahead is infinite!) Deduce that τ−1 is not a stopping
time.

△

4.2 Convergence theorems

Exercise 4.5 (0-1 Kolmogorov’s law). Let (Xn, n ∈ N) be independent random variables. For
n ∈ N, set Fn = σ(X0, . . . , Xn) the σ-field of the past before n and Gn = σ(Xn+k, k ∈ N)
the σ-field from the future. We set F∞ =

∨
n∈NFn and G∞ =

⋂
n∈N Gn the corresponding

asymptotic σ-fields. Let A ∈ G∞.

1. Check that G∞ is indeed a σ-field and that G∞ ⊂ F∞.

2. Check that (Mn = E[1A | Fn], n ∈ N) is a martingale and that it converges a.s. to 1A.

3. Check that Mn is a.s. constant and deduce that P(A) is either 1 or 0.

4. Deduce that {lim infn→∞ n−1
∑n

k=1Xk ≤ a} is of probability either 0 or 1 for all
a ∈ [−∞,+∞]. (In particular, averaging independent random variables either a.s. con-
verges to a constant in [−∞,+∞] or a.s. oscillates between two distinct deterministic
bounds.)

△
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