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Chapter 1

A starter on measure theory and
random variables

In this chapter, we present in Section 1.1 a basic tool kit in measure theory with in mind the
applications to probability theory. In Section 1.2, we develop the corresponding integration
and expectation. The presentation of this chapter follows closely [1], see also [2].

We use the following convention N = {0,1,...} is the set of non-negative integers, N* =
N((0,+00), and for m < n € N, we set [m,n] = [m,n](\N. We shall consider R =
R J{do0} = [~00, +00], and for a,b € R, we write a V b = max(a,b), a™ = a V0 the positive
part of a, and a~ = (—a)™ its negative part.

For two sets A C E, the function 14 defined on E taking values in R is equal to 1 on A
and to 0 on E'\ A.

1.1 Measures and measurable functions

1.1.1 Measurable space

Let € be a set also called a space. A measure on a set €2 is a function which gives the “size”
of subsets of 2. We shall see that, if one asks the measure to satisfy some natural additive
properties, it is not always possible to define the measure of any subsets of €. For this reason,
we shall consider families of sub-sets of  called o-fields. We denote by P(Q) = {4; A C Q}
the set of all subsets of 2.

Definition 1.1. A collection of subsets of Q, F C P(R2), is called a o-field on Q if:
(i) Qe F;
(ii)) A € F implies A € F;
(iii) if (As,i € I) is a finite or countable collection of elements of F, then |J;c; Ai € F.

We call (2, F) a measurable space and a set A € F is said to be F-measurable.

When there is no ambiguity on the o-field we shall simply say that A is measurable instead
of F-measurable. In probability theory a measurable set is also called an event. Properties
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(i) and (ii) implies that () is measurable. Notice that P(Q2) and {0, Q} are o-fields. The latter
is called the trivial o-field. When €2 is at most countable, unless otherwise specified, we shall
consider the o-field P(€2).

Proposition 1.2. Let C C P(R2). There exists a smallest o-field on Q which contains C.
The smallest o-field which contains C is denoted by o(C) and is also called the o-field
generated by C.

Proof. Let (Fj,j € J) be the collection of all the o-fields on €2 containing C. This collection
is not empty as it contains P(£2). It is left to the reader to check that (), ; F; is a o-field.
Clearly, this is the smallest o-field containing C. O

Remark 1.3. In this remark we give an explicit description of a o-field generated by a finite
number of sets. Let C = {A;,...,A,}, with n € N*, be a finite collection of subsets of . It
is elementary to check that F = {{J;c7 Cr; Z C P([1,n])}, with C; = ;c; As Mg A and
I C [1,n], is a o-field. Notice that C;(Cy = 0 for I # J. Thus, the subsets C; are atoms
of F in the sense that if B € F, then C7() B is equal to C; or to (.

We shall prove that o(C) = F. Since by construction C; € o(C) for all I C [1,n], we
deduce that F C ¢(C). On the other hand, for all ¢ € [1,n], we have A; = Urcp1 5, ie1 Cr-
This gives that C C F, and thus ¢(C) C F. In conclusion, we get o(C) = F.

If 7 and H are o-fields on 2, we denote by F VH = o(F|JH) the o-field generated
by F and H. More generally, if (F;,i € I) is a collection of o-fields on 2, we denote by
Vicr Fi = 0(U;er Fi) the o-field generated by (F;,i € I).

We shall consider product of measurable spaces. If (4;,7 € I) is a collection of sets, then
its product is denoted by [[,c; Ai = {(wi,i € I); w; € A; Vi I}

Definition 1.4. Let ((;, Fi),i € I) be a collection of measurable spaces. The product o-field
Qs Fi on the product space [[;c; Qi is the o-field generated by all the sets [[;c; Ai such
that A; € F; for alli € I and A; = ; for all i € I but for a finite number of indices.

When all the measurable spaces (€, F;) are the same for all i € I, say (Q, F), then we
also write the product space [[;c; Qi = Q! and the product o-field Ricr Fi = For,

We recall a topological space (E, Q) is a space E and a collection O of subsets of E such
that: () and E belongs to O, any (finite or infinite) union of elements of O belongs to O, and
the intersection of any finite number of elements of O belongs to O. The elements of O are
called the open sets, and O is called a topology on E. There is a very natural o-field on a
topological space.

Definition 1.5. If (E,O) is a topological space, then the Borel o-field, B(E) = 0(O), is the
o-field generated by all the open sets. An element of B(E) is called a Borel set.

Usually the Borel o-field on E is different from P(E).

Remark 1.6. Since all the open subsets of R can be written as the union of a countable
number of bounded open intervals, we deduce that the Borel o-field is generated by all the
intervals (a, b) for a < b. It is not trivial to exhibit a set which is not a Borel set; an example
was provided by Vitalil.

1J. Stern. ”Le probléme de la mesure.” Séminaire Bourbaki 26 (1983-1984): 325-346. http://eudml.org/
doc/110033.



1.1. MEASURES AND MEASURABLE FUNCTIONS 3

Similarly to the one dimensional case, as all the open sets of R¢ can be written as a
countable union of open rectangles, the Borel o-field on R?, d > 1, is generated by all the
rectangles H?Zl(ai, b;) with a; < b; for 1 <i < d. In particular, we get that the Borel o-field
of R? is the product? of the d Borel o-fields on R. %

1.1.2 Measures

We give in this section the definition and some properties of measures and probability mea-
sures.

Definition 1.7. Let (Q, F) be a measurable space.

(i) A [0,+oc]-valued function u defined on F is o-additive if for all finite or countable
collection (A;,i € I) of measurable pairwise disjoint sets, that is A; € F for alli € I
and A; N Aj; =0 for all i # j, we have:

It <U Ai) = u(A). (1.1)

il il

(ii) A measure p on (2, F) is a o-additive [0, +oo]-valued function defined on F such that
pu(d) =0. We call (2, F, p) a measured space. A measurable set A is p-null if p(A) = 0.

(iii) A measure p on (2, F) is o-finite if there exists a sequence of measurable sets (2, n €
N) such that J,,cy Qn = Q and p(2,) < +oo for alln € N.

(iv) A probability measure P on (2, F) is a measure on (2, F) such that P(2) = 1. The
measured space (2, F,P) is also called a probability space.

We refer to Section 7.1 for the construction of measures such as the Lebesgue measure,
see Proposition 7.4 and Remark 7.6, and the product probability measure, see Proposition
7.7.

Ezample 1.8. We give some examples of measures (check these are indeed measures). Let €2
be a space.

(i) The counting measure Card is defined by A — Card (A) for A C Q, with Card (A) the
cardinal of A. It is o-finite if and only if €2 is at most countable.

(ii) Let w € Q. The Dirac measure at w, ¢, is defined by A +— §,(A) = 14(w) for A C Q.
It is a probability measure.

(iii) The Bernoulli probability distribution with parameter p € [0, 1], Pp(,), is a probability
measure on (R, B(R)) given by P,y = (1 — p)do + pdi.

2Let (E1,01) and (F2,02) be two topological spaces. Let C = {O1 x O2; O1 € 01,02 € O1} be the set
of product of open sets. By definition, B(E1) ® B(E>) is the o-field generated by C. The product topology
01 ®02 on E; X Es is defined as the smallest topology on E; X E2 containing C. The Borel o-field on Ey X Fa,
B(Ey x E»), is the o-field generated by O1®0,. Since C C 01002, we deduce that B(E1)QB(E2) C B(E1x Es).
Since O1 ® O is stable by infinite (even uncountable) union, it might happens that the previous inclusion is
not an equality, see Theorem 4.44 p. 149 from C. Aliprantis and K. Border. Infinite Dimensional Analysis.
Springer, 2006.
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(iv) The Lebesgue measure A on (R, B(R)) is a measure characterized by A([a,b]) = b—a for
all a < b. In particular, any finite set or (by o-additivity) any countable set is A-null®.
The Lebesgue measure is o-finite.

A

Let us mention that assuming only the additivity property (that is I is assumed to be
finite in (1.1)), instead of the stronger o-additivity property, for the definition of measures*
leads to a substantially different and less efficient approach. We give elementary properties
of measures.

Proposition 1.9. Let pu be a measure on (2, F). We have the following properties.
(i) Additivity: p(AU B) + u(AN B) = pu(A) + w(B), for all A,B € F.
(i) Monotonicity: A C B implies u(A) < u(B), for all A,B € F.

(i1i) Monotone convergence: If (An,n € N) is a sequence of elements of F such that A, C
Any1 for all n € N, then, we have:

7 (U An) = lim p(An).

neN

() If (Ai,i € I) is a finite or countable collection of elements of F, then we have the
inequality (Uz’eI Ai) <> ier #(Aq). In particular a finite or countable union of p-null
sets s p-null.

Proof. We prove (i). The sets ANB¢, AN B and A°N B are measurable and pairwise disjoint.
Using the additivity property three times, we get:

u(AUB) + u(ANB) = n(AN B°) +2u(AN B) + u(A°N B) = u(A) + u(B).

We prove (ii). As A°N B € F, we get by additivity that u(B) = u(A) 4+ p(A°N B). Then
use that pu(A°N B) > 0, to conclude.

We prove (iii). We set By = Ag and B,, = A,NA¢_, for alln € N* so that | J,,.,,, Bn = Am
for all m € N* and J,,cy Bn = U, ey An. The sets (B,,,n > 0) are measurable and pairwise
disjoint. By o-additivity, we get p(An) = (U, <, Bn) = D _p<pm #(Bn) and p (Upen 4An) =
1 (Unen Brn) = X nen 14(By). Use the convergence of the partial sums >, . u(By), whose
terms are non-negative, towards ) i (By) as m goes to infinity to conclude.

Property (iv) is a direct consequence of properties (i) and (iii). O

We give a property for probability measures, which is deduced from (i) of Proposition 1.9.

Corollary 1.10. Let (2, F,P) be a probability space and A € F. We have P(A°) = 1—-P(A).

3A set A C R is negligible if there exists a A-null set B such that A C B (notice that A might not be a
Borel set). Let Ny be the sets of negligible sets. The Lebesgue o-field, B* (R), on R is the o-field generated
by the Borel o-field and Ny. By construction, we have B(R) C B*(R) C P(R). It can be proved that those
two inclusions are strict.

“H. Follmer and A. Schied. Stochastic finance. An introduction in discrete time. De Gruyter, 2011.
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We end this section with the definition of independent events.

Definition 1.11. Let (2, F,P) be a probability space. The events (A;,i € I) are independent
if for all finite subset J C I, we have:

P ﬂAj :HIP’(Aj).

jeJ jedJ

The o-fields (Fi,i € I) are independent if for all A; € F; C F, i € I, the events (A;,i € I)
are independent.

1.1.3 Characterization of probability measures

In this section, we prove that if two probability measures coincide on a sufficiently large
family of events, then they are equal, see the main results of Corollaries 1.14 and 1.15. After
introducing a A-system (or monotone class), we prove the monotone class theorem.

Definition 1.12. A collection A of sub-sets of 2 is a A-system (or monotone class) if:
(i) Qe A;
(ii) A,Be€ A and A C B imply BN A° € A;
(iii) if (An,n € N) is an increasing sequence of elements of A, then we have |J, o An € A.

Theorem 1.13 (Mononote class Theorem). Let C be a collection of sub-sets of Q stable by
finite intersection (also called a w-system). All X-system (or monotone class) containing C
also contains o(C).

Proof. Notice that P(Q2) is A-system containing C. Let A be the intersection of all A-systems
containing C. It is easy to check that A is the smallest A-system containing C. It is clear
that A satisfies properties (i) and (ii) from Definition 1.1. To check that property (iii) from
Definition 1.1 holds also, so that A is a o-field, it is enough, according to property (iii) from
Definition 1.12, to check that A is stable by finite union or equivalently by finite intersection,
thanks to property (ii) of Definition 1.12.

For B C Q, set Ap = {A C AN B € A}. Assume that B € C. It is easy to check
that Ap is a A-system, as C is stable by finite intersection, and that it contains C and thus
A. Therefore, for all B (C, A€ A, we get A € Ag and thus AN B € A.

Assume now that B € A. It is easy to check that Ap is a A-system. According to the
previous part, it contains C and thus A. In particular, for all B € A, A € A, we get A € Ap
and thus AN B € A. We deduce that A is stable by finite intersection and is therefore a
o-field. To conclude, notice that A contains C and thus o(C) also. O

Corollary 1.14. Let P and P’ be two probability measures defined on a measurable space
(Q,F) Let C C F be a collection of events stable by finite intersection. If P(A) = P'(A) for
all A € C, then we have P(B) = P'(B) for all B € o(C).

Proof. Notice that {A € F; P(A) = P'(A)} is a A\-system. It contains C. By the monotone
class theorem, it contains o(C). O
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The next corollary is an immediate consequence of Definition 1.5 and Corollary 1.14.

Corollary 1.15. Let (E,O) be a topological space. Two probability measures on (E,B(E))
which coincide on the open sets O are equal.

1.1.4 Measurable functions

Let (S,S) and (E, £) be two measurable spaces. Let f be a function defined on S and taking
values in E. For A C E, weset {f € A} = f~1(A) = {z € S; f(x) € A}. It is easy to check
that for A C F and (A;,i € I) a collection of subsets of E, we have:

FHAY = A, (U Ai) =Jf'(4) and f7! (ﬂ AZ-) =/ (A).

icl iel icl iel
(1.2)
We deduce from the properties (1.2) the following elementary lemma.

Lemma 1.16. Let f be a function from S to E and £ a o-field on E. The collection of sets
{fY(A); A€ &} is a o-field on S.

The o-field {f‘l(A); Ace 5}, denoted by o(f), is also called the o-field generated by f.

Definition 1.17. A function f defined on a space S and taking values in a space E 1is

measurable from (S,S) to (E,€) if o(f) C S.

When there is no ambiguity on the o-fields S and &, we simply say that f is measurable.

Ezxample 1.18. Let A C S. The function 14 is measurable from (5,S) to (R, B(R)) if and
only if A is measurable as o(14) = {0, 5, A, A°}. A

The next proposition is useful to prove that a function is measurable.

Proposition 1.19. Let C be a collection of subsets of E which generates the o-field £ on E.
A function f from S to E is measurable from (S,S) to (E,E) if and only if for all A € C,
(A es.

Proof. We denote by G the o-field generated by {f‘l(A),A € C}. We have G C o(f). It
is easy to check that the collection {A € E; f~'(A) € G} is a o-field on E. It contains C
and thus £. This implies that o(f) C G and thus o(f) = G. We conclude using Definition
1.17. O

We deduce the following result, which is important in practice.

Corollary 1.20. A continuous function defined on a topological space and taking values in
a topological space is measurable with respect to the Borel o-fields.

The next proposition concerns function taking values in product spaces.

Proposition 1.21. Let (S,S) and ((E;,&;),i € I) be measurable spaces. For all i € I, let
fi be a function defined on S taking values in E; and set f = (fi,i € I). The function f is
measurable from (S,S) to ([Lic; Ei, ;1 &i) if and only if for all i € I, the function f; is
measurable from (S,S) to (E;, &;).
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Proof. By definition, the o-field @);.;&; is generated by [[,.; A; with A; € & and for all
i € I but one, A; = E;. Let [],.; A; be such a set. Assume it is not equal to [],.; £; and let
iy denote the only index such that A;, # E;,. We have f~! ([;c; 4i) = f;.'(4i) € S. Thus
if f is measurable so is f;,. The converse is a consequence of Proposition 1.19. O

The proof of the next proposition is immediate.

Proposition 1.22. Let (2, F), (S,S), (E,E) be three measurable spaces, f a measurable
function defined on ) taking values in S and g a measurable function defined on S taking
values in 2. The composed function go f defined on Q0 and taking values in E is measurable.

We shall consider functions taking values in R. The Borel o-field on R, B(R), is by
definition the o-field generated by B(R), {+oco} and {—oo} or equivalently by the family
([-00,a),a € R). We say a function (resp. a sequence) is real-valued if it takes values in
(resp. its elements belong to) R. With the convention 0 - co = 0, the product of two real-
valued functions is always defined. The sum of two functions f and ¢ taking values in R is
well defined if (f, g) does not take the values (400, —o0) or (—oo, +00).

Corollary 1.23. Let f and g be real-valued measurable functions defined on the same mea-
surable space. The functions fg, fV g = max(f,g) are measurable. If (f,qg) does not take
the values (400, —00) and (—oo, +00), then the function f + g is measurable.

Proof. The R’-valued functions defined on R’ by (z,y) — zy, (z,y) = xVy and (z,y) — (x+

. 2 2 .
y)1{(xvy)6@2\{(_007+OO)7(+OO7_00)}} are continuous on R* and thus measurable on R* according

to Corollary 1.20. Thus, they are also measurable on R, The corollary is then a consequence
of Proposition 1.22. O

If (an,n € N) is a real-valued sequence then its lower and upper limit are defined by:

liminf a, = lim inf{ax, Kk > n} and limsupa, = lim sup{ag, k > n}
n—00 n—00 N—00 n—00

and they belong to R. Notice that:

limsup a,, = limsupa;” — liminfa,, .
n—00 n—00 n—oo
The sequence (a,,,n € N) converges (in R) if lim inf,, o a,, = limsup,,_, ., a,, and this common
value, denoted by lim,,_, a,, belongs to R.
The next proposition asserts in particular that the limit of measurable functions is mea-
surable.

Proposition 1.24. Let (f,,n € N) be a sequence of real-valued measurable functions defined
on a measurable space (S,S). The functions limsup,,_, .. fn and liminf,,_, f, are measur-
able. The set of convergence of the sequence, {x € S; limsup,, . fn(x) = liminf,_, fn(x)},
is measurable. In particular, if the sequence (fn,n € N) converges, then its limit, denoted by
limy, 00 frn, s also measurable.

Proof. For a € R, we have:

{nmsupfnm}: Jun {fnga—;}.

oo kEN* meN n>m
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Since the functions f, are measurable, we deduce that {limsup,,_,., fn < a} is also measur-
able. Since the o-field B(R) is generated by [—oo,a) for a € R, we deduce from Proposition
1.19 that limsup,,_,. fn is measurable. Since liminf,,, f, = —limsup,,_,..(—fn), we de-
duce that liminf,,_, f, is measurable.

Let h = limsup,, ,,, fn —liminf, ,« fp, with the convention +00 — oo = 0. The function
h is measurable thanks to Corollary 1.23. Since the set of convergence is equal to h=1({0})
and that {0} is a Borel set, we deduce that the set of convergence is measurable. O]

We end this section with a very useful result which completes Proposition 1.22.

Proposition 1.25. Let (2, F), (S,S) be measurable spaces, f a measurable function defined
on Q taking values is S and ¢ a measurable function from (Q,o(f)) to (R,B(R)). Then,
there exists a real-valued measurable function g defined on S such that p = go f.

Proof. By simplicity, we assume that ¢ takes its values in R instead of R. For all k € Z,
n € N the sets A, = ¢ 1([k27", (k + 1)27")) are o(f)-measurable. Thus, for all n € N,
there exists a collection (B, k € Z) of sets of S pairwise disjoint such that | J,c; Bnx = S,
B, € § and ffl(Bn,k) = A, for all k € Z. For all n € N, the real-valued function
gn = 27" ) 4cz kB, , defined on S is measurable, and we have g, o f < ¢ < gy 0 f+27"0 for
n > ng > 0. The function g = limsup,, ,, g» is measurable according to Proposition 1.24,
and we have go f < ¢ < go f 427" for all ng € N. This implies that go f = ¢. O

1.1.5 Probability distribution and random variables

We first start with the definition of the image measure (or push-forward measure) which
is obtained by transferring a measure using a measurable function. The proof of the next
Lemma is elementary and left to the reader.

Lemma 1.26. Let (E,&, p) be a measured space, (S,S) a measurable space, and f a mea-
surable function defined on E and taking values in S. We define the function py on S by
pr(A) = p(f~H(A)) for all A€ S. Then uy is a measure on (S,S).

The measure piy is called the push-forward measure or image measure of u by f.

In what follow, we consider a probability space (€, F,P).

Definition 1.27. Let (E, &) be a measurable space. An E-valued random variable X defined
on  is a measurable function from (Q, F) to (E,E). Its probability distribution or law is the
image probability measure Px .

At some point we shall specify the o-field F on €2, and say that X is F-measurable.

We say two E-valued random variables X and Y are equal in distribution, and we write

x 9 Y, if Px = Py. For A € &, we recall we write {X € A} = {w; X(w) € A} = X 1(A).

Two random variables X and Y defined on the same probability space are equal a.s., and we
write X %Y, if the set {X # Y} is negligible®, that is, a subset of a measurable set B such

5By considering the random variable Z = (X,Y) taking value in the product space E? endowed with the
product topology £%2, we get {X # Y} = {Z € A}, where A = {(z,2) : « € E} is the diagonal of E>.
The set {Z € A} is in particular measurable if A belongs to £%2. Let us mention that the diagonal A is
measurable if and only if £ is generated by an at most countable family of sets .A which separates points (that
is for all z,y € F, there exists A € A such that either z € A and y € A° or x € A and y € A).
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that P(B) = 0. Notice that if X and Y are equal a.s., then they have the same probability
distribution.

Remark 1.28. Let X be a real-valued random variable. Its cumulative distribution function
Fx is defined by Fx(z) = P(X < z) for all z € R. It is easy to deduce from Exercise 8.1
that if X and Y are real-valued random variables, then X and Y are equal in distribution if
and only if FX = Fy. <>

The next lemma gives a characterization of the distribution of a family of random vari-
ables.

Lemma 1.29. Let ((E;,&;),i € I) be a collection of measurable spaces and X = (X;,i € I) a
random variable taking values in the product space [[;c; E; endowed with the product o-field.
The distribution of X is characterized by the family of distributions of (X;,j € J) where J
runs over all finite subsets of I.

According to Proposition 1.21, in the above lemma the X is an Ej-valued random variable
and its marginal probability distribution can be recovered from the distribution of X as:

P(X; € Aj) =P (X € HAi> with A; = E; for i # j.
el

Proof. According to Definition 1.4, the product o-field £ on the product space £ = [[;c; E;
is generated by the family C of product sets [[,.; A; such A; € & for all i € I and A; = E;
for all ¢ ¢ J, with J C I finite. Notice then that Px(J],c; Ai) = P(X; € A; for j € J). Since
C is stable by finite intersection, we deduce from the monotone class theorem, and more
precisely Corollary 1.14, that the probability measure Px on E is uniquely characterized by
P(X; € A; for j € J) for all J finite subset of I and all A; € &; for j € J. O

We first give the definition of a random variable independent from a o-field.

Definition 1.30. A random variable X taking values in a measurable space (E, &) is inde-
pendent from a o-field H C F if o(X) and H are independent or equivalently if, for all A € €
and B € H, the events {X € A} and B are independent.

We now give the definition of independent random variables.

Definition 1.31. The random variables (X;,i € I) are independent if the o-fields (o(X;), i €
I) are independent. Equivalently, the random variables (X;,i € I) are independent if for all
finite subset J C I, all Aj € & with j € J, we have:

P(X; € A; for all j € J) = [[P(X; € Aj).
jeJ

We deduce from this definition that if the marginal probability distributions P; of all
the random variables X; for i € I are known and if (X;,7 € I) are independent, then the
distribution of X is the product probability ),.; P; introduced in Proposition 7.7.

We end this section with the Bernoulli scheme.
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Theorem 1.32. Let (E,&E,P) be a probability space. Let I be a set of indices. Then, there
exists a probability space and a sequence (X;,i € I) of E-valued random variables defined on
this probability space which are independent and with the same distribution probability P.

When P is the Bernoulli probability distribution and I = N*, then (X,,,n € N*) is called
a Bernoulli scheme.

Proof. For i € I, set ; = FE, F; = £ and P; = P. According to Proposition 7.7, we can
consider the product space = [[,.; €; with the product o-field and the product probability
&X;crPi. For all i € I, we consider the random variable: Xj;(w) = w; where w = (w;,i € I).
Using Definition 1.31, we deduce that the random variables (X;,i € I) are independent with
the same probability distribution P. O

1.2 Integration and expectation

Using the results from the integration theory of Sections 1.2.1 and 1.2.2, we introduce in
Section 1.2.5 the expectation of real-valued or R?%valued random variables and give some
well known inequalities. We study the properties of the L spaces in Section 1.2.3 and prove
the Fubini theorem in Section 1.2.4. In Section 1.2.6 we collect some further results on
independence.

1.2.1 Integration: construction and properties

Let (S,S, 1) be a measured space. The set R is endowed with its Borel o-field. We use the
convention 0 - 0o = 0. A function f defined on S is simple if it is real-valued, measurable
and if there exists n € N* ay,...,a, € [0,+00], A1,..., A, € S such that we have the
representation f = Y}, agla,. The integral of f with respect to p, denoted by pu(f) or

[ fdpor [ f(x)u(dzr), is defined by:
W) = 3" onn(Ar) € [0, +oc].
k=1

Lemma 1.33. Let f be a simple function defined on S. The integral u(f) does not depend
on the choice of its representation.

Proof. Consider two representations for f: f = >}, axla, = >~ Belp,, with n,m € N*
and Ay,..., Ay, Bi,...,Bp € S. We shall prove that >}, app(Ar) = > )~ Bep(Be).
According to Remark 1.3, there exits a finite family of measurable sets (Cr,I € P([1,n+
m])) such that C;(Cy = 0 if I # J and for all £ € [1,n] and ¢ € [1,m] there exists
Ty C [1,n] and Jr C [1,m] such that Ay = ;cz, Cr and By = ;e 7, C1- We deduce that:

f= Z (Z akl{IeIk}> 1o, = Z (Z 661{16..’72}> 1,
) )

IeP([1,n+m]) \k=1 IeP([1,n+m]) \£=1

and thus Y ¢ canlyer,y = > yoy Belqreyg,y for all T such that Cr # 0. We get:

D aru(Ar) =) <Z Oékl{zezk}) wCr) =Y (Z 5121{1@4}) w(Cr) = B By),
k=1 k=1 /=1

1 1 /=1
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where we used the additivity of u for the first and third equalities. This ends the proof. [

It is elementary to check that if f and g are simple functions, then we get:

plaf +bg) = ap(f) +bu(g) for a,b e [0,+00) (linearity), (1.3)
f<g=u(f) <plg) (monotonicity).

Definition 1.34. Let f be a [0, +00]-valued measurable function defined on S. We define
the integral of f with respect to the measure p by:

wu(f) =sup{p(g); g simple such that 0 < g < f}.

The next lemma gives a representation of u(f) using that a non-negative measurable
function f is the non-decreasing limit of a sequence of simple functions. Such sequence exists.
Indeed, one can define for n € N* the simple function f,, by f,(x) = min(n,27"|2" f(z)]) for
x € S with the convention |+o0o| = 4o00. Then, the functions (f,,n € N*) are measurable
and their non-decreasing limit is f.

Lemma 1.35. Let f be a [0,400]-valued function defined on S and (f,,n € N) a non-
decreasing sequence of simple functions such that lim, .~ frn = f. Then, we have that

limy, o0 p2(fr) = p(f)-

Proof. Tt is enough to prove that for all non-decreasing sequence of simple functions (f,,n €
N) and simple function g such that lim, o f, > g, we have lim, o u(fn) > p(g). We
deduce from the proof of Lemma 1.33 that there exists a representation of g such that
g= Z}ngd arly, and the measurable sets (Ag,1 < k < N) are pairwise disjoint. Using this
representation and the linearity, we see it is enough to consider the particular case g = al 4,
with a € [0,4+00], A € S and f,14c =0 for all n € N,

By monotonicity, the sequence (u(fy),n € N) is non-decreasing and thus lim, o p( fn)
is well defined, taking values in [0, +00].

The result is clear if & = 0. We assume that & > 0. Let ¢/ € [0, «). For n € N, we consider
the measurable sets B,, = {f, > o'}. The sequence (B,,n € N) is non-decreasing with A as
limit because lim, o fn > g. The monotone property for measure, see property (iii) from
Proposition 1.9, implies that lim, oo u(Bp) = p(A). As p(fn) > o’ u(By), we deduce that
limy, 00 p(fn) > &/ p(A) and that lim, 00 pu(fn) > p(g) as o € [0, «) is arbitrary. O

Corollary 1.36. The linearity and monotonicity properties, see (1.3) and (1.4), also hold
for [0, +o0]-valued measurable functions f and g defined on S.

Proof. Let (fn,n € N) and (g,,n € N) be two non-decreasing sequences of simple functions
converging respectively towards f and g. Let a,b € [0,+00). The non-decreasing sequence
(afn + bgn,n € N) of simple functions converges towards af + bg. By linearity, we get:

plaf +bg) = lim p(afn +bgn) = a lim p(fn) +b lim p(gn) = ap(f) + bp(g).

Assume f < g. The non-decreasing sequence ((f, V gn),n € N) of simple functions
converges towards g. By monotonicity, we get u(f) = limy o0 pt(frn) < limy o0 (fr V gn) =
1(9)- O
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Recall that for a function f, we write f* = fV 0 =max(f,0) and f~ = (—f)*.

Definition 1.37. Let f be a real-valued measurable function defined on S. The integral of f
with respect to the measure p is well defined (or f is p-quasi-integrable) if min (u(f1), u(f7)) <
400 and it is given by:

p(f) = u(f") = p(f7).
The function f is u-integrable if max (u(f*), u(f7)) < +oo (i.e. p(|f]) < +00).

We also write u(f) = [ f du = [ f(z) p(dx). A property holds p-almost everywhere
(p-a.e.) if it holds on a measurable set B such that pu(B€) = 0. If p is a probability measure,
then one says p-almost surely (p-a.s.) for p-a.e.. We shall omit p and write a.e. or a.s. when
there is no ambiguity on the measure.

Lemma 1.38. Let f > 0 be a real-valued measurable function defined on S. We have:

pw(f) =0« f=0 p-ae.

Proof. The equivalence is clear if f is simple.

When f is not simple, consider a non-decreasing sequence of simple (non-negative) func-
tions (fn,n € N) which converges towards f. As {f # 0} is the non-decreasing limit of the
measurable sets {f,, # 0}, n € N, we deduce from the monotonicity property of Proposition
1.9, that f = 0 a.e. if and only if f,, = 0 a.e. for all n € N. We deduce from the first part
of the proof that f = 0 a.e. if and only if u(f,) = 0 for all n € N. As (u(fn),n € N) is
non-decreasing and converges towards u(f), we get that u(f,) = 0 for all n € N if and only
if u(f) =0. We deduce that f =0 a.e. if and only if u(f) =0. O

The next corollary asserts that it is enough to know f a.e. to compute its integral.

Corollary 1.39. Let f and g be two real-valued measurable functions defined on S such that
w(f) and u(g) are well defined. If a.e. f = g, then we have u(f) = u(g).

Proof. Assume first that f > 0 and g > 0. By hypothesis the measurable set A = {f # g} is
p-null. We deduce that a.e. fl14 =0 and gl4 = 0. This implies that pu(f1la) = u(gla) =0.
By linearity, see Corollary 1.36, we get:

p(f) = p(flac) + pu(fla) = p(glac) = u(glac) + p(gla) = p(g).

To conclude notice that f = g a.e. implies that f© = g™ a.e. and f~ = g~ a.e. and then
use the first part of the proof to conclude. O

The relation f = g a.e. is an equivalence relation on the set of real-valued measurable
functions defined on S. We shall identify a function f with its equivalent class of all mea-
surable functions g such that p-a.e., f = g. Notice that if f is p-integrable, then pu-a.e.
|f| < 4+o00. In particular, if f and g are p-integrable, we shall write f 4 ¢ for any element of
the equivalent class of f1{ < yo0) + 91{|g/<to00}- Using this remark, we conclude this section
with the following immediate corollary.

Corollary 1.40. The linearity property, see (1.3) with a,b € R, and the monotonicity prop-
erty (1.4), where f < g can be replaced by f < g a.e., hold for real-valued measurable
u-integrable functions f and g defined on S.
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We deduce that the set of R-valued p-integrable functions defined on S is a vector space.
The linearity property (1.3) holds also on the set of real-valued measurable functions h
such that u(h™) < 4o0o and on the set of real-valued measurable functions i such that
u(h™) < 4o00. The monotonicity property holds also for real-valued measurable functions f
and g such that u(f) and u(g) are well defined.

1.2.2 Integration: convergence theorems

The a.e. convergence for sequences of measurable functions introduced below is weaker than
the simple convergence and adapted to the convergence of integrals. Let (S,S, 1) be a mea-
sured space.

Definition 1.41. Let (fn,n € N) be a sequence of real-valued measurable functions defined
on S. The sequence converges a.e. if a.e. liminf, .. f, = limsup,_,. fn. We denote by
limy, o0 frn any element of the equivalent class of the measurable functions which are a.e.
equal to liminf, .o fn.

Notice that Proposition 1.24 assures indeed that liminf, .., is measurable. We thus
deduce the following corollary.

Corollary 1.42. If a sequence of real-valued measurable functions defined on S converges
a.e., then its limit is measurable.

We now give the three main results on the convergence of integrals for sequence of con-
verging functions.

Theorem 1.43 (Monotone convergence theorem). Let (fn,n € N) be a sequence of real-
valued measurable functions defined on S such that for allm € N, a.e. 0 < f, < frr1. Then,

we have:
lim /fn d,u=/ lim f, du.
n—oo n—oo

Proof. The set A = {x; fn(x) <0 or fp(x) > fryi1(z) for some n € N} is p-null as countable
union of p-null sets. Thus, we get that a.e. f, = f1ac for all n € N. Corollary 1.39 implies
that, replacing f, by fnlac without loss of generality, it is enough to prove the theorem
under the stronger conditions: for all n € N, 0 < f,, < fror1. We set f = limy, o fn the
non-decreasing (everywhere) limit of (f,,n € N).

For all n € N, let (f,x, £ € N) be a non-decreasing sequence of simple functions which
converges towards f,. We set g, = max{fj,;1 < j < n}. The non-decreasing sequence
of simple functions (gn,n € N) converges to f and thus lim, o [ g, du = [ f du. By
monotonicity, g, < f, < f implies [ g, du < [ f,, du < [ f dp. Taking the limit, we get

The proof of the next corollary is left to the reader (hint: use the monotone convergence
theorem to get the o-additivity).

Corollary 1.44. Let f be a real-valued measurable function defined on S such that a.e.
[ > 0. Then the function fu defined on S by fu(A) = [1af du is a measure on (S, S).
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We shall say that the measure fu has density f with respect to the reference measure pu.

Fatou’s lemma will be used for the proof of the dominated convergence theorem, but it
is also interesting by itself.

Lemma 1.45 (Fatou’s lemma). Let (fn,n € N) be a sequence of real-valued measurable
functions defined on S such that a.e. fy, > 0 for all n € N. Then, we have the lower
semi-continuity property:

n—oo

liminf/fn dp > /liminf fn dpe.
n—oo

Proof. The function liminf, _,~ f, is the non-decreasing limit of the sequence (g,,n € N)
with g, = infy>,, fr. We get:

/lim inf f, du = lim /gn dp < lim inf /fk dp = lim inf/fn dy,

n—00 n—00 n—oo k>n n—o0

where we used the monotone convergence theorem for the first equality and the monotonicity
property of the integral for the inequality. O

The next theorem and the monotone convergence theorem are very useful to exchange
integration and limit.

Theorem 1.46 (Dominated convergence theorem). Let f, g, (fn,n € N) and (gn,n € N) be
real-valued measurable functions defined on S. We assume that a.e.: |fn| < gn for alln € N,
f =lim, oo frn and g = lim,, o g,. We also assume that lim,, fgn dp = fg dyp and
[ g du < +o0. Then, we have:

lim /fn dp = / lim f, du.
n—oo n—oo
Taking g, = g for all n € N in the above theorem gives the following result.

Corollary 1.47 (Lebesgue’s dominated convergence theorem). Let f,g and (fn,n € N) be
real-valued measurable functions defined on S. We assume that a.e.: |fn| < g for alln € N,
f=1lim, o fn and fg du < +00. Then, we have:

fiy [ = [ i g

Proof of Theorem 1.46. As a.e. |f| < g and [g du < +oo, we get that the function f is
integrable. The functions g, + f, and g, — f, are a.e. non-negative. Fatou’s lemma with

gn + fn and g, — f,, gives:

/gdu+/fdu—/(g+f)duSliggggf/(gwrfn)du—/gdwrlinrgiogf/fndu,

/gdu/fduz/(gf)duélgggf/(gnfn)duz/gduliﬂsgp/fndu-

Since [ ¢ du is finite, we deduce from those inequalities that [ f dp < liminf, oo [ fr dp
and that limsup,, . [ fn du < [ f dp. Thus, the sequence ([ f, du,n € N) converges
towards [ f du. O
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We shall use the next Corollary in Chapter 5, which is a direct consequence of Fatou’s
lemma and dominated convergence theorem.

Corollary 1.48. Let f,g,(fn,n € N) be real-valued measurable functions defined on S. We
assume that a.e. f;f < g for alln € N, f =lim,_,o0 fn and that [ g dp < +oo. Then, we
have that (pu(fn),n € N) and pu(f) are well defined as well as:

limsup/fn du S/ le fn dpu.

n—oo

1.2.3 The L? space

Let (S,S, 1) be a measured space. We start this section with very useful inequalities.

Proposition 1.49. Let f and g be two real-valued measurable functions defined on S.

e Hélder inequality. Let p,q € (1,+00) such that % -I-é = 1. Assume that |f|P and |g|?
are integrable. Then fg is integrable and we have:

/Ifgldué </|fypdﬂ>1/p </ ]g|qd,u,>1/q.

The Holder inequality is an equality if and only if there exists ¢,c € [0,4+00) such that
(e,d) #(0,0) and a.e. c|f|P = |g|9.

e Cauchy-Schwarz inequality. Assume that > and g*> are integrable. Then fg is
integrable and we have:

[ 17sldu< </f2du)1/2 (/gzdu>1/2.

Furthermore, we have [ fgdu = (f 7 d,u) 1/2 (f g’ d,u) 1/2 if and only there exist ¢, €
[0, +00) such that (c,c') # (0,0) and a.e. ¢f = g.

o Minkowski inequality. Let p € [1,+00). Assume that |f|P and |g|P are integrable.

We have:
1/p 1/p 1/p
(fir+aran) < (frmean) "+ ([rorae)

Proof. Holder inequality. We recall the convention 0 - +o0o = 0. The Young inequality states
that for a,b € [0,400], p,q € (1,+00) such that %—F% =1, we have:

1 1
ab < —aPf 4+ = b9.
p q

Indeed, this inequality is obvious if a or b belongs to {0, +oc}. For a,b € (0,+00), using the
convexity of the exponential function, we get:

log(aP) N log(b9)
q

ab = exp <
q

1 1 1 1
> < —exp (log(aP)) + — exp (log(b?)) = — aP + = b1.
p q p
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If w(|f|P) = 0 or u(|g|?) = 0, the Holder inequality is trivially true as a.e. fg = 0 thanks to
Lemma 1.38. If this is not the case, then integrating with respect to p in the Young inequality
with a = | f|/u(|f|P)Y/P and b = |g|/u(]g|9)"/? gives the result. Because of the strict convexity
of the exponential, if ¢ and b are finite, then the Young inequality is an equality if and only
if a? and b? are equal. This implies that, if |f|P and |g|? are integrable, then the Holder
inequality is an equality if and only there exist ¢,¢’ € [0,400) such that (¢, ) # (0,0) and
a.e. c|f|P = |g|?.

The Cauchy-Schwarz inequality is the Holder inequality with p = ¢ = 2. If [ fgdu =
(fr? d,u)1/2 (fg* du)1/2, then since [ fgdu < [|fg|du, the equality holds also in the
Cauchy-Schwarz inequality. Thus there exists ¢, ¢ € [0,400) such that (¢,¢’) # (0,0) and
c|f| = |g|. Notice also that [(|fg| — fg)du = 0. Then use Lemma 1.38 to conclude that
a.e. |fg| = fg and thus a.e. ¢ f = g.

Let p > 1. From the convexity of the function x — |z[P, we get (a 4 b)P < 2P~ 1(aP + bP)
for all a,b € [0, +oc]. We deduce that |f + g|P is integrable. The case p = 1 of the Minkowski
inequality comes from the triangular inequality in R. Let p > 1. We assume that [ |f +
g|P dp > 0, otherwise the inequality is trivial. Using Holder inequality, we get:

/|f+g|pdu§/If\lf+g|p_1du+/lg|!f+glp‘1du

< (( [ an) " (/ |g|pdu)1/p> (f1r+orau) o

Dividing by ([ |f + g’ du) (p=1)/p gives the Minkowski inequality. O

For p € [1,400), let LP((S,S,n)) denote the set of R-valued measurable functions f
defined on S such that [|f[Pdu < +oo. When there is no ambiguity on the underlying
space, resp. space and measure, we shall simply write £P(u), resp. £P. Minkowski inequality
and the linearity of the integral yield that L is a vector space and the map |-, from £P

to [0, +o0) defined by [|f], = (f |fP du)"/” is a semimorm (that is | £ + g, < | £Il, + llgll,
and [laf|, <la| [|f|, for f,g € LP and a € R). Notice that ||f||, = 0 implies that a.e. f =0
thanks to Lemma 1.38. Recall that the relation “a.e. equal to” is an equivalence relation on
the set of real-valued measurable functions defined on S. We deduce that the space (L, ||-,),
where L? is the space L£P quotiented by the equivalence relation “a.e. equal to”, is a normed
vector space. We shall use the same notation for an element of £P and for its equivalent
class in LP. If we need to stress the dependence of on the measure p of the measured space
(S,S, 1) we may write LP(u) and even LP(S,S, u) for LP.

The next proposition asserts that the normed vector space (L?,|-[|,) is complete and,
by definition, is a Banach space. We recall that a sequence (f,,n € N) of elements of LP
converges in LP to a limit, say f, if f € LP, and lim, o0 || fr — f||p =0.

Proposition 1.50. Let p € [1,+00). The normed vector space (LP, ||-||,) is complete. That
is every Cauchy sequence of elements of LP converges in LP: if (fn,n € N) is a sequence of
elements of LP such that imyin(nm)—eo [[fn — fmll, = 0, then there exists f € LP such that
limp o0 || fn = f1, = 0.
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Proof. Let (fn,n € N) be a Cauchy sequence of elements of LP, that is f, € L? for all n € N
and Hmyyin (r,m)—oc || fn — mep = 0. Consider the sub-sequence (ny, k € N) defined by ng =0
and for k > 1, ng = inf{m > np—1; | fi = fjl, < 2% for all i > m,j > m}. In particular, we
have H Jresr — T Hp < 27k for all £ > 1. Minkowski inequality and the monotone convergence
theorem imply that ||> ey [fres — fnlep < +oo and thus >y | frp — fny| is a.e. finite.
The series with general term (fp, ., — fn,) is a.e. absolutely converging. By considering the
convergence of the partial sums, we get that the sequence (fy, ,k € N) converges a.e. towards
a limit, say f. This limit is a real-valued measurable function, thanks to Corollary 1.42. We
deduce from Fatou lemma that:

This implies that limm, e || fm — f[l, = 0, and Minkowski inequality gives that f € LP.  [J
We give an elementary criterion for the LP convergence for a.e. converging sequences.

Lemma 1.51. Let p € [1,400). Let (fn,n € N) be a sequence of elements of LP which
converges a.e. towards f € LP. The convergence holds in LP (i.e. limp oo || f — full, = 0) if

Proof. Assume that lim, . ||f — anp = 0. Using Minkowski inequality, we deduce that

1f1l, = 1fnll,| < IIf = fall,- This proves that limpn oo || full, = ILf]l,-
On the other hand, assume that lim, e || full, = [IfIl,- Set gn = 2P7*(|fu? + | f|P) and
g = 2P| f|P. Since the function = +— |z|P is convex, we get | f, — f|P < g, for all n € N. We also
have lim,, 00 g = ¢ a.e. and lim, oo [ gndu = [ gdp < 4+00. The dominated convergence
Theorem 1.46 gives then that lim,, o [ |fn — fIP dp = [limy 00 | fn — f|P dpe = 0. This ends
the proof. O

1.2.4 Fubini theorem

Let (E,&,v) and (S,S, 1) be two measured spaces. The product space E x S is endowed
with the product o-field £ ® §. We give a preliminary lemma.

Lemma 1.52. Assume that v and p are o-finite measures. Let f be a real-valued measurable
function defined on 2 x S.

(i) For all x € E, the function y — f(x,y) defined on S is measurable and for all y € S,
the function x — f(x,y) defined on E is measurable.

(is) Assume that f > 0. The function x — [ f(z,y) p(dy) defined on E is measurable and
the function y — [ f(z,y) v(dz) defined on S is measurable.

Proof. It is not difficult to check that the set A = {C' € EQF; 1¢ satisfies (i) and (ii)} isa A
system, thanks to Corollary 1.23 and Proposition 1.24. (Hint: consider first the case p and v
finite, and then extend to the case that u and v o-finite, to prove that A4 satisfies property (ii)
from Definition 1.12 of a A-system.) Since A trivially contains C = {AxB; A € £ and B € S}
which is stable by finite intersection, we deduce from the monotone class theorem that A
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contains o(C) = £ ® §. We deduce that (i) holds for any real-valued measurable functions,
as they are limits of difference of simple functions, see the comments after Definition 1.34.
We also deduce that (ii) holds for every simple function, and then for every [0, +o00]-valued
measurable functions thanks to Proposition 1.24 and the dominated convergence theorem. [J

The next theorem allows to define the integral of a real-valued function with respect to
the product of o-finite® measures.

Theorem 1.53 (Fubini’s theorem). Assume that v and p are o-finite measures.

(i) There exists a unique measure on (E x S,E® S), denoted by v @ p and called product
measure such that:

v u(Ax B)=v(A)u(B) forallAc&, BES. (1.5)

(ii) Let f be a [0, +o0]-valued measurable function defined on E x S. We have:

[ 1@ v uana = [ ([ e uan) v (1.6)

- / ( / f(z,y) y(dx)) p(dy). (L.7)

Let f be a real-valued measurable function defined E x S. If v @ u(f) is well defined, then
the equalities (1.6) and (1.7) hold with their right hand-side being well defined.

We shall write v(dz)u(dy) for v ® p(dz,dy). If v and p are probabilities measures, then
the definition of the product measure v ® p coincide with the one given in Proposition 7.7.

Proof. Forall C € E® S, we set v @ u(C) = [ ([ 1c(x,y) u(dy)) v(dz). The o-additivity of
v and p and the dominated convergence implies that v ® p is a measure on (E x S, ® S).
It is clear that (1.5) holds. Since v and p are o-finite, we deduce that v ® p is o-finite. Using
Exercise 8.2 based on the monotone class theorem and that {Ax B; A € £, B € S} generates
E® S, we get that (1.5) characterizes uniquely the measure v @ u. This ends the proof of
property (i).

Property (ii) holds clearly for functions f = 1¢ with C = Ax B, A € £ and B € S.
Exercise 8.2, Corollary 1.23, Proposition 1.24, the monotone convergence theorem and the
monotone class theorem imply that (1.6) and (1.7) hold also for f = 1¢ with C € £E® S. We
deduce that (1.6) and (1.7) hold for all simple functions thanks to Corollary 1.23, and then
for all [0, +00]-valued measurable functions defined on E x S thanks to Proposition 1.24 and
the monotone convergence theorem.

Let f be a real-valued measurable function defined E xS such that v@u(f) is well defined.
Without loss of generality, we can assume that v @ u(f™) is finite. We deduce from (1.6) and

SWhen the measures v and p are not o-finite, the Fubini’s theorem may fail essentially because the product
measure might not be well defined. Consider the measurable space ([0,1],5([0,1])) with A the Lebesgue
measure and p the counting measure (which is not o-finite), and the measurable function f > 0 defined by

f(@,y) = 1{z=yy}, so that [ ([ f(z,y) p(dy)) A(dz) =1 and [ ([ f(z,y) A(dz)) pu(dy) =0 are not equal.
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then (1.7) with f replaced by f* that Ng = {x € E; [ f(z,y)* u(dy) = +oo} is v-null, and
then that Ng = {y € S; [ f(z,y)" v(dz) = +oo} is p-null. We set g = fT1nexng. It is now
legitimate to subtract (1.6) with f replaced by f~ to (1.6) with f replaced by g in order to
get (1.6) with f replaced by g — f~. Since v ® p-a.e. f* =g and thus f = g — f~, Lemma
1.38 implies that (1.6) holds. Equality (1.7) is deduced by symmetry. O

Remark 1.54. Notice that the proof of (i) of Fubini theorem gives an alternative construction
of the product of two o-finite measures to the one given in Proposition 7.7 for the product
of probability measures. Thanks to (i) of Fubini theorem, the Lebesgue measure on R? can
be seen as the product measure of d times the one-dimensional Lebesgue measure. O

1.2.5 Expectation, variance, covariance and inequalities

We consider the particular case of probability measure. Let (€2, F,P) be a probability space.
Let X be a real-valued random variable. The expectation of X is by deﬁnition the integral
of X with respect to the probability measure P and is denoted by E[X] = [ X (w . We
recall the expectation E[X] is well defined if min(E[X ], E[X]) is ﬁmte Where X + = X VO
and X~ = (—X) V0, and that X is integrable if max(E[X ], E[X ~]) is finite.

Ezample 1.55. If A is an event, then 14 is a random variable and we have E[14] = P(A).
Taking A = Q, we get obviously that E[1q] = E[1] = 1. A

The next elementary lemma is very useful to compute expectation in practice. Recall the
distribution of X, denoted by Px, has been introduced in Definition 1.27.

Lemma 1.56. Let X be a random variable taking values in a measured space (E,E). Let ¢ be
a real-valued measurable function defined on (E,E). IfIE[cp( )] is well defined, or equivalently
if [@(x)Px(dz) is well defined, then we have E[p = [ p(z) Px(dz).

Proof. Assume that ¢ is simple: ¢ = Y}, oy 14, for some n € N*, o, € [0, 400], Ay, € F.
We have:

Elp(X)] = Y arP(X € Ay) = 3 axP (4y) = / o(z) P (dz).
k=1

k=1
Then use the monotone convergence theorem to get E[p = [z ) when ¢ is
measurable and [0, +oo]-valued. Use the definition of IE[ ( | and f go Px(dz), when
they are well defined, to conclude when ¢ is real-valued and measurable. O

Obviously, if X and Y have the same distribution, then E[p(X)] = E[p(Y)] for all real-
valued function ¢ such that E[¢p(X)] is well defined, in particular if ¢ is bounded.

Remark 1.57. We give a closed formula for the expectation of discrete random variable. Let
X be a random variable taking values in a measurable space (F,£). We say that X is a
discrete random variable if {z} € £ for all z € E and P(X € Ax) = 1, where Ax = {z €
E;P(X = z) > 0} is the discrete support of the distribution of X. Notice that Ax is at
most countable and thus belongs to £.
If X is a discrete random variable and ¢ a [0, +-00]-valued function defined on E, then we
have:
Elp(X)] = 3 @)P(X =a). (1.8)

TEA X
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Equation (1.8) also holds for ¢ a real-valued measurable function as soon as E[p(X)] is well
defined. O

Remark 1.58. Let B € F such that P(B) > 0. By considering the probability measure
ﬁ 1pP: A— P(AN B)/P(B), see Corollary 1.44, we can define the expectation condition-
ally on B by, for all real-valued random variable Y such that E[Y] is well defined:

E[Y1p]

EYIB) = g

. (1.9)

If furthermore P(B) < 1, then we easily get that E[Y] = P(B)E[Y|B] + P(B°)E[Y|B¢]. ¢

A real-valued random variable X is square-integrable if it belongs to L?(PP). Since 2 |z| <
1+ 2|2, we deduce from the monotonicity property of the expectation that if X € L?(P) then
X € LY(P), that is X is integrable. This means that L?(P) C L!(P).

For X = (X1,...,X4) and R%valued random variable, we say that E[X] is well defined
(resp. X; is integrable, resp. square integrable) if E[X;] is well defined (resp. X is integrable,
resp. square integrable) for all ¢ € [1,d], and we set E[X]| = (E[X1],...,E[X4]).

We recall an R-valued function ¢ defined on R? is convex if ¢(qz + (1 — q)y) < qo(z) +
(1 —q)¢(y) for all z,y € R? and ¢ € (0,1). The function ¢ is strictly convex if this convex
inequality is strict for all x # y. Let (-,-) denote the scalar product of RY. Then, it is well
known that if ¢ is an R-valued convex function defined on R?, then it is continuous’ and
there exists® a sequence ((an,b,),n € N) with a,, € R? and b, € R such that for all z € R%:

o(z) = sgg (bn, + (an,x)) . (1.10)

We give further inequalities which complete Proposition 1.49. We recall that a R-valued
convex function defined on R? is continuous (and thus measurable).

Proposition 1.59.
e Tchebychev inequality. Let X be real-valued random variable. Let a > 0. We have:

E[X?]

P(|X| > a) <

o Jensen inequality. Let X be an R%-valued integrable random variable. Let ¢ be a
R-valued convex function defined on RY. We have that E[p(X)] is well defined and:

p(E[X]) < E[p(X)]. (1.11)

It is enough to prove the continuity at 0 and without loss of generality, we can assume that »(0) = 0.
Since ¢ is finite on the 2% vertices of the cube [—1,1]%, it is bounded from above by a finite constant, say M.
Using the convex inequality, we deduce that ¢ is bounded on [—1,1]¢ by M. Let a € (0,1) and y € [—a, a]®.
Using the convex inequality with x = y/a, y = 0 and ¢ = «, we get that ¢(y) < ap(y/a) < aM. Using the
convex inequality with z =y, y = —y/a and ¢ = 1/(1 + &), we also get that 0 < p(y)/(1 +a) + Ma/(1+ ).
This gives that |p(y)| < aM. Thus ¢ is continuous at 0.

8This is a consequence of the separation theorem for convex sets. See for example Proposition B.1.2.1 in
J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Springer-Verlag, 2001.
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Furthermore, if ¢ is strictly convez, the inequality in (1.11) is an equality if and only
if X is a.s. constant.

Remark 1.60. If X is a real-valued integrable random variable, we deduce from Cauchy-
Schwarz inequality or Jensen inequality that E[X]? < E[X?]. O

Proof. Since 1fx|>q) < X 2 / a?, we deduce the Tchebychev inequality from the monotonicity
property of the expectation and Example 1.55.

Let ¢ be a real-valued convex function. Using (1.10), we get ¢(X) > by + (ap, X) and
thus ¢(X) > —|bg| — |ao||X|. Since X is integrable, we deduce that E[p(X)~] < 400, and
thus E[p(X)] is well defined. Then, using the monotonicity of the expectation, we get that
for all n € N, E[p(X)] > by, + (an, E[X]). Taking the supremum over all n € N and using the
characterization (1.10), we get (1.11).

To complete the proof, we shall check that if X is not equal a.s. to a constant and if
¢ is strictly convex, then the inequality in (1.11) is strict. For simplicity, we consider the
case d = 1 as the case d > 2 can be proved similarly. Set B = {X < E[X]}. Since X
is non-constant, we deduce that P(B) € (0,1) and that E[X|B] < E[X|B¢]. Recall that
E[X] =P(B)E[X|B] + P(B°)E[X|B¢]. We get that:

p(E[X]) < P(B)p(E[X|B]) + P(B)»(E[X|B])
< P(B)E[p(X)[B] + P(B)E[p(X)[B] = E[p(X)],

where we used the strict convexity of ¢ and that E[X|B] # E[X|B¢] for the first inequality
and Jensen inequality for the second. This proves that the inequality in (1.11) is strict. [

We end this section with the covariance and variance. Let X, Y be two real-valued square-
integrable random variables. Thanks to Cauchy-Schwarz inequality, XY is integrable. The
covariance of X and Y, Cov(X,Y'), and the variance of X, Var(X), are defined by:

Cov(X,Y) = E[XY] — E[X]E[Y] and Var(X)= Cov(X,X).
By linearity, we also get that:
Var(X) = E[(X —E[X])?] and Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y). (1.12)
The covariance is a bilinear form on L?(PP) and for a,b € R, we get:
Var(aX +b) = a® Var(X).

Using Lemma 1.38 with f = (X —E[X])?, we get that Var(X) = 0 implies X is a.s. constant.
The covariance can be defined for random vectors as follows.

Definition 1.61. Let X = (X1,...,Xg) and Y = (Y1,...,Y)) be respectively two R?-valued
and RP-valued square-integrable random variables with d,p € N*. The covariance matriz of
X and Y, Cov(X,Y), is a d x p matriz defined by:

Cov(X,Y) = (Cov(X;,Y;), i € [1,d] and j € [1,p]).
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1.2.6 Independence

Recall the independence of o-fields given in Definition 1.11 and of random variables given in
Definition 1.31.

Proposition 1.62. Let ((E;,&;),i € I) be a collection of measurable spaces and (X;,i € I) a
random variable taking values in the product space [ [;c; E; endowed with the product o-field.
The random variables (X;,1 € I) are independent if and only if for all finite subset J C I,
for all bounded real-valued measurable function f; defined on Ej; for j € J, we have:

ET] X0 | = [TE (X)) (1.13)
j=1

j€J

Proof. If (1.13) is true, then taking f; = 14, with A; € &;, we deduce from Definition 1.31
that the random variables (X;,¢ € I) are independent.

If (X;,i € I) are independent, then Definitions 1.31 implies that (1.13) holds for indicator
functions. By linearity, we get that (1.13) holds also for simple functions. Use monotone
convergence theorem and then linearity to deduce that (1.13) holds for bounded real-valued
measurable functions. O
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Chapter 2

Conditional expectation

Let X be a square integrable real-valued random variable. The constant ¢ which minimizes
E[(X — ¢)?] is the expectation of X. Indeed, we have, with m = E[X]:

E[(X —¢)?] = E[(X —m)?* 4+ (m — ¢)® + 2(X —m)(m — ¢)] = Var(X) + (m — ¢)%.

In some sense, the expectation of X is the best approximation of X by a constant (with a
quadratic criterion).

More generally, the conditional expectation of X given another random variable Y will
be defined as the best approximation of X by a function of Y. In Section 2.1, we define the
conditional expectation of a square integrable random variable as a projection. In Section
2.2, we extend the conditional expectation to random variables whose expectations are well
defined. In Section 2.3, we provide explicit formulas for discrete and continuous random
variables.

We shall consider that all the random variables of this chapter are defined on a probability
space (2, F,P). Recall that the normed vector space L? = L%(Q, F,P) denote the set of
(equivalent classes of) square integrable real-valued random variables.

2.1 Projection in the L? space

The bilinear form (-,-);2 on L? defined by (X,Y) > = E[XY] is the scalar product corre-

sponding to the norm ||-||,. The space L? with the product scalar (-, )2 is an Hilbert space, as

it is complete, thanks to Proposition 1.50. Notice that square-integrable real-valued random

variables which are independent and centered are orthogonal for the scalar product (-, )y2.
We shall consider the following results on projection in Hilbert spaces.

Theorem 2.1. Let H be a closed vector sub-space of L? and X € L>.

(i) (Existence.) There exists a real-valued random variable Xy € H, called the orthogonal
projection of X on H, such that E[(X — Xy)?] = inf{E[(X —Y)?; Y € H}. And, for
allY € H, we have E[XY] =E[XyY].

(i) (Uniqueness.) Let Z € H such that E[(X — Z)?] = inf{E[(X — Y)2]; Y € H} or such
that E[ZY] = E[XY] for allY € H. Then, we have that a.s. Z = Xp.

27
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Proof. We set a = inf{E[(X — Y)?];Y € H}. The following median formula is clear:
E[(Z' —Y")?] +E[(Z +Y')?| = 2E[Z%] + 2E[Y"?] for all Y/, Z' € L.

Let (X,,n € N) be a sequence of H such that lim,,_, 1o E[(X — X,,)?] = a. Using the median
formula with 7’ = X,, — X and Y/ = X,,, — X, we get:

E[(X, — X)) = 2E[(X — X,)?] + 2E[(X — X,..)?] — 4E[(X — I)?],

with I = (X, + X;n)/2 € H. As E[(X — I)?] > a, we deduce that the sequence (X,,,n € N)
is a Cauchy sequence in L? and thus converge in L?, say towards Xg. In particular, we have
E[(X — Xg)?] = a. Since H is closed, we get that the limit Xy belongs to H.

Let Z € H be such that E[(X —Z)?] = a. For Y € H, the function t + E[(X — Z+tY)?] =
a+ 2tE[(X — Z)Y] + t?E[Y?] is minimal for ¢ = 0. This implies that its derivative at ¢t = 0
is zero, that is E[(X — Z)Y] = 0. In particular, we have E[(X — X)Y] = 0. This ends the
proof of (i).

On the one hand, let Z € H be such that E[(X — Z)?] = a. We deduce from the previous
arguments that for all Y € H:

E(Xy — Z2)Y] = E[(X — Z2)Y] - E[(X — Xy)Y] = 0.

Taking Y = (Xy — Z), gives that E[(Xy — Z)?] = 0 and thus a.s. Z = Xy, see Lemma 1.38.
On the other hand, if there exists Z € H such that E[ZY] = E[XY] for all Y € H,
arguing as above, we also deduce that a.s. Z = Xp. O

According to the remarks at the beginning of this chapter, we see that if X is a real-valued
square-integrable random variable, then E[X] can be seen as the orthogonal projection of X
on the vector space of the constant random variables.

2.2 Conditional expectation

Let H C F be a o-field. We recall that a random variable Y (which is by definition F-
measurable) is H-measurable if o(Y'), the o-field generated by Y, is a subset of H. The
expectation of X conditionally on H corresponds intuitively to the best “approximation” of
X by an H-measurable random variable.

Notice that if X is a real-valued random variable such that E[X] is well defined, then
E[X1 4] is also well defined for any A € F.

Definition 2.2. Let X be a real-valued random variable such that E[X]| is well defined. We
say that a real-valued H-measurable random variable Z, such that E[Z] is well defined, is the
expectation of X conditionally on H if:

E[X14] =E[Z14] forall AeH. (2.1)

The next lemma asserts that, if the expectation of X conditionally on H exists then it is
unique up to an a.s. equality. It will be denoted by E[X|H].
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Lemma 2.3 (Uniqueness of the conditional expectation). Let Z and Z' be real-valued random
variables, H-measurable with E[Z] and E[Z'] well defined, and such that E[Z14] = E[Z'1 4]
for all A € H. Then, we get that a.s. Z = Z'.

Proof. Let n € N* and consider A = {n > Z > Z’ > —n} which belongs to H. By linearity,
we deduce from the hypothesis that E[(Z — Z')1{,> 75 7/>_n}] = 0. Lemma 1.38 implies that
P(n>Z > Z"> —n) =0 and thus P(+00c > Z > Z' > —o0) = 0 by monotone convergence.
Considering A = {Z = +oo,n > Z'}, A={Z >n,Z' = -0} and A = {Z = 400, 7' = —c0}
leads similarly to P(Z > Z/,Z = 4oc0or Z/ = —o0) = 0. So we get P(Z > Z') = 0. By
symmetry, we deduce that a.s. Z = Z'. ]

We use the orthogonal projection theorem on Hilbert spaces, to define the conditional
expectation for square-integrable real-valued random variables.

Proposition 2.4. If X € L?, then E[X|H] is the orthogonal projection defined in Proposition
2.1, of X on the vector space H of all square-integrable H-measurable random variables.

Proof. The set H corresponds to the space L?(Q,H,P). It is closed thanks to Proposition
1.50. The set H is thus a closed vector subspace of L?. Property (i) (with Y = 14) from
Theorem 2.1 implies then that (2.1) holds and thus that the orthogonal projection of X € L?
on H is the expectation of X conditionally on H. O

Notice that for A € F, we have 14 € L?, and we shall use the notation:
P(A|H) =E[1a| H]. (2.2)
We have the following properties.
Proposition 2.5. Let X and Y be real-valued square-integrable random variables.
(i) Positwity. If a.s. X >0 then we have that a.s. E[X|H] > 0.
(i1) Linearity. For a,b € R, we have that a.s. ElaX + bY |H] = aE[X|H] + bE[Y|H].

(iii) Monotone convergence. Let (X ,n € N) be a sequence of real-valued square integrable
random variables such that for alln € N a.s. 0 < X,, < X,,41. Then, we have that a.s.:

Proof. Let X be a square-integrable a.s. non-negative random variable. We set A =
{E[X|H] < 0}. We have:

lim ]E[Xn]H]:E[ lim X,
n—-+4o0o

n—-+o0o

0> E[E[X|H]14] = E[X14] > 0,

where we used that A € H and (2.1) for the equality. We deduce that E[E[X|H]14] = 0 and
thus that a.s. E[X|#H] > 0 according to Lemma 1.38.

The linearity property is a consequence of the linearity property of the expectation, (2.1)
and Lemma 2.3.

Let (X,,,n € N) be a sequence of real-valued square-integrable random variables such that
foralln € Nas. 0 < X, < X,,11. We deduce from the linearity and positivity properties
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of the conditional expectation that for all n € N as. 0 < E[X,|H] < E[X,+1|H]. The
random-variable Z = lim,_, 1. E[X,|H] is H-measurable according to Corollary 1.42 and
a.s. non-negative. The monotone convergence theorem implies that for all A € H:

E[Z14] = nll)r_il_loo]E [E[X,|H]14] = nll)I-ir—looE [(Xn14]=E |:n£1>r_~r_100 anA:| .

Deduce from (2.1) and Lemma 2.3 that a.s. Z = E[lim,,—,4 o, Xp|#]. This ends the proof. [

We extend the definition of conditional expectations to random variables whose expecta-
tion is well defined.

Proposition 2.6. Let X be a real-valued random variable such that E[X] is well defined.
Then its expectation conditionally on H, E[X|H], exists and is unique up to an a.s. equality.
Furthermore, the expectation of E[X|H] is well defined and is equal to E[X]:

E [E[X|H]] = E[X]. (2.3)
If X is non-negative a.s. (resp. integrable), so is E[X|H].

Proof. Consider first the case where X is a.s. non-negative. The random variable X is the
a.s. limit of a sequence of positive square-integrable random variables. Property (iii) from
Proposition 2.5 implies that E[X|#] exists. It is unique thanks to Lemma 2.3. It is a.s.
non-negative as limit of non-negative random variables. Taking A = Q in (2.1), we get (2.3).

We now consider the general case. Recall that X = max(X,0) and X~ = max(—X,0).
From the previous argument the expectations of E[X T |H] and E[X ~|H] are well defined and
respectively equal to E[X*] and E[X~|. Since one of those two expectations is finite, we
deduce that a.s. E[XT|H] if finite or a.s. E[X ~|H] is finite. Then use (2.1) and Lemma 2.3
to deduce that E[XT|H] — E[X~|H] is equal to E[X|H], the expectation of X conditionally
on H. Since E[X|H] is the difference of two non-negative random variables, one of them
being integrable, we deduce that the expectation of E[X|H] is well defined and use (2.1) with
A = Q to get (2.3). Eventually, if X is integrable, so are E[X T|H]| and E[X ~|#] thanks to
(2.3) for non-negative random variables. This implies that E[X|#] is integrable. O

We summarize in the next proposition the properties of the conditional expectation di-
rectly inherited from the properties of the expectation.

Proposition 2.7. We have the following properties.

(i) Positivity. If X is a real-valued random wvariable such that a.s. X > 0, then a.s.
E[X|H] > 0.

(ii) Linearity. For a,b in R (resp. in [0,4+00)), X,Y real-valued random-variables with X
andY integrable (resp. with E[XT+Y 1] or E[X ~+Y 7] finite), we have E[aX +bY |H] =
aE[X|H] + bE[Y |H].

(iii) Monotony. For X,Y real-valued random variables such that a.s. X <Y and E[X] as
well as E[Y] are well defined, we have E[X|H] < E[Y|H].
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(iv) Monotone convergence. Let (X,,,n € N) be real-valued random variables such that for
alln eN a.s. 0< X, < X,11. Then we have that a.s.:

lim E[X,[H] = E | lim X,[#].
n—oo n—o0

(v) Fatou Lemma. Let (X,,n € N) be real-valued random variables such that for alln € N
a.s. 0 < X,,. Then we have that a.s.:

E [hm inf X, \H] < liminf E [X,|H] .
n—oo

n—00

(vi) Dominated convergence (Lebesgque). Let X, Y, (X,,n € N) be real-valued random
variables such that a.s. lim, o X;, = X, for alln € N a.s. |X,,| <Y and E[Y] < 4o0.
Then we have that a.s.:

lim E[X,[H] = E | lim X,[#].

(vii) The Tchebychev, Holder, Cauchy-Schwarz, Minkowski and Jensen inequalities from
Propositions 1.49 and 1.59 holds with the expectation replaced by the conditional expec-
tation.

For example, we state Jensen inequality from property (vii) above. Let ¢ be a R-valued

convex function defined on R?. Let X be an integrable R%valued random variable. Then,
E[p(X)|H] is well defined and a.s.:

p(E[X[H]) <E[p(X)|H]. (2.4)

Furthermore, if ¢ is strictly convex, the inequality in (2.4) is an equality if and only if X is
a.s. equal to an H-measurable random variable.

Proof. The positivity property comes from Proposition 2.6. The linearity property comes
from the linearity of the expectation, (2.1) and Lemma 2.3. The monotony property is a
consequence of the positivity and linearity properties. The proof of the monotone convergence
theorem is based on the same arguments as in the proof of Proposition 2.5. Fatou Lemma and
the dominated convergence theorem are consequences of the monotone convergence theorem,
see proof of Lemma 1.45 and of Theorem 1.46. The proofs of the inequalities are similar to
the proofs of Propositions 1.49 and 1.59. (Be careful when characterizing the equality in (2.4)
when ¢ is strictly convex.) O

Using the monotone or dominated convergence theorems, it is easy to prove the following
Corollary which generalizes (2.1).

Corollary 2.8. Let X and Y be two real-valued random variables such that E[X] and E[XY]
are well defined, and Y is H-measurable. Then E[E[X|H]Y] is well defined and we have:

E[XY] = E[E[X|H]Y]. (2.5)

Recall Definitions 1.11 and 1.30 on independence. We complete the properties of the
conditional expectation.
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Proposition 2.9. Let X be a real-valued random variable such that E[X] is well defined.
(i) If X is H-measurable, then we have that a.s. E[X|H] = X.
(i) If X is independent of H, then we have that a.s. E[X|H] = E[X].

(iii) If Y is a real-valued H-measurable random variable such that E[XY] is well defined,
then we have that a.s. E[Y X|H] = YE[X|H].

() If G C H is a o-field, then we have that a.s. E[E[X|H]|G] = E[X|G].

(v) If G C F is a o-field independent of H and independent of X (that is G is independent
of HV o(X)), then we have that a.s. E[X|GV H] = E[X|H].

Proof. If X is H-measurable, then we can choose Z = X in (2.1) and use Lemma 2.3 to get
property (i). If X is independent of #, then for all A € H, we have E[X14] = E[X]|E[14] =
E[E[X]14], and we can choose Z = E[X] in (2.1) and use Lemma 2.3 to get property (ii). If Y’
is a real-valued H-measurable random variable such that E[X Y] is well defined, then E[XY14]
is also well defined for A € H, and according to (2.5), we have E[XY1,4] = E[E[X|H]Y 14].
Then, we can choose Z = YE[X|H] in (2.1), with X replaced by X14, and use Lemma 2.3
to get property (iii).
We prove property (iv). Let A € G C H. We have:

E[E[X|G]14] = E[X14] = E[E[X[H]14] = E [E [E[X|H]|F] 14],

where we used (2.1) with H replaced by G for the first equality, (2.1) for the second and (2.1)
with H replaced by G and X by E[X|H] for the last. Then we deduce property (iv) from
Definition 2.2 and Lemma 2.3.

We prove property (v) first when X is integrable. For A € G and B € H, we have:

E1anpX]|=E[14l1pX] =E[14E[15X] = E[14E[1BE[X|H]] = E[1415E[X|H]],

where we used that 14 is independent of HVo(X) in the second equality and independent of H
in the last. Using the dominated convergence theorem, we get that A ={A € F, E[14X] =
E[14E[X|H]]} is a monotone class. It contains C = {ANB; A € G,B € H} which is stable
by finite intersection. The monotone class theorem implies that A contains o(C) and thus
GV H. Then we deduce property (v) from Definition 2.2 and Lemma 2.3. Use the monotone
convergence theorem to extend the result to non-negative random variable and use that
E[X|H'] = E[XT|H'| — E[X~|H'] for any o-field H' C F when E[X] is well defined, to extend
the result to any real random variable X such that E[X] is well defined. O

We extend the definition of conditional expectation to R%valued random variables.

Definition 2.10. Let d € N*. Let X = (X1,...,Xy4) be an R?-valued random variable such
that E[X] is well defined. The conditional expectation of X conditionally on H, denoted by
E[X|H], is given by (E[X1|H],...,E[X4|H]).
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2.3 Conditional expectation with resp. to a random variable

Let V be a random variable taking values in a measurable space (E,£). Recall that o(V)
denote the o-field generated by V. Let X be a real-valued random variable. We write E[X |V]
for E[X|o(V)]. The next result states that E[X|V] is a measurable function of V. It is a
direct consequence of Proposition 1.25.

Corollary 2.11. Let V be a random variable taking values in a measurable space (E,E) and
X a real-valued random variable such that E[X] is well defined. There exists a real-valued
measurable function g defined on E such that a.s. E[X|V] = g(V).

In the next two paragraphs we give an explicit formula for g when V is a discrete random
variable and when X = (Y, V) with Y some random variable taking values in a measurable
space (5,S) such that (Y, V) has a density with respect to some product measure on S x E.

Recall (2.2) for the notation P(A| H) for A € F; and we shall write P(A|V) for P(A| o(V)).

2.3.1 The discrete case

The following corollary provides an explicit formula for the expectation conditionally on a
discrete random variable. Recall the definition of a discrete random variable in Remark 1.57
and of the expectation conditionally on an event in Remark 1.58.

Corollary 2.12. Let (E,&) be a measurable space and V' be a discrete E-valued random
variable. Let X be a real-valued random variable such that E[X]| is well defined. Then, we
have that a.s. E[X|V] = g(V') with:

gv) = % =EX|V=v] f P(V=v)>0, and g(v)=0 otherwise. (2.6)

Proof. According to Corollary 2.11, we have E[X|V] = g(V) for some real-valued measurable
function g. We deduce from (2.1) with A = {V = v} that E[X1y_,;] = g(v)P(V = v). If
P(V =wv) > 0, we get:
E[XI{VZU}]
g('U) - P(V — 'U)

The value of E[X|V = v] when P(V = v) = 0 is unimportant, and can be set equal to 0.
Since V is discrete, we get that if A € o(V'), then 14 can be written as a function of V, say
h(V). Set A ={v € E,P(V = v) > 0} the discrete support of V; it is at most countable.
By Fubini theorem, we get that:

=E[X|V =)

E[X14] = E[Xh(V)] =) h(EXLy_yl = > h®E[g(V)l{y—y] = Elg(V)1a],
vEA VEA

that is E[X|V] = ¢g(V) a.s. by uniqueness, see Lemma 2.3. O

Remark 2.13. Let (E, £) be a measurable space and V' be a discrete E-valued random variable
with discrete support Ay = {v € E,P(V = v) > 0}. For v € Ay, denote by P, the
probability measure on (€2, F) defined by P,(A) = P(A|V = v) for A € F. The law of X
conditionally on {V = v}, denoted by P X|v is the image of the probability measure P, by
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X, and we define the law of X conditionally on V' as the collection of probability measure
Pxjv = (Px|y,v € Ay). An illustration is given in the next example. O

Ezample 2.14. Let (X;,i € [1,n]) be independent Bernoulli random variables with the same
parameter p € (0,1). Weset S, = > " ;| X;, which has a binomial distribution with parameter
(n,p). We shall compute the law of X; conditionally on S,,. We get for k € [1,n]:

PX:=1,S. =k PXi=1)PXe+ ---+X,=k-1)

P = 11y = h) = =g = P(5, = F) )

?

S|

where we used independence for X; and (Xo, ..., X,,) for the second equality and that X5 +
.-+ + X, has a binomial distribution with parameter (n — 1,p) for the last. For k = 0, we
get directly that P(X; = 1|5, = k) = 0. We deduce that X; conditionally on {S, = k}
is a Bernoulli random variable with parameter k/n for all k € [0,n]. We shall say that,
conditionally on S,,, X has the Bernoulli distribution with parameter S, /n.

Using Corollary 2.12, we get that E[X;|S,] = Sn/n, which could have been obtained
directly as the expectation of a Bernoulli random variable is given by its parameter. A

2.3.2 The density case

Let Y be a random variable taking values in (S,S) such that (Y,V) has a density with
respect to some product measure on S X E. See Fubini Theorem 1.53 for the definition of
product measure. More precisely, we assume the probability distribution of (Y, V) is given
by fvvy(y,v) u(dy)r(dv), where p and v are o-finite measures respectively on (S5,S) and
(E,€) and fy,y is a [0, +oc]-valued measurable function such that [ fyyydp®v = 1. In
this setting, we give a closed formula for E[X|V] when X = (Y, V), with ¢ a real-valued
measurable function defined on S x E endowed with the product o-field.

According to Fubini theorem, V' has probability distribution fy v with density (with re-
spect to the measure v) given by fy(v) = [ fry,v)(y,v) u(dy) and Y has probability distribu-
tion fyp with density (with respect to the measure u) given by fy (y) = [ fory (v, v) v(dv).
We now define the law of Y conditionally on V.

Definition 2.15. The probability distribution of Y conditionally on {V = v}, withv € E
such that fy(v) € (0 + 00), is defined by fyv (ylv) u(dy) with its density fy|y (with respect
to the measure p) given by:

Frv o) = % yes.

By convention, we set fyy(ylv) =0 if fy(v) € (0,+00).

Thanks to Fubini theorem, we get that, for v such that fy(v) € (0,400), the function
Y+ fyv(ylv) is a density as it is non-negative and J Ty (ylv) p(dy) = 1.
We now give the expectation of X = ¢(Y, V), for some function ¢, conditionally on V.

Proposition 2.16. Let (E,&,v) and (S,S, ) be measured space such that v and u are o-
finite. Let (Y, V) be an S x E-valued random variable with density (y,v) = fiy,v)(y,v) with
respect to the product measure u(dy)v(dv). Let ¢ be a real-valued measurable function defined
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on S X E and set X = o(Y,V). Assume that E[X] is well defined. Then we have that a.s.
E[X|V] = g(V), with:

mwz/wmwnvwwmwy (2.7)

Proof. Let A € o(V). The function 14 is o(V)-measurable, and thus, thanks to Proposition
1.25, there exists a measurable function h such that 14 = h(V'). Since fy is a density, we
get that [ 1gr ¢ (0,400)) fvdv = 0. We have:

)
E[X14] = E[p(Y, V)h(V)]

oy, v)h(v) fryv) (Y, v) p(dy)v(dv)

Il
— e — —

(Y, v)h(v) frv,v) (¥, )L £y () €(0,400)) #(dy)v(d)

h(v) </ oy, v) fy v (ylv) H(dy)> Tv ()15, (0)e0,400)) V(dV)

h(v)g(v) fv (v) v(dv)
= Elg(V)h(V)] = E[g(V)14],
where we used that d u ® v-a.e.:

forv)@:v) = fry (¥ 0) 1 £y (0)e(0,4-00)}

as [ s, ¢(0,4+00)} fv,v) dp®v = [ 15, 2(0,400)} fvr dv = 0 for the third equality, the definition
of fyy and Fubini theorem for the fourth and the definition of g given by (2.7) for the fith.
Using (2.1) and Lemma 2.3, we deduce that a.s. g(V) =E[X|V]. O

2.3.3 Elements on the conditional distribution

We shall present in this section some elementary notions on the conditional distribution.

Let (E,&,v) be a measured space and (S, S) a measurable space. A probability kernel x
is a [0, 1]-valued function defined on E x S such that: for all v € E, the map A — k(v, A)
is a measure on (5,S); for all A € S, the map v — k(v,A) is measurable; and v(dv)-a.e.
k(v,S) = 1. It is left to the reader to prove that for any [0, +oc]-valued measurable function
¢ defined on S x E, the map v — [ ¢(y,v) (v, dy) is measurable.

Definition 2.17. Let (Y, V) be an S x E-valued random variable, such that the distribution
of V has a density" with respect to the measure v. The probability kernel k is the conditional
distribution of Y given V if a.s.:

P(Y € A|V) = k(V,A) foral AeS.

If the probability kernel & is the conditional distribution of Y given V', then arguing as in
the proof of Fubini’s Theorem 1.53, we get that for any [0, +o0c]-valued measurable function
@ defined on S x F a.s.:

E[p(Y,V)|V] = g(V) with aw—/@wwmwﬂw

'If one takes v = Py, then the density is constant equal to 1.
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The existence of a probability kernel? allows to give a representation of the conditional ex-
pectation which holds simultaneously for all nice functions ¢ (but on a set of 0 probability
for V). When V is a discrete random variable, Remark 2.13 states that the kernel x given
by k(v,dz) = 1g,en, }Pxpp(dz) is, with v = Py, the conditional distribution of X given V.

Ezample 2.18. In Example 2.14, with P = S/n, the conditional distribution of X; given P
is the Bernoulli distribution with parameter P. This corresponds to the kernel x(p,dz) =
(1 —p)do(dx) + pd1(dz). (Notice one only needs to consider p € [0, 1].)

In Exercise 8.20, the conditional distribution of Y given V' is the uniform distribution on
[0,V]. This corresponds to the kernel (v, dy) = v~ 1, (y) A(dy). (Notice one only needs
to consider v € (0, +00).) A

2The existence of the conditional distribution of Y, taking values in S, given V can be proven under some
topological property of the space (5, S). See Theorem 5.3 in O. Kallenberg. Foundations of modern probability.
Springer-Verlag, 2002.
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Chapter 3

Discrete Markov chains

A Markov chain is a sequence of random variables X = (X,,,n € N) which represents the
dynamical evolution (in discrete time) of a stochastic system: X, represents the state of the
system at time n. The fundamental property of a Markov chain is that the evolution after time
n of the system depends on the previous states only through the state of the system at time
n. In other words, conditionally on X, (Xo,...,X,) and (X, 4k, k € N) are independent.
Markov chains appears naturally in a large variety of domain: networks, population genetics,
mathematical finance, stock management, stochastic optimization algorithms, simulations,
.... We shall be interested in the asymptotic behavior of X for large times. In what follows,
we assume that the state space is at most countable.

We give in Section 3.1 the definition and the first properties of the Markov chains. Then,
we consider invariant measures in Section 3.2. We characterize the states of the Markov chain
and introduce the notion of irreducible chain in Section 3.3. Intuitively, an irreducible chain
has a positive probability starting from one state to go in one or many steps to any other state.
The ergodic theorems from Section 3.4 give the asymptotic behavior of an irreducible Markov
chain for large time. They are among the most interesting results on Markov chains. Their
proof is postponed to Section 3.4.3. In Section 3.5, we present and analyze some well known
applications of Markov chains. We refer to [7, 3] for a recent and very detailed presentation
of Markov chains.

We shall consider that all the random variables of this chapter are defined on a probability
space (€2, F,P). In all this chapter we shall consider a discrete state space! E (not reduced
to one state) with the o-field £ = P(E).

3.1 Definition and properties
Let X = (X,,n € N) be a sequence of E-valued random variables, which will be seen as a

process, X,, being the state of the process at time n. We represent the information available
at time n € N by a o-field F,,, which is non-decreasing with n.

!The set E is discrete if F is at most countable, all z € E are isolated, that is all subsets of E are open and
closed. For example, the set N with the Euclidean distance is a discrete set, while the set {0} U{1/k, k € N*}
with the Euclidean distance is not a discrete set as the set {0} is not open.

39
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Definition 3.1. A filtration F = (F,,n € N) (with respect to the measurable space (2, F))
is a sequence of o-fields such that F, C Fpy1 C F for all n € N. A FE-valued process
X = (Xpn,n €N) is F-adapted if X,, is Fp-measurable for all n € N.

In the setting of stochastic process, one usually (but not always) chooses the natural
filtration F = (F,,,n € N) which is generated by X: for all n € N, F,, is the o-field generated
by (Xo, ..., X,) and the P-null sets. This obviously implies that X is F-adapted.

A Markov chain is a process such that, conditionally on the process at time n, the past
before time n and the evolution of the process after time n are independent.

Definition 3.2. The process X = (X,,,n € N) is a Markov chain with respect to the filtration
F = (F,,n € N) if it is adapted and it has the Markov property: for all n € N, conditionally
on Xy, Fn and (Xg, k > n) are independent, that is for all A € F,, and B € o(Xy, k > n),

In the previous definition, we shall omit to mention the filtration when it is the natural
filtration. Since X is adapted to F, if X is a Markov chain with respect to F, it is also a
Markov chain with respect to its natural filtration.
We give equivalent definitions for being a Markov chain.

Proposition 3.3. Let X = (X,,,n € N) be a E-valued process adapted to the filtration
F = (F,,n € N). The following properties are equivalent.

(i) X is Markov chain.

(ii) For alln € N and B € 0(Xy, k > n), we have a.s. P(B|F,) =P(B| X,).

(iii) For alln € N and y € E, we have a.s. P(X,q11 = y| Fn) = P(Xny1 = y| Xn).

Proof. That property (i) implies property (ii) is a direct consequence of Exercise 8.18 (with
A=F,, B=0(Xk, k >n)and H = o(X,,)). Let us check that property (ii) implies property
(i). Assume property (ii). Let A € F,, and B € o(Xy, k > n). A.s. we have, using property
(ii) for the second equality:

P(A N B| Xn) =E [1AE [1B| }—n] | Xn] =E [lAE [lB| Xn] | Xn] = P(A| Xn)P(B| Xn)

This gives property (i).

Taking B = {X,,+1 = y} in property (ii) gives property (iii). We now assume property
(iii) holds, and we prove property (ii). As o(Xg, kK > n) is generated by the events B =
{Xn =vo,-., Xtk = yx} where k € N and yo, ...,y € E, we deduce from the monotone
class theorem, and more precisely Corollary 1.14, that, to prove (ii), it is enough to prove
that a.s.

P(Bk’ Jrn) = [P(Bk‘ Xn) (31)

We shall prove this by induction. Notice (3.1) is true for £ = 1 thanks to (iii). Assume that
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(3.1) is true for £ > 1. Then, we have a.s.:

P(Byt1| Fn) = E [1Bk+1|‘7:”] =E [E [1{Xn+k+1:yk+1}1Bk| ]:n-f'k} |‘7:n]
= EP(Xptkt+1 = Yht1| Frnrr) 1B, | Fnl
= EP(Xptrt+1 = Yht1| Xntr)1B, | Fnl
= P(Xntk+1 = Yks1| Xtk = yr) P(Bi| Fn)
=P(Xntrt+1 = Yb1] Xnsk = yi) P(Bi| Xy),

where we used that By, € F, . for the second equality, property (iii) for the third, and that
Xtk = Yn+k o0 By and, see Corollary 2.12, that a.s. P(X, 15411 = Yk+1] Xn+k>1{Xn+k=yk} =
P(Xpik+1 = Yks1| Xnsk = yk)l{XnJrk:yk} for the fourth and the induction for the last.
In particular, we deduce that P(Byy1|Fy) is 0(X,)-measurable. This readily implies that
P(Bjt1| Fn) = P(Bg+1| Xy) and thus (3.1) is true for k replaced by k + 1. This ends the
proof of property (ii). O

As an immediate consequence of this proposition, using property (iv) of Proposition 2.9
and that o(Xo,...,X,) C F,, we deduce that for a Markov chain X = (X,,,n € N):

as. P(Xpp1=y|Fn) =PXpn+1=9]|Xo,...,Xn) =P(Xpny1 =y | Xpn). (3.2)
Unless specified otherwise, we shall consider F is the natural filtration of X.

Ezample 3.4. We present the example of the simple random walk, which has been (and is
still) thoroughly studied, see [8, 6]. We take E = Z. Let p € (0,1) and U = (Uy,,n € N*) be
independent random variables taking values in {—1,1} with the same distribution P(U,, =
1)=1-PU, = —1) = p. Let Xy be a Z-valued random variable independent of U and set
for n € N*:

n
Xo=Xo+ > Uk
k=1
By construction we get property (iii) from Proposition 3.3 holds as P(X,,4+1 = y| Fn) =
P(Upt1 = y — Xu| Fn) = o(y — X,,) with ¢(2) = P(Up4+1 = 2), since U,y is independent
of F, and thanks to (8.1) with Y = Up,4+1, V = X,, and ‘H = F,,. Thus the process X is a
Markov chain. A

Motivated by this example, we have the following lemma whose proof is similar and left
to the reader.

Lemma 3.5. Let (S,S) be a measurable space. Let U = (Uy,n € N*) be a sequence of
independent S-valued random variables. Let Xg be a E-valued random variable independent
of U. Let f be a measurable function defined on EE x S taking values in E. The stochastic
dynamical system X = (X,,,n € N) defined by X,+1 = f(Xpn,Unt1) for n € N is a Markov
chain.

The sequence U in Lemma 3.5 is called the sequence of innovations. In what follows, we link
the Markov chains with the matrix formalism.

Definition 3.6. A matriz P = (P(z,y),z,y € E) on E is stochastic if: P(x,y) > 0 for all
r,y € E, and y_ pP(z,y) =1 forallz € E.

In view of (3.2), it is natural to focus on the transition probability P(X,+1 =y | X»).
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Definition 3.7. A Markov chain X on E has transition matrices (P,,n € N*) if (P,,n € N¥)
is a sequence of stochastic matrices on E and for all y € E a.s.:

P(Xn+1 =Yy | Xn) = Pn+1(Xn7y)- (33)

The Markov chain is called homogeneous when the sequence (P,,n € N*) is constant, and its
common value, say P, is then called the? transition matriz of X.

The transition matrix of the simple random walk described in Example 3.4 is given by
P(z,y)=0if |x —y| #1, P(z,x+ 1) =pand P(z,x —1) =1 —p for z,y € Z.

Unless specified otherwise, we shall consider homogeneous Markov chains.

The next proposition states that the transition matrix and the initial distribution char-
acterize the distribution of the Markov chain.

Proposition 3.8. The distribution of a (homogeneous) Markov chain X = (X,,n € N) is
characterized by its transition matriz, P, and the initial probability distribution, pg, of Xo.
Moreover, we have for alln € N*, xg,...,z, € E:

n
P(Xo = o, ..., Xpn = &) = polzo H (Th—1, Tp)- (3.4)

In order to stress the dependence of the distribution of the Markov chain X on the
probability distribution po of Xg, we may write P, and E,,. When pg is simply the Dirac
mass at x (that is P(Xy = x) = 1), then we simply write P, and E, and say the Markov
chain is started at z.

Proof. We have that for k € N*, xq,...,z511 € E, with By = {Xo = =9, ..., Xy = z1}, that:

P(Xpt1 = k1, Br) = E [E [Lix, =0} 1B, | F]]
[P(Xkt1 = Tr41 | Fr) 18]
[P(Xk, Tr+1)1B,]

= P(zg, x+1)P(By),

E
E
E

where we used that By € F, for the second equality, (3.2) for the third, that X = x; on By
for the last. We then deduce that (3.4) holds by induction.

Use that {(zo,...,7,)} for mg,...,x, € E generates the product o-field on E"™! and
Lemma 1.29 to deduce that the left hand side of (3.4) for all n € N and xzg,...,z, € E
characterizes the distribution of X. We then deduce from (3.4) that the distribution of X is
characterized by P and pug. O

We now give some examples of Markov chains.

Ezample 3.9. If the process X = (X,,,n € N) is a sequence of independent random variables
with distribution 7, then X is a Markov chain with transition matrix P given by P(z,y) =
m(y) for all z,y € E. A

2There is a slight abuse here, as (3.3) might not characterize P. Indeed, if P(X, = ) = 0 for some = € E
and all n € N*, then P(z,-) is not characterized by (3.3). This shall however not be troublesome.
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Ezxample 3.10. Let X,, be the number of items in a stock at time n, D,y the random
consumer demand and g € N* the deterministic quantity of items produced between period
n and n + 1. Considering the stock at time n + 1, we get:

Xn—l—l = (Xn +q- Dn+1)+~

If the demand D = (D,,n € N*) is a sequence of independent random variables with the
same distribution, independent of Xy, then according to Lemma 3.5, the stochastic dynamical
system X = (X,,n € N) is a Markov chain. Its transition matrix is given by: P(z,y) =
P(D=k)ify=2+qg—k >0, and P(x,0) =P(D > x+q) for x,y € N. Figure 3.1 represents
some simulations of the process X for different probability distributions of the demand. A

“ | H \ 1' b ‘ LJ I “‘ o N& w

Figure 3.1: Simulations of the the random evolution of a stock with dynamics X,4+1 =
(X5, + ¢ — Dpy1)t, where Xg = 0, ¢ = 3 and the random variables (D,,n € N*) are
independent with Poisson distribution parameter 6 (§ = 4 on the left and # = 3 on the right).

Remark 3.11. Even if a Markov chain is not a stochastic dynamical system, it is distributed
as one. Indeed let ug be a probability distribution on £ and P a stochastic matrix on FE.
Let Xy be a E-valued random variable with distribution py and (Uy,,n € N) be a sequence of
independent random variables, independent of Xy distributed as U = (U(z), z € E), where
U(z) are independent E-valued random variables such that U(z) has distribution P(z,-).
Then the stochastic dynamical system (X,,, n € N), defined by X, 11 = Up4+1(X,,) for n € N,
is a Markov chain on F with initial distribution po and transition matrix P. O

The next corollary is a consequence of the Markov property.

Corollary 3.12. Let X = (X,,n € N) be a Markov chain with respect to the filtration
F = (F,,n € N), taking values in a discrete state space E and with transition matriz P. Let
n € N and defined the shifted process X = (Xk = Xuik, k € N). Conditionally on X,, we
have that F,, and X are independent and that X is a Markov chain with transition matriz P

started at X,, which means that a.s. for all k € N, all xg, ...,z € E:
P(onxg,...,Xk:xk | Fn) :P(ona:o,...,f(k:a:k | Xn)

k
= 1{Xn=$0} HP(:vj_l,xj). (35)
7=1
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 Notice that in the previous corollary the initial distribution of the Markov chains X and
X are not the same a priori.

Proof. By definition of a Markov chain, we have that, conditionally on X,,, F;,, and X are
independent. So, we only need to prove that:
k
P(Xo = 20, ..., Xp = 2 | Fn) = L{x, =00} | | Pl2i-1. 7). (3.6)
j=1
Set B; = {Xo = z0,...,X; = zj} = {X,, = 20,..., Xps; = 2;} for j € {0,...,k}. Using
(3.2) and Definition 3.7 with n replaced by n + j, we get for j € {0,...,k — 1} that:

E[1p;,, | Fatj] =E |:1{Xn+j+1:zj+1} 1, | ]:nﬂ} = P(Xnyj,2j11) 18; = P(xj, j41) 1,

where we used that X, ; = x; on B; for the last equality. This implies that P(Bj1| Fn) =
P(xzj,xj41)P(Bj | Fn). Thus, we deduce that (3.6) holds by induction. Then, conclude using
Proposition 3.8 on the characterization of the distribution of a Markov chain. O

In the setting of Markov chains, computing probability distribution or expectation re-
duce to elementary linear algebra on E. Let P and ) be two matrices defined on E
with non-negative entries. We denote by P@Q the matrix on E defined by PQ(z,y) =
> ep P(2,2)Q(2,y) for z,y € E. It is easy to check that if P and @Q are stochastic, then
PQ is also stochastic. We set P° = I the identity matrix on E and for k > 1, Pk = pPk—1p
(or equivalently P = PPF1),

For a line vector p = (u(z),z € E) with non-negatives entries, which we shall see as
a measure on E, we denote by pP the line vector (uP(y),y € E) defined by puP(y) =
> zer () P(z,y). For a column vector f = (f(y),y € E) with real entries, which we shall
see as a function defined on F, we denote, by Pf or P(f) the column vector (Pf(z),x € E)
defined by Pf(z) = >_, cr P(z,y) f(y). Notice this last quantity, and thus Pf, is well defined
as soon as, for all z € F we have P(f1)(z) or P(f)(x) finite. We also write uf = (u, f) =
> zer i(x) f(x) the integral of the function f with respect to the measure x, when it is well
defined.

We shall consider a measure u = (u(x) = p({z}),z € E) on E as a line vector with non
negative entries. For A C E, we set u(A) = > -4 p(x), so that p is a probability measure
if > cpm(r) = 1. We shall also consider a real-valued function f = (f(z),z € E) defined
on E as a column vector. The next results give explicit formula to compute (conditional)
expectations and distributions.

Proposition 3.13. Let X = (X,,,n € N) be a Markov chain with transition matriz P.
Denote by py, the probability distribution of X, for n € N. Let f be a bounded or non-

negative function. We have for n € N*:
(Z) Un = lu’OPnJ

(i) E[f(Xn)] = pnf = woP™f and E,[f(X,)] = P"f(x) forx € E,
(i1i) E[f(Xpn)| Fn-1] = Pf(Xn-1) a.s.,
(iv) E[f(X,)| Xo] = P"f(Xo) a.s.,
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(v) P(Xpir = y| Fpn) = P¥(Xn,y) a.s. forallkeN, yc E.

Proof. Summing (3.4) over zg,...,x,—1 € E gives property (i). Property (ii) is a direct
consequence of property (i). Using that P(X,, =y | Fn—1) = P(Xn-1,9), see (3.2) and (3.3),
multiplying by f(y) and summing over y € E gives property (iii). Iterating (iii) leads to
E[f(Xn)| Fo] = P™f(Xo), which implies (iv) as a.s. E[f(X,)| Xo] = E[E[f(X)| Fo] | Xo]-.
Iterating (iii) leads also to E[f(X,4x)| Fn] = P*f(X,) a.s., and then take f = L iy O

Ezample 3.14. Let (U,,n € N*) be a sequence of independent Bernoulli random variables
with parameter p € (0,1). Let pg,, be the probability to get a sequence of consecutive 1 with
length at least £ in the sequence Uj ...U,. It is very simple to get a closed formula for py,,
using the formalism of Markov chains®*. We consider the Markov chain X = (X,,n € N)
defined by Xo =0 and X1 = (Xn + 1)y, , =1, x,<¢} T {1x,=¢ for n € N. As soon as we
observe a sequence of consecutive 1 with length ¢, then the process X is constant equal to /.
In particular, we have p;, = P(X,, = ¢) = P"(0,¢), where P is the transition matrix of the
Markov chain X. The transition matrix is given by P(z,0) =1 —p and P(z,z + 1) = p for
x€{0,...,0—1}, P({,£) =1 and all the other entries of P are zeros. We give the values of
Pen for n =100 and p = 1/2 in Figure 3.2. In particular, for p = 1/2, we get a probability
larger than 1/2 to observe a sequence of 6 consecutive 1 in a sequence of length 100. A
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Figure 3.2: Graph of the function z — P(L,, > |z|), with L, the maximal length of the
sequences of consecutive 1 in a sequence of length n = 100 of independent Bernoulli random
variables with parameter p = 1/2.

3.2 Invariant probability measures, reversibility

Invariant probability measures appear naturally in the asymptotic study of Markov chains at
large times.

3L. Guibas and A. Odlyzko. String overlaps, pattern matching, and nontransitive games. J. Combin.
Theory Ser. A, vol. 30(2), pp. 183-208, 1981.

4J. Fu and V. Koutras. Distribution theory of runs: a Markov chain approach. J. Amer. Statist. Assoc.,
vol. 89(427), pp. 1050-1058, 1994.
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Definition 3.15. A probability measure 7 is invariant for a stochastic matrix P if m = wP.
It is also called a stationary probability measure.

Let X = (X,,,n € N) be a Markov chain with transition matrix P with starting probability
measure g = 7 an invariant probability measure for P. Denote by u, the probability
distribution of X,,. We have y; = 7P = 7 and by recurrence we get u, = 7 for all n € N*,
This means that X, is distributed as Xq: the distribution of X, is stationary, that is constant
in time.

Remark 3.16. Let X = (X,,,n € N) be a Markov chain with transition matrix P with starting
probability measure pg = 7 an invariant probability measure for P. For simplicity, let us
assume further that 7(z) > 0 for all z € E. For z,y € E, we set:

m(y) Py, z)
)

Qry) =" (37)

Since 7 is an invariant probability measure, we have Zye pQ(z,y) =1for all x € E. Thus
the matrix @ is stochastic. Notice that 7 is also an invariant probability measure for ). For
z,y € E, n € N, we have:

PW(XTL = y7Xn+1 = J")
Pw(Xn—l-l = I’)

PTI‘(XTL = y|Xn+1 = 1‘) = = Q(:‘Cay)

More generally, it is easy to check that for alln € N, zg,...,z, € E:

Pr(Xp = 30,..., Xo = 2n) = m(z0) [ [ Q@r-1, ).
k=1

In other words (X, X;—1,...,X0) is distributed under P, as the first n steps of a Markov
chains with transition matrix ) with initial distribution 7. Intuitively, the time reversal of
the process X under 7 is a Markov chain with transition matrix Q. O

There is an important particular case where a probability measure 7 is invariant for a

stochastic matrix.

Definition 3.17. A stochastic matriz P is reversible with respect to a probability measure 7
if for all x,y € E:

m(z)P(z,y) = n(y) P(y, ). (3.8)

A Markov chain X is reversible with respect to a probability measure m if its transition matrix
1s reversible with respect to w.

Summing (3.8) over x € E, we deduce the following lemma.
Lemma 3.18. If a stochastic matriz P is reversible with respect to a probability measure w,

then 7 is an invariant probability measure for P.

See examples of the Ehrenfest urn model and the Metropolis-Hastings algorithm in Section
3.5 for reversible Markov chains.
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Remark 3.19. If P in Remark 3.16 is also reversible with respect to the probability mea-
sure w, then we get P = . Therefore, under P,, we get that (Xo,...,X,—1,X,) and
(Xn, Xn-1,-..,X0) have the same distribution. We give a stronger statement in the next
Remark. O

Remark 3.20. Let P be a stochastic matrix on E reversible with respect to a probability
measure m. The following construction is inspired by Remark 3.11. Let (Up,n € Z*) be
a sequence of independent random variables distributed as U = (U(x), x € E), where the
E-valued random variables are independent and U(z) is distributed as P(z,-). Let X be a
E-valued random variable independent of (U,,n € Z*) with distribution 7. For n € N*, set
Xny1 = Uny1(Xyp) and X_ (1) = U_(41)(X—p). Then the process X = (X,,,n € Z) can be
seen as a Markov chain with time index Z instead of N in Definition 3.2 (the proof of this
fact is left to the reader). We deduce from Remark 3.16 that X = (X,, = X_,,,n € Z) is then
also a Markov chain with time index Z. It is called the time reversal process of X. One can
easily check that its transition matrix is P, so that X and X have the same distribution. ¢

3.3 Irreducibility, recurrence, transience, periodicity

Let P be a stochastic matrix on E and X = (X,,n € N) be a Markov chain with transition
matrix P. Recall E is a finite or countable discrete space with at least two elements.

3.3.1 Communicating classes

In order to study the longtime behavior of the Markov chain X, we shall decompose the state
space E in subsets on which the study of X will be easier.

We introduce some definitions. A state y is accessible from a state x, which we shall write
x — vy, if P"(z,y) > 0 for some n € N, or equivalently P, (X,, = y for some n € N) > 0. Since
PY = Ig, the identity matrix on E, we get that + — x. The states  and y communicate,
which we shall write as = <> y if they are accessible from each other (that is x — y and
y — x). It is clear that “to communicate with” is an equivalence relation, and we denote by
C, the equivalent class of x. The communicating classes form a partition of the state space
E. Notice the communicating classes are completely determined by the zero of the transition
matrix P. We say the Markov chain X is irreducible if all states communicate with each
other, that is E' is a (and the only one) communicating class.

A communicating class C' is called closed if for all x € C' we have that x — y implies
y € C (that is z <> y), and open otherwise. Intuitively, when a Markov chain reach a closed
communicating class, it stays therein. A state x € F is called an absorbing state if C;, = {z}
and C, is closed. Equivalently, the state z is an absorbing state if and only if P(z,z) =1
and thus P,(X,, = z for all n € N) = 1. In particular a Markov chain with an absorbing
state is not irreducible.

Ezample 3.21. In Example 3.4, the simple random walk is an irreducible Markov chain with
state space Z (that is Z is a closed communicating class).

In Example 3.14, the state ¢ is an absorbing state, and {0,--- ,¢— 1} is an open commu-
nicating class.
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The Markov chain in the Ehrenfest’s urn model, see Section 3.5, is irreducible. The
Markov chain of the Wright-Fischer model, see Section 3.5, has two absorbing states 0 and
N and one open communicating class {1,..., N —1}. A

3.3.2 Recurrence and transience

We use the convention inf ) = +o0o. We define the (first) return time of = € E for the Markov
chain X by:

T* =inf{n >1; X,, = z}.

Definition 3.22. Let X be a Markov chain on E. The state x € E is transient if P, (T* =
o0) > 0, and recurrent (or persistent) otherwise. The Markov chain is transient (resp.
recurrent) if all the states are transient (resp. recurrent).

We set N* =3y 1¢x,=z) the number of visits of the state x. The next proposition
gives a characterization for transience and recurrence.

Proposition 3.23. Let X be a Markov chain on E with transition matriz P.
(i) Let x € E be recurrent. Then we have P,(N* =o00) =1 and ), . P"(z,7) = +00.

(ii) Let x € E be transient. Then we have P,(N® < oco) = 1, Y yP"(z,2) < 400
and N* has under P, a geometric distribution with parameter P, (T* = o0). And for
all probability measure v on E, we have P,(N* < oco) = 1. Furthermore, if ™ is an
invariant measure for P, then mw(x) = 0.

(iii) The elements of the same communicating class are either all transient or all recurrent.

(iv) The elements of an open communicating class are transient.

To have a complete picture, in view of property (iv) above, we shall study closed commu-
nicating classes (see Remark 3.25 below for a first result in this direction). For this reason,
we shall consider Markov chains started in a closed communicating class. This amounts to
study irreducible Markov chains, as a Markov chain started in a closed communicating class
remains in it.

Proof. We set p = P,(T* = o0) = P,(N* = 1). Notice that {T% < co} = {N?® > 1} under
P,. By decomposing according to the possible values of T%, we get for n € N:

Po(N*>n+1)= Y Pu(N">n+1,T" =r)

reN*
= Z P, (Tx =r X, = x7zl{XT+e=x} > n)
reN* leN
=) P.(T"=rX,=2)P, (Z 1(x,—) > n>
reN* leN
=P, (Ty < 00)P5(N* > n) (3.9)

= (1 —=p)Py(N* > n),
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where we used the Markov property at time r for the third equality. Using that P,(N* >
0) = 1, we deduce that P,(N* > n) = (1 —p)"™ for n € N. This gives that N* has under P, a
geometric distribution with parameter p € [0,1]. Notice also that E,[N*] = " P.(X, =
x) = > ,en P (z,2), which is finite if and only if p > 0. Thus, if 2 is transient, then p > 0
and we get P,(N; < 00) = 1 and E,[N?] is finite. And, if = is recurrent, then p = 0 and we
get Py (N, < o0) = 0 and E;[N¥] is infinite. This proves property (i) and the first part of
property (ii).

We prove the second part of property (ii). Let v be a probability measure on E. As x is
transient, by decomposing according to the values of 7% and using the Markov chain property
for the first equality, we get:

P,(N" = +00) = Y P(T" = n)P,(N" = +00) =0,
neN*

that is P, (N* < o) = 1. Let 7 be an invariant measure. Use P (N?® < 0o) =1 to get that:

1 1
P-a.s. nlg]& - kz Lxy—a} = 71151010 - N = 0.
—1
Since 2 7, 1{x,—z} is bounded by 1, we deduce that lim, e LS Pr(Xp=z)=0by
dominated convergence. As 7 is invariant, we get that P (X = x) = 7P*(z) = n(z). We
deduce that m(z) = 0. This finishes the proof of property (ii).

We prove property (iii). Let x,y be two elements of the same communicating class. In
particular, there exists nj,n2 € N such that P™ (y,z) > 0 and P"(z,y) > 0. We deduce
that for all n € N:

PrimAn2(y ) > P (y, ) Pz, 2) P™ (2, y), (3.10)
PrmAn2 (g 2y > P (z,y) P (y, y) P™ (y, z). (3.11)

This implies that the sums ) . P"(z,z) and ) . P"(y,y) are both either converging or
diverging. Thanks to properties (i) and (ii), we get that either x and y are both transient or
both recurrent. This gives (iii).

We now prove property (iv). If C is an open communicating class, then there exist x € C
and y ¢ C such that P(x,y) > 0. Since z is not accessible from y, we get Py (7" = o0) = 1.
Using the Markov property, we get that Py (7% = oo) > P(z,y)Py(T" = oo) > 0. This gives
that x is transient. Then use (iii) to conclude. O

According to property (iii) from Proposition 3.23, we get that an irreducible Markov chain
is either transient or recurrent. And, in the former case the probability of { N* < oo} is equal
to 1 for all choice of the initial distribution. The next lemma asserts that for an irreducible
recurrent Markov chain, the probability of { N* < oo} is equal to 0 for all choice of the initial
distribution.

Lemma 3.24. Let X be an irreducible Markov chain on E. If X is transient, then P(N® <
o) =1 forallx € E. If X is recurrent, then P(N* = 00) =1 for all x € E.
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Proof. For the transient case, see property (ii) of Proposition 3.23. We assume that X is
recurrent. Let € E. By decomposing according to the values of 7% and using the Markov
property for the first equality and property (i) of Proposition 3.23 for the second, we get:

P(N” < 00) =P(T" = 00) + »_P(T" = n)Po(N" < 00) = P(T" = ). (3.12)
neN

To conclude, we shall prove that P(T* < co) = 1. We get that for m € N*:

1=P,(X,, =x for somen >m+1) = pr(Xm = y)Py(T" < 00),
yelR

where for the first equality we used that P,(N* = oco) = 1, and for the second the Markov
property at time m and that Py(X,, = x for some n > 1) = P, (T" < 00). As 3 pPu(X; =
y) = 1 and Py (7" < oo) < 1, we deduce that Py (7% < oo) = 1 for all y € E such that
P.(X,, = y) > 0. Since X is irreducible, for all y € E, there exists m € N* such that
Py(Xym = y) > 0. We deduce that Py (7% < co) =1 for all y € E and thus P(T" < o0) = 1.
Then use (3.12) to get P(N* < o0) = 0. O

Remark 3.25. Let X be an irreducible Markov chain on a finite state space F. Since
> wep N® = oo and E is finite, we deduce that P(N® = oo for some z € E) = 1. This
implies that P(N* = oo) > 0 for some x € E. We deduce from Lemma 3.24 that X is
recurrent. Thus, all elements of a finite closed communicating class are recurrent. O

3.3.3 Periodicity

In Example 3.4 of the simple random walk X = (X,,,n € N), we notice that if Xy is even
(resp. odd), then X541 is odd (resp. even) and Xa, is even (resp. odd) for n € N. Therefore
the state space Z can be written as disjoint union of two sub-sets: the even integers, 27, and
the odd integers, 2Z + 1. And, a.s. the the Markov chain jumps from one sub-set to the other
one. From the Lemma 3.28 below, we see that X has period 2 in this example.

Definition 3.26. Let X be a Markov chain on E with transition matriz P. The period d of
a state x € E is the greatest common divisor (GCD) of the set {n € N*; P"(xz,x) > 0}, with
the convention that d = oo if this set is empty. The state is aperiodic if d = 1.

Notice that the set {n € N*; P"(z,z) > 0} is empty if and only if P,(7T% = c0) = 1, and
that this also implies that {z} is an open communicating class.

Proposition 3.27. Let X be a Markov chain on E with transition matriz P. We have the
following properties.

(i) If x € E has a finite period d, then there exists ng € N such that P"(x,z) > 0 for all
n > ng.

(ii) The elements of the same communicating class have the same period.

In view of (ii) above, we get that if X is irreducible, then all the states have the same
finite period. For this reason, we shall say that an irreducible Markov chain is aperiodic
(resp. has period d) if one of the states is aperiodic (resp. has period d).
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Proof. We first consider the case d = 1. Let x € E be aperiodic. We consider the non-empty
set I = {n € N*; P"(z,z) > 0}. Since P"""(z,z) > P"(x,z)P™(x,z), we deduce that I
is stable by addition. By hypothesis, there exist ni,...,nx € I which are relatively prime.
According to Bézout’s lemma, there exist ay,...,ax € Z such that 22(:1 arng = 1. We set
ny = Zle;apo agng and n_ = Zle;ak<0 |ag|ng. If n_ = 0, then we deduce that 1 € I
and so (i) is proved with ng = 1. We assume now that n_ > 1. We get that ny,n_ € I and
ny —n_ = 1. Let n > n?. Considering the Euclidean division of n by n_, we get there exist
integers r € {0,...,n_ — 1} and ¢ > n_ such that:

n=gqn_+r=qn_+r(ny —n_)=(q—r)n_+rng.

Since ¢ —r > 0 and [ is stable by addition, we get that n € I. This proves property (i) with
nog = 77/2,

For d > 2 finite, consider Q@ = P?. It is easy to check that z is then aperiodic when
considering the Markov chain with transition matrix ). Thus, there exists ng > 1, such that
for Q™(x,x) > 0 for all n > ng, that is P"¥(x, ) > 0 for all n > ng. This proves property (i).

Property (ii) is a direct consequence of property (i), (3.10) and (3.11). O

We give a natural interpretation of the period.

Lemma 3.28. Let X = (X,,,n € N) be an irreducible Markov chain on E with period d.
Then, there exists a partition (E;, i € [0,d—1]) of E such that, with the convention Eq = Ey:

P,(X1 € Eiy1) =1 forall i€]0,d—1] and x € E;. (3.13)

Proof. Since X is irreducible, we get that the period d is finite. Let xg € E. Consider the
sets B; = {z € E; there exists n € N such that P"*¢(zy,z) > 0} for i € [0,d — 1]. Since X
is irreducible, for € E there exists m € N such that P™(zo,x) > 0. This gives that z € E;
with ¢ = m mod (d). We deduce that E = Ufz_ll E;.

If x € E;() Ej, then using that P*(x,29) > 0 for some k € N, we get there exists n,m € N
such that P4+ +k (3 20) > 0 and P+ (g4, 29) > 0. By definition of the period, we
deduce that ¢ = j mod (d). This implies that E;(E; =0 if i # j and i,j € [0,d — 1].

To conclude, notice that if € Ej, that is P"¥*i(xg,z) > 0 for some n € N, and z € F
such that P(z,z) > 0, then we get that P+ +1(zg 2) > 0 and thus 2z € E;y1. This readily
implies (3.13). Since x¢ € Ey, we get that Fy is non empty. Using (3.13), we get by recurrence
that E; for ¢ € [0,d — 1]) is non empty. Thus, (E;, i € [0,d — 1]) is a partition of E. O

The next lemma will be used in Section 3.4.3.

Lemma 3.29. Let X = (Xp,,n € N) andY = (Y,,,n € N) be two independent Markov chains
with respective discrete state spaces E and F. Then, the process Z = (X, Yn),n € N) is a
Markov chain with state space E x F. If w (resp. v) is an invariant probability measure for
X (resp. Y), then 1 ®v is an invariant probability measure for Z. If X andY are irreducible
and furthermore X orY is aperiodic, then Z is irreducible on E x F.
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Proof. Let P and @ be the transition matrix of X and Y. Using the independence of X
and Y, it is easy to prove that Z is a Markov chain with transition matrix R given by
R(z,2") = P(x,2")Q(y,y’) with z = (x,y),2' = (2/,y') € E X F.

If 7 (resp. v) is an invariant measure for X (resp. Y'), then we have for z = (z,y) € Ex F":

(r@V)R(z) = > 7@ WwE)R((@,Y), (z,y) = D w@)w(y)P@,2)QW y) = meu(2).
z'eEy eF z’eEy er
Therefore the probability measure 7 ® v is invariant for Z.

Let us assume that X is aperiodic and irreducible and that Y is irreducible. Let z =
(x,y),2/ = (2',y) € Ex F. Since X and Y are irreducible, there exists ni,n2, ng € N* such
that P™"(z,2") > 0, Q"2 (y,y’) > 0 and @™*(y/,y’) > 0. Property (i) of Proposition 3.27 gives
that Pkmstm2=m1 (g o) > 0 for k € N* large enough. Thus, we get for k large enough:

Rkn3+n2 (Z, Z/) — Pkn3+n2 (LU, x/)an3+n2 (y’ y/)
> P (2, &) PP (2 a Q™2 (y, ' )Q™ (v, y')* > 0.

We deduce that Z is irreducible. We get the same result if Y is aperiodic instead of X. [

3.4 Asymptotic theorems

3.4.1 Main results

Let X = (X,,n € N) be a Markov chain on a discrete state space E. We recall the first
return time of z is given by 7% = inf {n > 1; X,, = z}. Since T® > 1, we get that E,[T*] > 1.
We set for z € E:

1
= 1]. 14
For an irreducible transient Markov chain, we recall that P,(7T% = +o0c0) > 0 and thus

E,[T%] = +o0 for all z € E, so that = = 0.

Definition 3.30. A recurrent state x € E is null recurrent if m(z) = 0 and positive recurrent
if m(x) > 0. The Markov chain is null (resp. positive) recurrent if all the states are null
(resp. positive) recurrent.

We shall consider asymptotic events whose probability depends only on the transition
matrix and not on the initial distribution of the Markov chain. This motivates the following
definition. An event A € o(X) is said to be almost sure (a.s.) for a Markov chain X =
(Xn,n € N) if P,(A) =1 for all starting state x € E of X, or equivalently P,,(A) =1 for all
initial distribution pg of Xj.

The next two fundamental theorems on the asymptotics of irreducible Markov chain will
be proved in Section 3.4.3.

Theorem 3.31. Let X = (X,,,n € N) be an irreducible Markov chain on E. Let w be given
by (3.14).

(i) The Markov chain X is either transient or null recurrent or positive recurrent.
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(ii) If the Markov chain is transient or null recurrent, then there is no invariant probability
measure. Furthermore, we have m = 0.

(i1i) For all x € E, we have:

1

The next result is specifically on irreducible positive recurrent Markov chain. The definition
of the convergence in distribution of sequence of random variables and some of its character-
ization are given in Section 7.2.1.

Theorem 3.32 (Ergodic theorem). Let X = (X,,,n € N) be an irreducible positive recurrent
Markov chain on E.

(i) The measure w defined by (3.14) is the unique invariant probability of X. (And we have
m(z) >0 for allz € E.)

(ii) For all real-valued function f defined on E such that (m, f) is well defined, we have:

1¢ 5.
=3 f(Xk) =2 (). (3.16)
n n—o0
k=1
(iii) If X is aperiodic, then we have the convergence in distribution X, % T and:
nlglolo ;5 |P"(z,y) —7(y)| =0 forallze E. (3.17)
Y

In particular for an irreducible positive recurrent Markov chain, the empirical mean or
time average converges a.s. to the spatial average with respect to the invariant probability
measure. In the aperiodic case, we also get that the asymptotic behavior of the Markov chain
is given by the stationary regime. We give the following easy to remember corollary.

Corollary 3.33. An drreducible Markov chain X = (X,,n € N) on a finite state space is
positive recurrent: m defined by (3.14) is its unique invariant probability measure, w(x) > 0
for all z € E and (3.16) holds for all R-valued function f defined on E. If furthermore X is
aperiodic, then the sequence (X,,n € N) converges in distribution towards 7.

Proof. Summing (3.15) over x € E, we get that ) __pm(z) = 1. Thus the Markov chain is
positive recurrent according to Theorems 3.31, properties (i)-(ii), and 3.32, property (i). The
remaining part of the corollary is a direct consequence of Theorem 3.32. ]

The convergences of the empirical means, see (3.16), for irreducible positive recurrent
Markov chains is a generalization of the strong law of large number recalled in Section 7.2.2.
Indeed, if X = (X,,,n € N) is a sequence of independent random variables taking values in
FE with the same distribution 7, then, X is a Markov chain with transition matrix P whose
lines are all equal to 7 (that is P(z,y) = 7(y) for all z,y € E). Notice then that P is
reversible with respect to 7. Assume for simplicity that 7(z) > 0 for all z € E so that X is
irreducible with invariant probability m. Then (3.16) corresponds exactly to the strong law
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of large numbers. By the way, the initial motivation of the introduction of Markov chains by
Markov® in 1906 was to extend the law of large number and the central limit theorem (CLT)
to sequences of dependent random variables.

Eventually notice that the limits in (3.16) or in (iii) of Theorem 3.31 does not involve
the initial distribution of the Markov chain. Forgetting the initial condition is an important
property of the Markov chains.

3.4.2 Complement on the asymptotic results

We shall state without proof some results on the CLT for irreducible positive recurrent Markov
chain and on invariant measures for irreducible null recurrent Markov chain.

On the CLT in the positive recurrent case

Similarly to the CLT for sequences of independent random variables with the same dis-
tribution, see Section 7.2.2, it is possible to provide the fluctuations associated to (3.16)
under reasonable assumptions. Let X = (X,,n € N) be an irreducible positive recurrent
Markov chain on E with transition matrix P and invariant probability measure w. Set
L(f) = 13, f(Xg) for n € N* and f a real-valued function defined on E such that
(m, f?) is finite. Thanks to Theorem 3.32, we have that a.s. lim, .« I,(f) = (7, f). Without
loss of generality, we assume that:
(71', f) =0.

As in the CLT for independent random variables, we expect the convergence in distribution
of (vnI,(f),n € N¥) towards a centered Gaussian random variable. With this idea in mind,
it is natural to consider the variance of /n I,,(f):

Var (vnI,(f)) = = Z Cov(f , f(Xe))

kﬁ 1
n n—k
_ % S Var(F(x) +2 3 Cov(F(X), f(Xrrs)
k=1 Jj=1

It is legitimate to expect that the variance of the limit Gaussian random variable is the limit
of Var (v/nI,(f)) and as the mean in time correspond intuitively to the average under the
invariant probability measure, this would be, as (m, f) = 0:

o(f)? = Ex [f2(X0)] + 2B | 3 S(X0)f(X))] = (m, /%) +2(m D /PIF). (318)
JEN* JEN*
To be precise, we state Theorems I1.4.1 and I1.4.3 from [1]. For z € E, set:
Ho(z) = Y|P (2,y) = n(y)l.
yeE

We recall that according to (3.17), if X is aperiodic then we have the ergodicity property
lim,, oo Hy(z) =0 for all z € E.

5G. Basharin, A. Langville, V. Naumov. The life and work of A.A. Markov. Linear Algebra and its
Applications, vol. 386, pp. 3-26, 2004
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Theorem. Let X be an irreducible positive recurrent and aperiodic Markov chain with invari-
ant probability measure 7. Let f be a real-valued function defined on E such that (m, f2) < +oo
and (m, f) = 0. If one of the two following conditions is satisfied:

(i) f is bounded and ), (7, Hy) < +00 (ergodicity of degree 2);
(11) limy, o0 sUp,cp Hp(z) = 0 (uniform ergodicity);
Then, o(f)? given by (3.18) is finite and non-negative, and:
d
Vi Lu(f) 2 N (0,0()?).

Usually the variance o( f)? is positive, but for some particular Markov chain and particular
function f, it may be null. Concerning the hypothesis (i) and (ii) in the previous theorem, we
also mention that uniform ergodicity implies there exists ¢ > 1 such that sup,cp Hy(z) < ™"
for large n, which in turns implies the ergodicity of degree 2. Notice that if the state space
FE is finite, then an irreducible aperiodic Markov chain is uniformly ergodic.

Based on the excursion approach developed in Section 3.4.3, it is also possible to give an
alternative result for the CLT of Markov chains, see Theorems 17.2.2, 17.4.4 and 17.5.3 in
[7]. For f a real-valued function defined on E and x € E, we set, when it is well defined:

e
Se(f) = F(Xe).
k=1

Theorem. Let X be an irreducible positive recurrent Markov chain with invariant probability
measure w. Let f be a real-valued function defined on E such that (r, f) is well defined with
(m,f) = 0. Let x € E such that E,[S;(1)?] = E.[(T*)?] < +o00 and E,[S(|f])?] < +oo (so
that Sy(f) is a.s. well defined). Set

o' (f)? = m(2)Es [S:(f)?] - (3.19)
Then, we have that:

VL) =% N (0,0'()?).

Furthermore (3.19) holds for all x € E.

An other approach is based on the Poisson equation. Assume (7, |f]) is finite. We say
that a R-valued function f is a solution to the Poisson equation if Pf is well defined and:

f-Pf=f—(m 1) (3.20)

Theorem. Let X be an irreducible positive recurrent Markov chain with invariant probability
measure w. Let f be a real-valued function defined on E such that (7, |f|) < +o0 and (7, f) =
0. Assume there exists a solution f to the Poisson equation such that (m, f?) < +o00. Set

(1) = (v /2= (P)?). (3.21)
Then we have that:
VIL(f) = N (0,0"(1)?)

Of course, the asymptotic variances given by (3.18), (3.19) and (3.21) coincide when the
hypothesis of the three previous theorem hold. This is in particular the case if E is finite
(even if X is periodic).
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More on the null recurrent case

It is possible to have more precise ergodic results for irreducible null recurrent Markov chains,
but with less natural probabilistic interpretation.

Let v be a measure on E such that v # 0 and v(x) < +oo for all z € E. We say that v is
an invariant measure for a stochastic matrix P if vP = v. This generalizes Definition 3.15.
It can be proved that if X is an irreducible positive recurrent Markov chain, then the only
invariant measures are Aw where 7 is the invariant probability measure and A > 0.

Let X = (X,,,n € N) be a Markov chain. For x € E, we define the measure v, by:

TfL'
v.(y) =E, [Z 1{Xk=y}] fory € E.
k=1

Notice the measure v, is infinite as (v, 1) = E4[T7%] = +00. According to [2, 1, 4], we have
the following results.
Theorem. Let X = (X,,n € N) be a Markov chain with transition matrix P. If x is

recurrent then v, is an invariant measure for P.
If furthermore X is irreducible null recurrent, then we get the following results:

(i) The measure v, is the only invariant measure (up to a positive multiplicative constant)
and vy(y) >0 for ally € E. And for all y,z € E, we have vy(z) = vy(2)/vz(y).

(ii) For all R-valued functions f,g defined on E such that (v, f) is well defined and g is
non-negative with 0 < (v, g) < 400, we have:

ZZ:l f(Xk) a.s. (Vv f) .
> oh=1 9(Xg) noeo (v,9)
(iii) We have lim,,_, - P(X, =y) =0 for ally € E.

For irreducible transient Markov chain, there is no simple answer on the existence or
uniqueness of invariant measure, see the two exercises below; furthermore notice that the
sum Y, 1(x,—z} is constant for large n and that lim, e P(X, =x)=0forallx € E.

3.4.3 Proof of the asymptotic theorems

Let X = (X,,n > 0) be an irreducible Markov chain on a discrete state space E, with
transition matrix P. Recall the measure 7 defined by (3.14). The next lemma insures that if
there exists an invariant probability measure, then it has to be .

Lemma 3.34. Let X be an irreducible Markov chain. If (3.15) holds and v is an invariant
probability measure, then we have v = .

Proof. Assume that v is an invariant probability measure. Since the left hand-side member
of (3.15) is bounded by 1, using dominated convergence and taking the expectation in (3.15)
with v as initial distribution of X, we get that for all x € E:

n—oo

%Zyp’f(x) — s ().
k=1

Since v is invariant, we get vP¥ = v. We deduce that v(x) = r(z) for all z € E. O
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The next results is on transient Markov chains.

Lemma 3.35. Let X be an irreducible transient Markov chain. We have: m = 0, (3.15)
holds and X has no invariant probability measure.

Proof. Property (ii) of Proposition 3.23 implies that 7 = 0 and that ),y 1{x,—s} = N7 is
a.s. finite. We deduce that (3.15) holds. Then use that 7 = 0 and Lemma 3.34 to deduce
that X has no invariant probability measure. O

From now on we assume that X is irreducible and recurrent.

Let z € F be fixed. Lemma 3.24 gives that a.s. the number of visit of z is a.s. infinite.
We can thus define a.s. the successive return times to x. By convention, we write 7j = 0
and for n € N:

Ty =inf{k > T7; X}, = x}.

We define the successive excursions (Y, n € N*) out of the state x as follows:

Yo =Ty — o, Xre_ s Xre_ 41,0, X12). (3.22)
The random variable Y, describes the n-th excursion out for the state xz. Notice that x is
the end of the excursion, that is X7s = x, and for n > 2 it is also the starting point of the
excursion as X7z = x. So Y, takes values in the discrete space B = Ugen-{k} x E* x {z}.
The next lemma is the key ingredient to prove the asymptotic results for recurrent Markov
chains.

Lemma 3.36. Let X be an irreducible recurrent Markov chain. The random wvariables
(Yn,n € N*) defined by (3.22) are independent. And the random variables (Yn,n > 2) are all
distributed as Y1 under P,.

Proof. For y = (r,x0,...,2,) € E™ we set ty = r the length of the excursion and we recall
that the end point of the excursion is equal to x: x, = z . We shall first prove that for all
neN* yi,...,yn € B we have:

n

P(Y1=y1,.., Yo =yn) =P(V1 = 1) [[ P (V1 = ws)- (3.23)
k=2

For n =1 and y; € E' Equation (3.23) holds trivially. Let n > 2 and y1,...,y, € E%%.
On the event {Y1 = y1,...,Yn—1 = yn—1}, the time s = 22;11 ty, is the end of the n — 1-th
excursion, and at this time we have Xy = z as all the excursions end at state x. Using the
Markov property at time s and that Xs =2z on {Y1 = y1,...,Yh—1 = yn—1}, we get that:

]P)(Yl =Y1,.-- 7Y’I’L = yn) = IP)(}/l =Yi,--- 7Yn—1 = yn—l)Px(Yi = yn)

Then, we get (3.23) by induction. Use Definition 1.31 and (3.23) for any n € N* and
Y1, .., yn € ET to conclude. O

We will now prove (3.15) for irreducible recurrent Markov chains. This and Lemma 3.35
will give property (iii) from Theorem 3.31.
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Proposition 3.37. Let X be an irreducible recurrent Markov chain. Then (3.15) holds.

Proof. Let x € E be fixed. Since T7 = TF + > p_o(TF — T7F ), with T a.s. finite by
Lemma 3.24, and (T}} — T} _,n > 2) are, according to Lemma 3.36, independent positive
random variables distributed as T under P,, we deduce from the law of large number, see
Theorem 7.15, that:

T.’E

oo 2 R [T7). (3.24)

n  n—oo

We define the number of visit of z from time 1 to n € N*:

n
NE=>"1{x,—0}- (3.25)
k=1

By construction, we have:

Ty <1 < Thess. (3.26)

NY NY+1 NP NF

This gives Nz "+ . T%mtl < 7" < TKZ . Since x is recurrent, we get that a.s. lim, oo NY =
+o0o. We deduce from (3.24) that a.s. lim,—oo NF/n = 1/E,[T*] = n(z). O

Next lemma and property (iii) of Proposition 3.23 give property (i) of Theorem 3.31.

Lemma 3.38. Let X be an irreducible recurrent Markov chain. Then, it is either null
recurrent or positive recurrent.

Proof. Let x € E. Notice the left hand-side of (3.15) is bounded by 1. Integrating (3.15)
with respect to P, we get by dominated convergence that lim,, o % > ory P*(z,z) = 7(x).
Since X is irreducible, we deduce from (3.11), that if the above limit is zero for a given z, it
is zero for all z € E. This implies that either 7 =0 or 7(z) > 0 for all z € E. O

The proof of the next lemma is a direct consequence of Lemma 3.34 and the fact that
7w = 0 for irreducible null recurrent Markov chains.

Lemma 3.39. Let X be an irreducible null recurrent Markov chain. Then, there is no
tnvariant probability measure.

Lemmas 3.35 and 3.39 imply property (ii) of Theorem 3.31. This ends the proof of
Theorem 3.31.

The end of this section is devoted to the proof of Theorem 3.32. From now on we assume
that X is irreducible and positive recurrent.

Proposition 3.40. Let X be an irreducible positive recurrent Markov chain. Then, the
measure 7 defined in (3.14) is a probability measure. For all real-valued function f defined
on E such that (7, f) is well defined, we have (3.16).

Proof. Let x € E. We keep notations from the proof of Lemma 3.36. Let f be a finite
non-negative function defined on E. We set for y = (r,zq, ..., z,) € E"a:

F(y)=>_ flaw).
k=1



3.4. ASYMPTOTIC THEOREMS 59

According to Lemma 3.36, the random variables (F'(Y;,),n > 2) are independent non-negative
and distributed as F(Y]) under P,. As F(Y7) is finite, we deduce from the law of large num-
ber, see Theorem 7.15, that a.s. limy, e 2 >3 F(Y}) = E,[F(Y7)]. Since Zﬁl f(X;) =
Y peq F(Y%), we deduce from (3.24) that:

Ty n
2 SR = 2 S RV S () B F (V)]
no=1 m

n—00
k=1

Recall that TR, <n < TX.., from (3.26). Since f is non-negative, we deduce that:

Z 41

TE . T .

TRe 1 A 1 TRer 1 XK
" fXi) < =) f(Xi) < — f(Xi).
TNy TNy = Z ”; l TN: TNzt ; Z

Since a.s. lim,_,o NZ =

& = 400, limy, 00 T}y = +00 and limy, 10 T)7 /T}7, | = 1, see (3.24), we
deduce that:

DS 2 (@B F (Y] (3.27)
=1

Taking f = 1y, in the equation above, we deduce from (3.15) that:

-
w(y) = m(2)E, [Z 1{Xk:y}] (3.28)
k=1

Summing over y € E, we get by Fubini’s theorem that }_ pm(y) = m(z)E;[T*] = 1. This
gives that 7 is a probability measure. By Fubini’s theorem, we deduce from (3.28) that:

"
H(@EF0)] = 3 F@)r @B | Y Lxmyy| = 2 F@)n(y) = (7. £).
k=1

yekE yekE

Using then (3.27), we deduce that (3.16) holds when f is finite and non-negative. If f
is non-negative but not finite, the result is immediate as N, = oo a.s. for all x € E and
(m, f) = 4+o0. If f is real-valued such that (m, f) is well defined, then considering (3.16) with
f replaced by fT and f~, and making the difference of the two limits, we get (3.16). O

Next Proposition and Proposition 3.40 give properties (i) and (ii) of Theorem 3.32.

Proposition 3.41. Let X be an irreducible positive recurrent Markov chain. Then, the
measure 7 defined in (3.14) is the unique invariant probability measure.

Proof. According to Proposition 3.40, the measure 7 is a probability measure. We now check
it is invariant. Let p be the distribution of Xy. We set:

fn(r) = = 3" uPH().
k=1

By dominated convergence, taking the expectation in (3.15) with respect to P,, we get
limy, o0 fin(z) = w(x) for all x € E. Similarly, using (3.16) with f bounded, we get that

hmn—ﬂ)o(:an: f) = (777 f)
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Let y € E be fixed and f(-) = P(-,y). We notice that lim, o (fin, f) = (7, f) = 7P(y)
and that (fin, f) = EnP(y) = “h,41(y) — L pP(y). Letting n goes to infinity in those
equalities, we get that mP(y) = m(y). Since y is arbitrary, we deduce that 7 is invariant. By
Lemma 3.34, this is the unique invariant probability measure. O

The next proposition and Lemma 7.14 give property (iii) from Theorem 3.32. Its proof
relies on a coupling argument.

Proposition 3.42. An irreducible positive recurrent aperiodic Markov chain converges in
distribution towards its unique invariant probability measure.

Proof. Let X = (X,,,n € N) be an irreducible positive recurrent aperiodic Markov chain. Re-
call that 7 defined in (3.14) is its unique invariant probability measure. Let Y = (Y;,,n € N)
be a Markov chain independent of X with the same transition matrix and initial distribution
7. Thanks to Lemma 3.29, the Markov chain Z = ((X,,,Y,),n € N) is irreducible and it has
7 ® 7 has invariant probability measure. This gives that Z is positive recurrent.

Let z € E and consider T = inf{n > 1; X,, =Y,, = z} the return time of Z to (x,z). For
y € E, we have:

PX,=y)=PX,=y,T<n)+PX,=y,T>n) <P(X,=y,T <n)+P(T >n).

Decomposing according to the events {T" = k} for k € N*, and using that X3 = x = Y} on
{T = k}, that X and Y have the same transition matrix, as well as the Markov property at
time k, we get that P(X,, =y, T <n) =P(Y,, =y,T <n). Thus, we obtain:

P(X, =y) <P(Y, =y, T <n)+P(T > n) <P, =y)+P(T > n).
By symmetry we can replace (X, Y,) in the previous inequality by (Y;,, X,,) and deduce that:
IP(Xn =y) —P(Yn =y)| <P(T > n).

Since Z is recurrent, we get that a.s. 7T is finite. Using that P(Y,, = y) = n(y), as 7 is
invariant and the initial distribution of Y, we deduce that lim, . |[P(X, =y) —7(y)] = 0
for all y € E. Then, use Lemma 7.14 to conclude. O

3.5 Examples and applications

In this section, we give some well known examples of Markov chains.

Random walk on Z¢

Let d € N*. Let U be a Z%valued random variables with probability distribution p =
(p(z) = P(U = z),z € Z%). Let (U,,n € N*) be a sequence of independent random variables
distributed as U, and Xy a Z%valued independent random variable. We consider the random
walk X = (X,,n € N) with increments distributed as U defined by:

n
Xn:X0+ZUk for n € N*,
k=1
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The transition matrix P of X is given by P(x,y) = p(y — x). We assume that X is ir-
reducible (equivalently the smallest additive sub-group of Z¢ which contains the support
{z € Z% p(z) > 0} is Z%). Because >, 74 P(x,y) = 1, we deduce that the counting measure
on Z% is invariant. (According to Section 3.4.2, this implies that irreducible random walks
are transient or null recurrent.) We refer to [8, 6] for a detailed account on random walks.

The simple symmetric random walk corresponds to U being uniform on the set of cardinal
2d: {x € 74 |z| = 1}, with |z| denoting the Euclidean norm on R?. Tt is irreducible with
period 2 (as P%(x,z) > 0 and by parity P?"*!(x,z) = 0 for all n € N).

We summarize the main results on transience/recurrence for random walks, see [8] The-
orem 8.1.

Theorem. Let X be an irreducible random walk on Z with increments distributed as U. We
have the following results:

(i) Ifd =1, U € L' and E[U] =0, then X is null recurrent.
(i) If d =2, U € L? and E[U] = 0, then X is null recurrent.

(i1i) If d = 3, then X is transient.

Metropolis-Hastings algorithm

Let 7w be a given probability distribution on E such that 7(z) > 0 for all x € E. The aim
of the Metropolis-Hastings® algorithm is to simulate a random variable with distribution
(asymptotically close to) .

We consider a stochastic matrix  on E which is irreducible (that is for all z,y € E,
there exists n € N* such that Q"(x,y) > 0) and such that for all z,y € E, if Q(z,y) = 0 then
Q(y,x) = 0. The matrix @ is called the selection matrix.

We say a function p = (p(z,y); x,y € E such that Q(x,y) > 0) taking values in (0, 1] is
an accepting probability function if for x,y € E such that Q(z,y) > 0, we have:

pz,y)m(2)Q(x,y) = p(y, z)m(y)Qy, ©). (3.29)
An example of an accepting probability function is given by:

pla,y) =~ <:(Z)gg z;

()

where 7 is a function defined on (0, +00) taking values in (0, 1] satisfying v(u) = uy(1/u) for
u > 0. A common choice for 7 is y(u) = min(1, u) (Metropolis algorithm) or v(u) = u/(14u)
(Boltzmann or Barker algorithm).

> for z,y € E such that Q(z,y) > 0, (3.30)

We now describe the Metropolis-Hastings algorithm. Let Xy be a random variable on
FE with distribution pg. At step n + 1, the random variables X, ..., X, are defined, and
we explain how to generate X, 1. First consider a random variable Y, 1 with distribution
Q(Xy, ). With probability p(X,, Y,+1), we accept the transition and set X,,41 = Yy, 41. If the

SW. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
vol. 57, pp.97-109, 1970.
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transition is rejected, we set X, 11 = X,,. By construction X = (X,,n € N) is a stochastic
dynamical system and thus a Markov chain. Its transition matrix is given by, for z,y € E:

Qr,y)p(z,y)  ifxFy,
1=3 .. Pl,z) ifz=y.

Since p > 0, we have that Q(z,y) > 0 implies P(z,y) > 0 and, for x # y, that Q(z,y) > 0
is equivalent to P(z,y) > 0. We deduce that X is irreducible as @ is irreducible. Condition
(3.29) implies that X is reversible with respect to the probability 7. Thus, the Markov chain
is irreducible recurrent positive with invariant probability w. Let f be a real-valued function
f defined on E, such that (7, f) is well defined. An approximation of (7, f), is according to
Theorem 3.31, given by £ S°7 | f(X}) for n large. The drawback of this approach is that it
does not come with a confidence interval of (7, f). If furthermore either @ is aperiodic or
there exists z,y € E such that Q(z,y) > 0 and p(z,y) < 1 so that P(z,z) > 0, then the
Markov chain X is aperiodic. In this case, Theorem 3.32 implies then that X converges in
distribution towards 7.

P(Ji,y) = {

It may happens that 7 is known up to a normalizing constant. This is the case of the
so called Boltzmann or Gibbs measure in statistical physics for example, where E is the
state space of a system, and the probability for the system to be in configuration = € F is
7(z) = Z; exp(—H(x)/T), where H(x) is the energy of the system in configuration x, T
the temperature and Z7 the normalizing constant. It is usually very difficult to compute an
approximation of Zp.

When using the accepting probability function given by (3.30), then only the ratio
m(xz)/m(y) is needed to be computed to simulate X. In particular, the simulation does not
rely on the value of Zp.

Wright Fisher model

The Wright-Fisher model for population evolution has been introduced by Fisher in 19227
and Wright® in 1931. Consider a population of constant size N with individuals with one
time unit of lifetime and which reproduce at each unit of time. We assume the reproduction
is random, and there is no mating (each individual can have children). More formally, if
Y™ € [1,N] is the parent of individual ¢ at generation n € N* alive at generation n — 1,
then the random variables (Y;"™,i € [1, N],n € N) are independent uniformly distributed
on [1, N]. Intuitively, each child chooses independently and uniformly its parent.

We assume that individuals may be either of type A or type a, and that a child inherit
the type from its parent. Let X, be the number of the individuals at time n of type A. By
construction X = (X,,n € N) is a Markov chain on Ex = [0, N]. Conditionally on X,,
each child at generation n + 1 has probability X,,/N to be of type A. Thus the distribution
of X,+1 has conditionally on X,, a binomial distribution with parameter (X, /N, N). The
transition matrix Py is thus given by:

N N .\ N—j
Pn(i,j) = (J) (J;) (1 - ;[) for i,j € Ey.

"R. A. Fisher. On the dominance ratio. Proc. Roy. Soc. Edinburgh, vol. 42, pp. 321-341, 1922.
8S. Wright. Evolution in Mendelian populations. Genetics, vol. 16, pp.97-159, 1931.
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Notice that 0 and N are absorbing state, and that {1,..., N — 1} is an open communicating
class. The quantity of interest in this model is the extinction time of the diversity (that is
the entry time of {0, N'}):

v = inf{n > 0; X,, € {0, N}},

with the convention inf ) = co. Using martingale techniques developed in Chapter 4, one can
easily prove the following result.

Lemma 3.43. A.s. the extinction time Ty is finite and P(X., = N|Xo) = Xo/N.

It is interesting to study the mean extinction time ty = (ty(i); i € Eyn) defined by
tn (i) = Ei[rn]. We have ty(0) =tn(N) =0 and fori € {1,...,N —1}:

tn(i) = Z Ei[tnlix, =]

JEEN
=1+ Z E; [inf{n > 0; X,y1 € {0, N}} 11x, ]
JEEN
=1+ Z E;[mn]Pi (X1 = j)
JEEN
=1+ PNtN(i)7

where we used the Markov property at time 1 for the third equality. As 0 and N are absorbing
state, we have ty(i) = Pty(i) = 0 for i € {0, N}. Let eg (resp. en) denote the element
of RN*1 with all entries equal to 0 but for the first (resp. last) which is equal to 1, and
1=(1,...,1) € RN+ We have:

ty =Pnty+1—¢9g—en.

So to compute ty, one has to solve a linear system. For large N, we have the following result?
for z € [0,1]:
< E\ng 7] —— —2(xlog(z) + (1 — x)log(l — x)).

N n—oo

where | z] is the integer part of z € R. We give an illustration of this approximation in Figure
3.3.

Ehrenfest urn model

The Ehrenfest!'® model has been introduced in 1907 to describe some “paradoxes” in statistical
physics. We consider N particles in two identical containers. A each discrete time, we take
one particle at random and move it to the other container. Let X, denote the number of
particles in the first container at time n, X being the initial configuration. The sequence
X = (X,,n € N) represents the evolution of the system. The equilibrium states should
concentrate about half of the particles in each container. In this model one container being
empty is possible, but almost unobserved. We shall explain this situation using results on

9W. J. Ewens. Mathematical population genetics. Springer-Verlag, second edition, 2004.
10T Ehrenfest and P. Ehrenfest. The conceptual foundations of the statistical approach in mechanics.
Cornell Univ. Press, 1959.
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Figure 3.3: Mean extinction time of the diversity (k — Eg[7n]) and its continuous limit,
Nz — —2N (zlog(x) + (1 — z)log(l — z)), for N = 10 (left) and N = 100 (right).

Markov chains''. By construction, as all the particles play the same role, the process X is

a Markov chain on E = [0, N] with transition matrix P given by P(k,¢) = 0 if |k — ¢ # 1,
P(k,k+1) = (N —k)/N and P(k,k — 1) = k/N for k,¢ € E. We deduce the Markov
chain X is irreducible. Notice that X is reversible with respect to the binomial distribution
mn = (nn(k), k € E), where my(k) = 2_N(]IX) for k € E. To see this, it is enough to check
that mx(k)P(k,k+ 1) = nn(k+ 1)P(k + 1,k) for all k € [0, N —1]. For k € [0, N — 1], we
have:

o (k)P(k k1) = 27N @[) % _ 9N <ki\: 1) L;l — mn(k+ Pk + 1, k).
According to Lemma 3.18 and Theorem 3.32, we deduce that my is the unique invariant
probability measure of X. Let a > 0 and define the interval I, y = [(N 4 av/N)/2]. We also
get that the empirical mean time n ! pya 1{x,e1, v} Spent by the system in the interval
I, N converges a.s., as n goes to infinity, towards my (I, n). Thanks to the CLT, we have
that 7 (I,,n) converges, as N goes to infinity, towards P(G € [—a, a]) where G ~ N (0,1) is
a standard Gaussian random variable. For a larger than some units (say 2 or 3), this latter
probability is close to 1. This implies that it is unlikely to observe values away from N/2
by some units time v N. Using large deviation theory for the Bernoulli distribution with
parameter 1/2, we get that for € € (0,1):

%log(ﬂN([O,N(l ~)/2) —— ~(1+2)log(1 +) — (1 - <) log(1 —<).

Thus the probability to observe the values from the N/2 further by some small units time N
decrease exponentially fast towards 0 as N goes to infinity.
For k,0 € E, let t;, = Ey, [T*] be the mean of the return time to ¢ starting from k. Set
No = |N/2]. Using (3.14) and Stirling formula, we get:
1

1
~\/TN/2 and tog= —— =2V,
N (No) / 00~ Tn

Notice that tg and ty,, n, are not of the same order.

NNy =

11§ Karlin and J. McGregor. Ehrenfest urn models. J. Appl. Probab, vol. 2, pp. 352-376, 1965
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We are now interested in the mean of the return time from 0 to Ny and from 0 to Np.
Let ¢ > 2. By decomposing with respect to X1, we have ty_;, =14 (({ —1)/N)t;_2, and
for k € [0,¢ —2]:

k N -k
tpe =1+ Ntk—LZ + Ttk-i-l,K-

Then, using some lengthy computations, we get by recurrence that for 0 < k < ¢ < N:
N [ldu
tre = 2/ o 1—uw)V A+ w* |1 +u)F =1 —w)F],
0

We then deduce that: N
t07N0 ~ Zlog(N) and tNo,O ~ 2N.

This is another indication that one sees mostly the process around Ny than around 0. Notice
the mean time to reach an equilibrium starting from 0 is about N log(N)/4. In fact, one can
show a cut-off phenomenon'?: starting from any initial distribution, one needs at most about
Nlog(N)/4 steps to be close to the invariant measure.

Queuing and stock models

Queuing theory goes back to A. Erlang!® in 1909 whose work was motivated by telephone
exchanges. Since then, this domain has known a huge amount of work. We shall consider a
toy example in discrete time. We consider Y;, the size of the queue at the end of the service
of the n-th client, with initial state Y. We have Y, 11 = (Y, — 1+ V,,11)", where V,, 11 is the
number of clients who arrived during the service of the n-th client. The random variables
(Vn,n € N*) are assumed to be independent with the same distribution and independent of
Yo, so that (Y;,,n € N) is a Markov chain on N. More generally, we can consider the Markov
chain X = (X,,,n € N) on N defined as a stochastic dynamical system, for n € N:

Xnt1 = (Xn + Un+1)+a (3'31)

where the innovation (U,,n € N*) is a sequence of Z-valued independent random variables
with the same distribution and independent of X. Notice this Markov chains is also a model
for the evolution of a stock, with U,, being the delivery minus the consummation at time n.
This process is also called the Lindley process .

The next lemma gives some criterion for the transience or recurrence for X.

Lemma. Let X = (X,,n € N) be a Markov chain defined by (3.31). We assume that
Uy € L', P(U; >0) >0, P(U; <0) >0 and X is irreducible.

1. IfE[U4] > 0, then X is transient.
2. If E[U1] = 0 and Uy € L2, then X is null recurrent.

3. If E[U;] <0, then X s positive recurrent.

12G.-Y. Chen and L. Saloff-Coste. The L2-cutoff for reversible Markov processes. J. Funct. Analysis, vol.
258, pp. 2246-2315, 2010.

13A. Erlang. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B, vol.
20, pp. 33-39, 1909.

148, Asmussen. Applied Probability and Queues. Springer-Verlag, 2003.
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Chapter 4

Martingales

In all this chapter, we consider (€2, F,P) a probability space and F = (F,, n € N) a filtration.
We also set Foo = Ve Fn- We say a process H = (Hp,n € N) is i) F-adapted if H, is
Fn-measurable for all n € N; ii) integrable if H,, is integrable for all n € N; iii) bounded if
sup,en |Hn| is a.s. bounded. Those definitions are extended in an obvious way to processes
indexed by N instead of N. We say a process H = (H,,n € N*) is F-predictable if H,, is
Fn_1-measurable for all n € N*.

In Section 4.1, we define random times called stopping times and their associated o-field.
That allows to extend the Markov property of Markov chains to the stopping times, which
is the so-called strong Markov property. Section 4.2 is devoted to the definition and first
properties of the martingales (and super-martingales and sub-martingales). Martingales are
a powerful tool to study processes in particular because of the maximal inequalities, see
Section 4.3, and the convergence results, see Sections 4.4 and 4.5.

The presentation of this chapter follows closely [1], see also [2] for numerous applications.

4.1 Stopping times

Stopping times are random times which play an important role in Markov process theory and
martingale theory.

Definition 4.1. An N-valued random variable T is an F-stopping time if {T < n} € F, for
alln € N.

From the definition above, notice that if 7 is an F-stopping time, then {7 = oo} = (), {7 <
n}¢ belongs to Feo.

When there is no ambiguity on the filtration F, we shall write stopping time instead of
F-stopping time. It is clear that the integers are stopping time.

Ezample 4.2. For the simple random walk X = (X,,,n € N), see Example 3.4, and F the
natural filtration of X, it is easy to check that the return time to 0, T = inf{n > 1; X,, = 0},
with the convention that inf ) = 400, is a stopping time. It is also easy to check that 79 — 1
is not a stopping time. A

In the next lemma, we give equivalent characterization of stopping times.

71
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Lemma 4.3. Let 7 be a N-valued random variable.
(i) T is a stopping time if and only if {T > n} € F, for all n € N.
(ii) T is a stopping time if and only if {T =n} € F, for alln € N.

Proof. Use that {r > n} = {7 <n}¢ to get (i). Use that {r =n} ={r <n}{r <n-1}°
and that {7 <n} = Jp_o{7 = k} to get (ii). O

We give in the following proposition some properties of stopping times.

Proposition 4.4. Let (1,,n € N) be a sequence of stopping times. The random variables
SUP,eN Tn, iMfpen Tn, limsup,, .o, 7» and liminf,, .. 7, are stopping times.

Proof. We have that {supgey 7 < n} = (Nyeni < n} belongs to F, for all n € N as 7, are
stopping time for £ € N. This proves that sup,cy 7% is a stopping time. Similarly, use that
{infren 71 < n} = Upen{me < n} to deduce that infrey 74 is a stopping time.

Since stopping time are N-valued random variables, we get that {limsup,_,., 7x < n} =
Umen Ne>mim < n} for n € N. This last event belongs to F,, as 73 are stopping times for
k € N. We deduce that lim sup;,_, . 7% is a stopping time. Similarly, use that {lim infy_, . 7% <
n} = ey Upsm ik < n} for n € N to deduce that liminfy_, 7 is a stopping time. O

It is left to the reader to check that the o-field F, in the next definition is indeed a o-field
and a subset of F.

Definition 4.5. Let 7 be a F-stopping time. The o-field F; of the events which are prior to
a stopping time 7 is defined by:

Fr={BeFx; BN{r=n}eF, forall neN}.

Clearly, we have that 7 is F;-measurable.

Remark 4.6. Consider X = (X,,,n € N) a Markov chain on a discrete state space E with its
natural filtration F = (F,,n € N). Recall the return time to = € E defined by 7% = inf{n >
1; X,, = z} and the excursion Y; = (7%, Xy, ..., X7=) defined in section 3.4.3. It is easy to
check that T is an F-stopping time and that Fr= is equal to o(Y7). Roughly speaking the
o-field Fr= contains all the information on X prior to T*. O

We give an elementary characterization of the F,-measurable random variables.

Lemma 4.7. Let Y be a Fo-measurable real-valued random variable and T a stopping time.

(i) The random variable Y is Fr-measurable if and only if Y1(_py is Fn-measurable for
alln € N.

(ii) If E[Y] is well defined, then we have that a.s.:
E[Y|Fr]l =) 14—ny E[Y| Fl. (4.1)
neN

Proof. We prove (i). Set Y,, = Y1,_,;. We first assume that Y is F,-measurable and we
prove that Y, is F,-measurable for all n € N. If Y = 15 with B € F,, we clearly get that
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Y, is Fp-measurable for all n € N by definition of F.. It is then easy to extend this result to
any Fao-measurable random variable which takes finitely different values in R, and then to
extend to any JF..-measurable real-valued random variable Y by considering any sequence of
random variables (Y* k € N) which converges to Y and such that Y* is F,-measurable and
takes finitely many values in R (for example take Y* = 27%| 2FY | Lyvi<ky + Y1y |=to0})-

We now assume that Y,, is F,-measurable for all n € N and we prove that Y is F,-
measurable. Let A € B(R) and set B = Y~1(A). Notice that B belongs to Fo as Y is
Foo-measurable. First assume that 0 ¢ A. In this case, we get BN {7 = n} = Y, 1(A)
and thus BN {r = n} € F, for all n € N. This gives B € F,. If 0 € A, then uses that
B=Y"1(4) = (Y"1(A%)° to also get that B € F,. This implies that Y is F,-measurable.
This ends the proof of (i).

We now prove (ii). Assume first that Y > 0 and set:

Z = E[Y|Fullireny

neN

Since Y is Foo-measurable, we also get that Y1, is Foo-measurable. Thus, we deduce
from (i) that Z is Fr-measurable. For B € F., we have:

Z]'B Z E Y’ "T; 1{7‘ n}ﬂB Z E [Yl{T:n}ﬂB] =E [Y]'B] )
neN neN

where we used monotone convergence for the first equality, the fact that {7 = n} N B belongs
to F,, and (2.1) for the second and monotone convergence for the last. As Z is F,-measurable,
we deduce from (2.1) that a.s. Z = E[Y|F;].

Then consider Y a F-measurable real-valued random variable. Subtracting (4.1) with
Y replaced by Y~ to (4.1) with Y replaced by Y ' gives that (4.1) holds as soon as E[Y] is
well defined. O

Definition 4.8. Let X = (X,,,n € N) be a F-adapted process and T a F-stopping time. The
random variable X, is defined by:

Xr =) Xnli—n.

neN

This definition is extended in an obvious way when 7 is an a.s. finite stopping time and X
a process indexed on N instead of N. By construction the random variable X, from Definition
4.8 is Fr-measurable. We can now give an extension of the Markov property, see Definition
3.2, when considering random times. Compare the next proposition with Corollary 3.12.

Proposition 4.9 (Strong Markov property). Let X = (X,,,n € N) be a Markov chain with
respect to the filtration F = (F,,n € N), taking values in a discrete state space E and with
transition matrix P. Let 7 be a F-stopping time a.s. finite and define a.s. the shifted process
X = (Xk = X,1k,k € N). Conditionally on X, we have that F. and X are independent
and that X is a Markov chain with transition matriz P, which means that a.s. for all k € N,
all xg,...,xp € E:
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P(XO :[EQ,...,Xk = Tk ’ ]:7—) :P(X():J}o,...,)zk = T ‘ XT)

k
= 1{X7—=I0} HP(I’j_l,JL‘j). (42)
j=1

Proof. Let B € F,, k€ Nand zg,...,zy € E. We first compute:

In = E |:1Bl{X0:x0""’Xk:1'k} ’ fn] 1{7_:”}‘
We have, using that BN {r = n} € F,, and the Markov property at time n:

I, =E [1Bﬂ{7’:n}l{Xn:xo,...,Xn+k:wk}| ]:n] = lBﬂ{T:n} H(Xn)a
where for z € E:
k—1

H(:C) = PSE(XO =Z0,---, Xk = .’Ek) = 1{1:%0} H P(J?“ xi-i—l)‘ (43)
=0

-----

Then, taking the expectation conditionally on X, we deduce that:
E |15y sgu.. ey X7 ] = P(BIXr) H(X). (4.4)

Since this holds for all B € F;, k € Nand zg, ...,z € F, we get that conditionally on X, F-
and X are independent. Take B = Q in (4.4) to get P(Xo = xo, ..., X = x| X;) = H(X,)
and use the definition (4.3) of H to conclude that X is conditionally on X, a Markov chain
with transition matrix P. Take B = Q in the previous computations to get (4.2). O

Using the strong Markov property, it is immediate to get that the excursions of a recurrent
irreducible Markov chain out of a given state are independent and, but for the first one, with
the same distribution, see the key Lemma 3.36.

We end this section with the following lemma.
Lemma 4.10. Let 7 and 7’ be two stopping times.
(i) The events {T < 7'}, {T =7} and {r > 7'} belongs to F, and F..
(it) If B € F;, then we have that BN {1 < 7'} belongs to F,r.
(111) If T < 7', then we have Fr C Fy.

Proof. We have {7 < 7}n{r =n} = {r = n}Nn{r’ > n} which belongs to F,, as {7 = n} and
{7" > n} belong already to F,,. Since this holds for all n € N, we deduce that {T < 7'} € F..
The other results of property (i) can be proved similarly.

Let B € F,. This implies that B N {r < n} belongs to F,,. We deduce that BN {7 <
7N {7 =n} = Bn{r <n}Nn{r = n} belongs to F,. Since this holds for n € N, we get
that BN {r < 7'} € Fs. This gives property (ii).

Property (iii) is a direct consequence of property (ii) as {7 < 7'} = Q. O

Remark 4.11. In some cases, it can be convenient to assume that Fy contains at least all the
P-null sets. Under this condition, if a N-valued random variable is a.s. constant, then it is
a stopping time. And, more importantly, under this condition, property (iii) of Lemma 4.10
holds if a.s. 7 < 7. O
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4.2 Martingales and the optional stopping theorem

Definition 4.12. A real-valued process M = (My,n € N) is called an F-martingale if it is
F-adapted, integrable and for all n € N a.s.:

E[M, 11| Fp] = M,. (4.5)

If (4.5) is replaced by E[My41| Fn] > My, then M is called an F-sub-martingale.
If (4.5) is replaced by E[Mp11| Fpn] < M, then M is called an F-super-martingale.

Quoting [1]: “A super-martingale is by definition a sequence of random variables which
decrease in conditional mean. For a sequence (M,,n € N) of non-negative random variables
denoting the sequence of values of the fortune of a gambler, the super-martingale condition
express the property that at each play the game is unfavorable to the player in conditional
mean. On the other hand, a martingale remains constant in conditional mean and, for the
gambler, corresponds to a game which is on the average fair”.

When there is no possible confusion, we omit the filtration; for example we write mar-
tingale for F-martingale. See [1], for a theory of super-martingales which are non-negative
processes instead of integrable.

Ezample 4.13 (Random walk in R). Let (U,,n € N*) be independent integrable real-valued
random variables with the same distribution. We consider the random walk X = (X,,n € N)
defined by Xo = 0 and X, = Y ;_, Uy for n € N*. Let F = (F,, n € N) be the natural
filtration of the process X. If E[U;] < 0, then X is a super-martingale. If E[U;] = 0, then X
is a martingale.

Assume that U has all its exponential moments (that is E[exp(AU;)] < +oo for all A € R),
and define p(\) = log (E [eAUl]) for A € R. Let A € R be fixed. It is elementary to check
that M* = (M), n € N) defined by, for n € N:

A A Xn—ne(A
M) =e*n »)

is a positive martingale. This martingale is called the exponential martingale associated to
the random walk X. A
Let X = (X,,,n € N) and (Hy,n € N*) be two sequences of real-valued random variables

which are a.s. finite. We define the discrete stochastic integral of H with respect to X by
the process H-X = (H-X,,,n € N) with H-X = 0 and for all n € N*:

n
H-X, =Y HAXy=H X, 1+H,AX, where AXj =X} — Xj_;.

k=1
Lemma 4.14. Let M be a martingale (resp. super-martingale) and H a bounded real-valued
predictable process (resp. and non-negative). Then, the discrete stochastic integral H-M is a
martingale (resp. super-martingale).
Proof. With M = (My,n € N), H = (Hp,n € N*) and H-M = (H-My,n € N), we get that
the process H-M is adapted and integrable. Assume that M is a martingale. We have for
n € N* as.:

E[H -My|Fn-1] =H-Mp_1 + H, (E[M,,| Frm1] — Mp—1) = 0.
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The conclusion is then straightforward. The case M super-martingale and H non-negative
is proved similarly. O

Remark 4.15 (Doob decomposition of a super-martingale). Let M = (M,,,n € N) be a super-
martingale. We set Ny = My, Ag = 0 and for n € N:

Nn+1 = Nn + Mn+1 — ]E[Mn+1| fn] and An+1 = An + Mn — ]E[Mn+1"/—'.n]

By construction the process N = (N,, € N) is adapted and the process A = (A,,n € N*)
is predictable. It easy to check that N is a martingale and A is non-decreasing and thus
non-negative. The decomposition of the super-martingale M as M, = N, — A, with N a
martingale and A predictable non-decreasing is called the Doob decomposition of M. O

Using Jensen inequality (2.4), we easily derive the next corollary.

Corollary 4.16. Let M = (M,,n € N) be a real-valued F-martingale. Let ¢ be a R-valued
convex function defined on R. Assume that p(M,) is integrable for all n € N. Then, the
process (p(My),n € N) is a sub-martingale.

For z, 2’ € R, we recall that we write z A 2’ for min(z, z').

Lemma 4.17. Let 7 be a stopping time and M = (M,,n € N) a martingale (resp. super-
martingale, sub-martingale). Then, the process M™ = (Mrpn,n € N) is a martingale (resp.
super-martingale, sub-martingale).

We provide two proofs of this important lemma. The shorter one relies on the stochastic
integral. The other one can be generalized when the integrability condition is weakened; it
will inspire some computations in Chapter 5.

First proof. Let M be a martingale. The process H = (H,,n € N*) defined by H,, = lir>ny
is predictable bounded and non-negative. The discrete stochastic integral of H with respect
to M is given by H-M = (H-M,,n € N) with:

n
H-M, = Z Vrom (M), — My_1) = Mrpy — M.
k=1

As H-M is a martingale according to Lemma 4.14, we deduce that M" is a martingale. The
proofs are similar in the super-martingale and sub-martingale cases. O

Second proof. Let M be a martingale. For n € N, we have:

n—1

M pn = Z Mkl{T:k} aF Mn1{7>n—1}-
k=0
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This implies that M, is integrable and F,-measurable. For n > 1, we have:

n—1

E [MT/\’IL| Fn—l] = Z Mk]-{-r:k} +E [Mn| -T_‘n—l] 1{T>’I’L*1}
k=0
n—1

— Z Mkl{T:k} + Mn—11{7>n—1}
k=0

= TA(n—1)*

This implies that M7 is a martingale. The proofs are similar in the super-martingale and
sub-martingale cases. O

We recall that a stopping time 7 is bounded if P(7 < ng) = 1 for some ng € N. If v is a
stopping time, recall the o-field F, of the events prior to v.

Theorem 4.18 (Optional stopping theorem). Let M = (M,,n € N) be a martingale. Let T
and v be bounded stopping times such that v < 7. We have a.s.:

E [M‘r| ]:1/] = M,. (4'6)

When M is a super-martingale (resp. sub-martingale) the equality in (4.6) is replaced by the
inequality E [M;| F,) < M, (resp. E[M.|F,] > M,).

In particular, if M is a martingale and 7 a bounded stopping time, taking the expectation
in (4.6) with v = 0, we get E[M,| = E[My]. See Proposition 4.26 for an extension of the

optional stopping theorem to unbounded stopping times for closed martingale.

Proof. Let ng € N be such that a.s. 7 < ng. We have according to Lemma 4.7 that a.s.:

no
E[M:| F] = Z 1{u:n}E (M| F) -
n=0

Since M7 is a martingale and 7 A ng = 7 a.s., we have for n < ng that a.s. E[M;|F,] =
E [Mrpang|l Fn] = Mrpp. Since v < 7, we deduce that:

no
[ [MT‘ fl’] = Z 1{V:n}MT/\n =M,.
n=0

The proofs are similar for super-martingales and sub-martingales. ]

See Exercise 8.27 for an application of the martingale theory to simple random walk.

4.3 Maximal inequalities

In this section, we provide inequalities in mean on the path of a martingale using the last
value of the path.
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Theorem 4.19 (Doob’s maximal inequality). Let (M, n € N) be a sub-martingale. Let
a > 0. Then, we have for n € N:

+
o (kIen[[g);]] My = a> sE [M"I{maxkeuo,nﬂ Mkza}} <E[M].

Proof. Let n € N. Consider the stopping time 7 = inf{k € N; M} > a}, and set A =
{maxycpo,n] Mk > a} = {7 < n}. Thanks to the optional stopping theorem, we have E[M,] >
E[Mnpn]. Since My > al g+ Myl 4c, we deduce that:

E[M,] > aP(A) + E [M,1 4c].
This implies that E [M,14] > aP(A). The inequality E [M,14] < E[M,] is obvious. O
Let (M,,, n € N) be a sequence of real-valued random variables. We define for n € N:

M* = M| 4.7
n kgﬁgﬁﬂ! k| (4.7)

We deduce from Corollary 4.16 that if (M,, n € N) is a martingale, then (|M,|, n € N)
is a sub-martingale and thus, thanks to Theorem 4.19, we have for a > 0:

aP (M, > a) < E[[Mp|].

Proposition 4.20. Let M = (M,, n € N) be a martingale. Assume that M, € LP for some
n € N and p > 1. Then, we have, with Cp, = (p/(p — 1))P:

E[(M7)P] < CpE [[Mp[]

Proof. We first prove that M belongs to LP. We deduce from Corollary 4.16 that (|My|, k €
N) is a non-negative sub-martingale. We deduce from Jensen inequality that for 0 < k& < n:

E[|Mg[P] < E[E[|M,|| Fil’] < E[|Mn]]. (4.8)
Since M} < >°)_, |My|, we deduce that M belongs to LP.

Thanks to Theorem 4.19 (with Mj, replaced by |My|), we have for all a > 0 that alP(M;} >
a)<E [‘Mn’]-{M;;za}}' Multiplying this inequality by p(p—1)aP~? and integrating over a > 0
with respect to the Lebesgue measure gives:

(p— DE[(M)] = p(p — 1) / @O > ) da

<olp=1) [ @B [M L gg] do
a>
= pE [|M,| (M;3)"~'] .
Using Holder inequality, we get that E [[M,| (M;)P~'] < E[|M,[P]"/? E[(M;)?)?~/P. This
implies that (p — 1)E [(M;)P]Y/P < pE [|M,,[P]*/?. O
4.4 Convergence of martingales

We now state the main result on convergence of martingales whose proof is given at the end
of this section.



4.4. CONVERGENCE OF MARTINGALES 79

Theorem 4.21. Let M = (M,,n € N) be a martingale or a sub-martingale or a super-
martingale bounded in L', that is sup,cy E[|My|] < +00. Then, the process M converges a.s.
to a limit, say My, which is integrable and:

lim inf E[| My[] > E[|Mc|]. (4.9)
n—00

We give in the next corollary direct consequences which are so often used that they deserve
to be stated on their own.

Corollary 4.22. We have the following results.

(i) Let M = (My,n € N) be a sub-martingale such that sup,cyE[M,[] < +o0o. Then, the
process M converges a.s. to a limit, say My, which is integrable and (4.9) holds.

(ii) Let M = (M,,n € N) be a non-negative martingale or a non-negative super-martingale.
Then the process M converges a.s. to a limit, say M, which is integrable, and we have:

lim E[M,] > E[Ms). (4.10)

n—o0

Proof. We first prove property (i). As M is a sub-martingale, we have that E[My] < E[M,,]
and thus E[|M,|] < 2E[M;]] — E[My]. We deduce the condition sup,cy E[M,] < +oo is
equivalent to sup,,cy E[|M,|] < +00. Then use Theorem 4.21 to conclude.

Let M be a non-negative super-martingale. Considering property (i) with —M, we get
the a.s. convergence of M towards a limit say M. Then use Fatou’s lemma and that the
sequence (E[M,], n € N) is non-increasing to get (4.10). O

Remark 4.23. We state without proof the following extension, see [1]. Let M = (M,,n € N)
be a non-negative non necessarily integrable super-martingale, that is M is adapted, and
a.s., for all n € N, we have M,, > 0 and E[M,,1|F,] < M,,. Then, the process M converges
a.s. and the limit, say Mo, satisfies the inequality E [M|F,] < M, a.s. for all n € N.
Furthermore, for all stopping times 7 and v such that 7 > v, we have that a.s. E[M;|F,] <
M,,. However, Equality (4.6) does not hold in general for positive non necessarily integrable
martingale, that is an adapted process M = (M,,n € N) such that, for alln € N, a.s. M, >0
and E[M,41|Fn] = My, O

Proof of Theorem 4.21

This proof can be skipped in a first reading. For a <b € R and a sequence z = (zp,n € N)
of elements of R, we define the down-crossing and up-crossing times of [a, b] for the sequence
x as 1o(x) = 0 and for all k € N*:

vp(z) = inf{n > mp_1(z); 2, < a} and 7k(z)=inf{n > v (z); z, > b},

with the convention that inf () = co. We define the number of up-crossings for the sequence
x of the interval [a,b] up to time n € N as:

Bap(x,n) = sup{k € N; 7,(x) < n}.
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We shall also consider the total number of up-crossings given by:
Bap(x) = 1i_>rn Bap(z,n) = Card ({k € N; 73,(z) < 00}) € N.
n—oo
As a < b, we have the following implications:

liminf z, < a <b < limsup z, = Bgp(z) = oo = liminfx,, < a < b < limsup z,,.
n—00 n—00 n—00 n—00

We deduce that the sequence x converges in R if and only if Bap(x) < oo for all @ < b with

a,b € Q. Thus, to prove the convergence of the sequence x, it is enough to give a finite upper

bounds of f,4(x). Since x, (z) — Ty, () = b — a when 7(7) < oo that is k < Bgp(x), we

deduce that:

(Try(2) = Tu(a) = (b= a)Bap(z,n). (4.11)

Define Hy(x) = L, o fvn (@) <b<mi (2)} for £ € N*. Considering the discrete integral H(z) -z, =
> vy Ho(z) Az, with Axp = xp — x4_1, we get:
Ba,b(zvn)
H(x)-xy, > Z (Trp(2) = Tup@) — (@0 —a)” = (b—a)Bap(z,n) — (20 —a)”, (4.12)
k=1
where for the first inequality we took into account the fact that n may belongs to an up-
crossing from a to b, and we used (4.11) for the second.

Up to replacing M by —M, we can assume that M is a super-martingale. We now replace
x by the super-martingale M. The random variables vi(M), (M), for k € N, are by
construction stopping times. This implies that, for £ € N*, the event {vx(M) < £ < 7(M)}
belongs to Fy_1. We deduce that the process H = (Hy(M), ¢ € N*) is adapted bounded and
non-negative. Thanks to Lemma 4.14 the discrete stochastic integral (H(M)-M,,n € N) is
a super-martingale. Since H(M)-My = 0, we get E[H(M)-M,] < 0. We deduce from (4.12)
that:

(b — )E[Ba (M, n)] < E[(My — )] + E[H(M)-Ma) < E[|Ma]] + [al.

Letting n goes to infinity in the previous inequality, we get using sup, cyE[|M,|] < +oo
and the monotone convergence theorem that E[3,,(M)] < +oo. This implies that the event
Na<t: apeotBap(M) < oo} has probability 1, that is the super-martingale M a.s. converges
to a real-valued random variable, say M.

Using Fatou’s lemma, we get:

E[|Mec|) = E[ i |M,] < liminf B[1M, | < sup E[1My ] < oo,
n

We deduce that M is integrable and that (4.9) holds.

4.5 More on convergence of martingales

The fact that (4.10) is an equality or not for martingales plays an important role in the
applications, which motivate this section. We refer to Section 7.2.3 for the definition of the
uniform integrability and some related results.

Theorem 4.24. Let M = (M,,n € N) be a martingale. The next conditions are equivalent.
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(i) The martingale M converges a.s. and in L' to a limit, say M.

(ii) There ezists a real-valued integrable random variable Z such that M, = E[Z| F,] a.s.
for allm € N.

(iii) The random variables (My,,n € N) are uniformly integrable.

If any of these conditions hold, we have that a.s. for all n € N:
M, = E[Mso| Fr). (4.13)

A martingale satisfying the conditions of Theorem 4.24 is called a closed martingale.

Proof. Assume property (i) holds. Denote My the limit of M. For m > n, we have
E[M,| Fn] = M, a.s. and thus using Jensen’s inequality:

E||M, — E[M| fn]@ — E[\E[Mm ~ M| fn]|] < E[E[\Mm ~ M| ]-"n]] — E[[Mm — MOO\]

As M converges to M., in L', we deduce that the right-hand side of the previous equation
goes to 0 as m goes to infinity. We deduce that E [[Mn —E[M| Fn”:| = 0, which gives (4.13)
and that (ii) holds with Z = M.

Using Lemma 7.19, we get that property (ii) implies property (iii).

Assume property (iii) holds. Thanks to (b) from property (i) of Proposition 7.18, we
get that sup,cy E[|M,|] < +o00. Using Theorem 4.21, we deduce that the martingale con-
verges a.s. towards a limit, say M. Since the random variables (M,,,n € N) are uniformly
integrable, we deduce from Proposition 7.21 that the convergence holds also in L'. Hence,
property (i) holds. O

The next Lemma does not hold if we assume that Z is non-negative instead of integrable,
see a counter-example page 31 in [1]. Recall that Foo = \/,, o Fau-

Corollary 4.25. Let Z be an integrable real-valued random wvariable. Then the process
(E[Z| Fu],n € N) is a closed martingale which converges a.s. and in L' towards E[Z| Fu).

Proof. Condition (ii) of Theorem 4.24 holds for the martingale M = (M,, = E[Z| F,,],n € N).
Since (i) and (ii) of Theorem 4.24 are equivalent, we deduce that M converges a.s. and in L'
to a real-valued random variable, say M., which is integrable. Using (4.13), we get that for
all A € Fy:

E [(Z - Moo)lA] =E [E [(Z - Moo)| -Fn] 1A] = 0.

This implies that the set A C F of events A such that E[Z14] = E [My.14] contains | J,,cr Fn
which is stable by finite intersection. Since Z and M, are integrable, we get, using dominated
convergence, that A is also a A-system. According to the monotone class theorem, A contains
the o-field generated by J, ey Fn, that is Foo. Then, we deduce from Definition 2.2 and
Lemma 2.3 that a.s. My = E[Z| Fuol. O

We can extend the optional stopping theorem for closed martingale to any stopping times.
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Proposition 4.26. Let M = (M,,n € N) be a closed martingale and write My, for its a.s.
limit. Let T and v be stopping times such that v < 7. Then, we have a.s.:

E[M:| F,] = M,. (4.14)
Proof. According to Lemma 4.7, we have for any stopping time 7/ that a.s.:
E [Moo|]:7"] = Z 1{7’:n}E [Moo‘]:n] = Z 1{T’:n}Mn = M,
neN neN
where we used (4.13) for the second equality. Using this result twice first with 7/ = 7 and
then with 7/ = v, we get, as F,, C F, according to property (iii) of Lemma 4.10, that a.s.:
E[M;| F,)| = E[E[M| F:]| F] = E[Ms| Fo] = M,.
This gives the result. O

We have the following result when the martingale is bounded in LP for some p > 1.

Proposition 4.27. Let M = (M, n € N) be a martingale such that sup,cy E[|M,[P] < 400
for some p > 1. Then, the martingale converges a.s. and in LP towards a limit, say M~ and
M, = E[My|Fy,] a.s. for alln € N. We also have that M, = sup,cy |My| belongs to LP
and, with C, = (p/(p — 1))P:

E[(ML)P] < CLE[|Mso|P]  as well as E[|Mx|P] = sup E[| M, |P].
neN

Proof. Since M is bounded in L!, we deduce from Theorem 4.21 that M converges a.s.
towards a limit, say Mo, € L'. We recall, see (4.7), that M} = maxye[o,n] | Mk| By monotone
convergence, since M’ = lim, ., M}, we have that:

E[(MS)] = lim E[(My)"]. (4.15)

n—oo

According to Proposition 4.20 and since sup,,cy E[|M,,|P] < 400, we deduce that:

E[(MZ)"] < Cpsup E[|M,[F] < +o0.
neN

This gives that MZ% belongs to LP. We deduce from (4.15) and the dominated convergence
Theorem 1.46 (with f, = | M, — Moo|P, g = 2P~ ((M)P + (MX)P) and f,, < gy, as (a+b)P <
2P~ (aP + bP) for a,b € R,) that M converges in LP towards M. This implies in particular
that E [|Mo|P] = limy,—y00 E [|[ My, [P]. Then, use that (E[|M,|P], n € N) is non-decreasing, see
(4.8), to deduce that E [|M|P] = sup,,cn E[| My |P].

Since the martingale M converges in L? towards M, it also converges in L'. We deduce
then from Theorem 4.21 that M,, = E[M| F,] a.s. for all n € N. O
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Chapter 5
Optimal stopping

The goal of this chapter is to determine the best time, if any, at which one has to stop a
game, seen as a stochastic process, in order to maximize a given criterion seen as a gain or a
reward. The following two examples are typical of the problems which will be solved. Their
solution are given respectively in Sections 5.1.3 and 5.3.2.

Ezample 5.1 (Marriage of a princess: the setting). In a faraway old age, a princess had to
choose a prince for a marriage among ( € N* candidates. At step 1 < n < (, she interviews
the n-th candidate and at the end of the interview she either accepts to marry this candidate
or refuses. In the former case the process stops and she get married with the n-th candidate;
in the latter case the rebuked candidate leaves forever and the princess moves on to step
n+ 1. If n = (, she has no more choice but to marry the last candidate. What is the best
strategy or stopping rule for the princess if she wants to maximize the probability to marry
the best prince?

This “Marriage problem”, also known as the “Secretary problem”, appeared in the late
1950’s and early 1960’s. See Ferguson [4] for an historical review as well as the corresponding
Wikipedia page’. A

Ezample 5.2 (Castle to sell). A princess want to sell her castle, let X,, be the n-th price offer.
However, preparing the castle for the visit of a potential buyer has a cost, say ¢ > 0 per visit.
So the gain of the selling at step n > 1 will be G, = X, — nc or G,, = maxj<p<, Xp — nc if
the princess can recall a previous interested buyer. In this infinite time horizon setting, what
is the best strategy for the princess in order to maximize her gain?

This “House-selling problem”, see Chapter 4 in Ferguson [3] is also known as the “Job
search problem” in economy, see Lippman and McCall [5]. AN

For n < ¢ € N = N[J{oo}, we set [n,(] = [7,¢]N and [n,{[= [n,¢)N. We consider
a game over the discrete time interval [0, (] with horizon ¢ € N, where at step n < ¢ we can
either stop and receive the gain GG,, or continue to step n + 1 if n + 1 < (. Eventually in the
infinite horizon case, { = 0o, if we never stop, we receive the gain G,. We assume the gains
G = (Gp,n € [0,(]) form a sequence of random variables on a probability space (2, P, F)
taking values in [—00, +00).

We assume the information available is given by a filtration F = (F,,n € [0,(]) with
F,, C F, and a strategy or stopping rule corresponds to a stopping time. Let T¢ be the set

"https://en.wikipedia.org/wiki/Secretary_problem
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of all stopping times with respect to the filtration F taking values in [0, (]. We shall assume
that E[G}] < +oc for all 7 € T¢, where 7 = max(0, x). In particular, the expectation E[G.]
is well defined and belongs to [—00, +00). Thus, the maximal gain of the game G is:

Vi = sup E[G;]. (5.1)
TETS

A stopping time 7/ € T¢ is said optimal for G if E[G,/] = Vi and thus Vi = max, ¢ E[G,].

The next theorem, which is a direct consequences of Corollaries 5.8 and 5.18, is the main
result of this Chapter. For a real sequence (a,,n € N), we set limsupa, = lim sup a.
n /oo oco>k>n
Theorem 5.3. Let ¢ € N, G = (Gp,n € [0,(]) be a sequence of random variables tak-
ing values in [—oo0,4+00) and F = (Fp,,n € [0,¢])) be a filtration. Assume the integrability
condition:

E{ sup Gﬂ < +o0. (5.2)
nef0,(]
If (e N orif ( =0 and
limsup G, < G a.s., (5.3)

then, there exists an optimal stopping time.

We complete Theorem 5.3 by giving a description of the optimal stopping times when the
sequence G is adapted to the filtration F, (5.2) holds and (5.3) holds if {( = co. In this case,
we consider the Snell envelope S = (S,,n € [0,(](|N) which is a particular solution to the
so-called optimal equations or Bellman equations:

Sy, = max (G, E[S,41]|F,])  for n € [0,([. (5.4)

More precisely, in the finite horizon case S is defined by S = G¢ and the backward recursion
(5.4); in the infinite horizon case S is defined by (5.17) which satisfies (5.4) according to Propo-
sition 5.16. In this setting, we will consider the stopping times 7, < Ty in T¢:

7 = inf{n € [0,([; Sn = G}, (5.5)
Tix = inf{n € [0,¢[; Sn > E[Sn+1|Fnl}, (5.6)

with the convention inf ) = (. We shall prove that they are optimal, see Propositions 5.6 and
5.17, and Exercises 5.1 and 5.5. Furthermore, if V, > —o0, then a stopping time 7 is optimal
if and only if 7, <7 < 7yx a.s. and on {7 < 0o} we have a.s. S; = G,. See Exercises 5.1, 5.4
and 5.5. Thus, 7, is the minimal optimal stopping time and 7., the maximal one.

In the following two Remarks, we comment on the integrability condition (5.2) and we
consider the case when the sequence G is not adapted to the filtration F.

Remark 5.4. Notice that (5.2) implies that E[GF] < +oo for all 7 € TS. When ¢ < oo, then
(5.2) is equivalent to
E[G] < +oo  for all n € [0,(]. (5.7)

When ¢ = oo, Condition (5.2) can be slightly weaken, see Proposition 5.17, when G is F-
adapted to Condition (H) page 94 which corresponds to the gain being bounded from above
by a non-negative uniformly integrable martingale. O



5.1. FINITE HORIZON CASE 89

Remark 5.5. When the sequence G is not adapted to the filtration [F, the idea is to check that
an optimal stopping time for the adapted gain G’ = (G}, n € [0,¢]) with G}, = E[G,| F,] is
also an optimal stopping time for G, see Sections 5.1.2 and 5.2.4. O
The finite horizon case, { < oo, is presented in Section 5.1, and the infinite horizon case,
¢ = oo, which is much more delicate in particular for the definition of S, is presented in
Section 5.2. We consider the approximation of the infinite horizon case by finite horizon
cases in Section 5.3, which includes the Markov chain setting developed in Section 5.3.3.

The presentation of this Chapter follows closely Ferguson [3] also inspired by Snell [7],
see also Chow, Robbins and Siegmund [1, 6] and the references therein or for the Markovian
setting Dynkin [2]. Concerning the infinite horizon case, we consider stopping time taking
values in N instead of N in most text books. Since in some standard applications, the gain
of not stopping in finite time is Go, = —oo (which de facto implies the optimal stopping
time is finite unless V, = —o0), we shall consider rewards G,, taking values in [—o0, 4+00),
whereas in most text books it is assumed that E[|G,|] < 400 holds for all finite n < {. The
advantage of this setting is the simplicity of the hypothesis and the generality of the result
given in Theorem 5.3. Its drawback is that we can not use the elegant martingale theory
which is the corner stone of the Snell envelope approach, see Remark 5.7 and Exercise 5.1 and
the presentation in Neveu [6]. Thus, we shall deal with integral technicalities in the infinite
horizon case.

5.1 Finite horizon case

We assume in this section that ¢ € N and that the gain process G = (Gp,n € [0,(])
satisfies the integrability condition (5.7), or equivalently (5.2). We consider the filtration
F = (Fn,n € [0,C]). Recall T¢ is the set of stopping times with respect to the filtration F
taking values in [0, ¢]. Notice that (5.7) implies that E[GF] < +oo for all 7 € T¢,

We shall first consider in Section 5.1.1 that the gain process G is adapted to the filtration
F. This is not always the case. Indeed, in Example 5.1 on the marriage of a princess, the gain
at step n € [1,(] is given by G, = 15, —1}, with ¥, the random rank of the n-th candidate
among the ¢ candidates. In particular the rank ¥, and thus the gain G,, are not observed
unless n = (, and thus the gain process is not adapted to the filtration generated by the
observations. We extend the results of Section 5.1.1 to the case where G is not adapted to F
in Section 5.1.2. Then, we solve the marriage problem in Section 5.1.3.

5.1.1 The adapted case

We assume that the sequence G is adapted to the filtration F. We define the sequence
S = (Sn,n € [0,(]) recursively by S = G¢ and the optimal equations (5.4). The following
Proposition gives a solution to the optimal stopping problem in the setting of this section.

Proposition 5.6. Let ( € N and G = (Gp,n € [0,(]) be an adapted sequence such that
E[G] < +oo for all n € [0,(]. The stopping time T, given by (5.5), with (Sn,n € [0,¢])
defined by S¢ = G¢ and (5.4), is optimal and V, = E[G~,] = E[Sp].

Proof. Forn € [0, (], we define T,, as the set of all stopping times with respect to the filtration
F taking values in [n, (], as well as the stopping time 7,, = inf{k € [n,(]; Sk = Gi}. Notice
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that n <7, <. We first prove by backward induction that:

Sp > E[G.|F,] as. forall 7 € Ty, (5.8)
Sp =E[G;,|Fn] as.. (5.9)

Notice that (5.8) and (5.9) are clear for n = ¢ as S¢ = G¢.
Let n € [0, — 1]. We assume (5.8) and (5.9) hold for n 4+ 1 and prove them for n. Let
7 € T,, and consider 7/ = max(7,n+ 1) € T,41. As 7= 7" on {7 > n}, we have:

E[G|Fu] = Gnliz—pny + E[Gr|Fu]l{z5n)- (5.10)
Using Inequality (5.8) with n + 1 and 7/, we get that a.s.:

E[GT’|‘FH] =E [E[GT’LFn-i-l]fn] < E[Sn+1|fn] (5.11)

Using the optimal equations (5.4), we get a.s.:

E[Sp11|Fn] < Sn. (5.12)
Since (5.4) gives also G,, < S,,, we get using (5.10) that a.s.

E[G-[Fa] < Sn. (5.13)

This gives (5.8).

Consider 7, instead of 7 in (5.10). Then notice that on {7, > n}, we have max(7,,n+1) =
Tn+1- Then the inequality in (5.11) (with 7/ = 7,41) is in fact an equality thanks to (5.9)
(with n + 1). The inequality in (5.12) is also an equality on {7, > n} by definition of 7,.
Then use that G,, = S,, on {7, = n}, so that (5.13), with 7,, instead of 7, is also an equality.
This gives (5.9). We then deduce that (5.8) and (5.9) hold for all n € [0, C].

Notice that 7, = 79 by definition. We deduce from (5.8), with n = 0, that E[Sy] > E[G]
for all 7 € TS, and from (5.9), that E[Sg] = E[G,,]. This gives V. = E[Sy] and 7. is
optimal. O

Remark 5.7 (Snell envelope). Let ¢ € N. Assume that E[|G,|] < oo for all n € [0, (]. Notice
from (5.4) that S is a super-martingale and that S dominates G. It is left to the reader to
check that S is in fact the smallest super-martingale which dominates G. It is called the
Snell enveloppe of G. For n € [0, ([, using that S,, = E[S,+1|F,] on {7« > n}, we have:

S’IZ/\T* = ST*]-{T*gn} + Sn]-{r*>n} = ST* 1{T*§n} + E[Sn+11{7*>n}’fn] =E [S(n-i-l)/\r* |]:n:| 0
(5.14)
This gives that (Spar.,n € [0,(]) is a martingale. O

FEzercise 5.1. Let ¢ € N. Assume that E[|G,|] < oo for all n € [0,(].

1. Prove that 7 is an optimal stopping time if and only if S, = G; a.s. and (Syar,n €
[0,¢]) is a martingale.

2. Deduce that 7, is the minimal optimal stopping time (that is: if 7 is optimal, then a.s.
T > Ty).
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3. Prove that 7., defined by (5.6) is an optimal stopping time.

4. Using the Doob decomposition, see Remark 4.15, of the super-martingale S, prove that
if 7 > Ty is an optimal stopping time then 7 = 7.

5. Arguing as in the proof of property (ii) from Lemma 5.13, prove that if 7 and 7" are
optimal stopping times so is max(r,7’).

6. Deduce that 7 is an optimal stopping time if and only if a.s. 7. < 7 < 7 and S, = G-

A

5.1.2 The general case

If the sequence G = (G, n € [0,(¢]) is not adapted to the filtration F, then we shall consider
the corresponding adapted sequence G’ = (G),,n € [0,(]) defined by:

G, = E[Gp|Fy)-

Thanks to Jensen inequality, we have E[(G},)1] < E[G,}] < +co for all n € [0,¢]. Thus the
sequence G’ is is adapted to F and satisfies the integrability condition (5.7) or equivalently
(5.2). Recall T¢ is the set of all stopping time with respect to the filtration F taking values
in [0, ¢]. Thanks to Fubini, we get that for 7 € T¢:

¢ ¢
n=0

n=0

We thus deduce the maximal gain for the game G is also the maximal gain for the game G’.
The following Corollary is then an immediate consequence of Proposition 5.6.

Corollary 5.8. Let ¢ € N and G = (Gp,n € [0,¢]) be such that E[G)] < +oo for all
n € [0,(]. Set S¢ = E[G¢|F¢] and S,, = max (E[G,|Fy], E[Sny1]|Fn]) for 0 <n < (. Then
the stopping time 1, = inf{n € [0,(]; Sn = E[Gy|Fn]} is optimal and Vi, = E[G..] = E[Sy].

5.1.3 Marriage of a princess

We continue Example 5.1. The princess wants to maximize the probability to marry the best
prince among ¢ € N* candidates. The corresponding gain at step n is G, = 15, -1}, with
Y the random rank of the n-th candidate among the ¢ candidates. The random variable
Y = (3pn,n € [1,(]) takes values in the set S¢ of permutation on [1, ].

For a permutation o = (on,n € [1,(]) € S¢, we define the sequence of partial ranks
r(o) = (r1,...,7r¢) such that 7, is the partial rank of o, in (01,...,0,). In particular, we
have ry = 1 and r¢ = 0¢. Set E = Hizl [1,n] the state space of r(o). It is easy to check that
r is a bijection from Sy to E. Set (Ry, ..., R,) = r(X), so that R, is the observed partial rank
of the n-th candidate. In particular R,, corresponds to the observation of the princess at step
n, and the information of the princess at step n is given by the o-field F,, = o(Ry,..., Ry).
In order to stick to the formalism of this chapter, we set Gg = —oo and Fy the trivial o-field.
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We assume the princes are interviewed at random, that is the random permutation > =
(Xn,n € [1,{]) is uniformly distributed on S¢. Notice then that, for n € [1,([, X, is
not a function of (Ry,..., R,) and so it is not F,-measurable and thus the gain sequence
G = (Gp,n € [0,(]) is not adapted to the filtration F = (F,,n € [0, ]).

Since r is a bijection, we deduce that r(X) is uniform on E. Since E has a product form,
we get that the random variables Ry,..., R; are independent and R,, is uniform on [1,n]
for all n € [1,{]. The event {¥,, = 1} is equal to {R,, = 1} ﬂi:nH{Rk > 1}. Using the
independence of (Ry41, ..., R¢) with F,, we deduce that for n € [1,(]:

¢
n
k=n+1

By an elementary backward induction, we get from the definition of S, given in Corollary 5.8
that, for n € [1,(], S, is a function of R, and more precisely S,, = max <%1{Rn:1}’ an),
with s,+1 = E[Sp+1|Fn] = E[Sn+1] as Sp41, which is a function of R4, is independent of
Fn. The sequence (sp,n € [1,(]) is non-increasing as (Sy,n € [1,(]) is a super-martingale.
We deduce that the optimal stopping time can be written as 7. = ~,, for some n,, where for
n € [1, (], the stopping rule -, corresponds to first observe n — 1 candidate and then choose
the next one who is better than those who have been observed (or the last if there is none):
Yo = inf{k € [n,(]; Ry = 1 or k = (}. We set I';, = E[G,,] the gain corresponding to the
strategy ~v,. We have I'y = 1/¢ and for n € [2,(]:

¢ ¢ ¢
n—1 1
Tw=> Plyn=kSp=1)=Y P(Ry>1,...,Rp=1,...,R¢>1) = > T
k=n

¢

k=n k=n

where we used the independence for the last equality. Notice that (I'y = (I'c = 1. For
n € [1,{ — 1], we have ((I'), = T'py1) = 1 — Zg;}t 1/j. We deduce that T';, is maximal for
ne =inf{n > 1; T, > 41} = inf{n > 1; 25;111 1/5 <1}. We also have V,, =T,,,.

For ¢ large, we get n. ~ (/e, so the optimal strategy is to observe a fraction of order
1/ e ~ 37% of the candidates, and then choose the next best one (or the last if there is none);
the probability to get the best prince is then V, =T, ~n,/¢( ~1/e ~ 37%.

Ezercise 5.2 (Choosing the second best instead of the best?). Assume the princess knows the
best prince is very likely to get a better proposal somewhere else, so that she wants to select
the second best prince among ¢ candidates instead of the best one. For x > 0, we set |[z]
the only integer n € N such that + — 1 < n < x. Prove that the optimal stopping rule is to
reject the first ng = [(¢ — 1)/2| candidates and then chose the first second best so far prince
or the last if none that is 7, = inf{k > ng; Rx = 2 or k = (} and that the optimal gain is:

V. — no(¢ —no)
¢(¢—=1)
So for ¢ large, we get Vi ~ 1/4. Selecting the third best leads to a more complex optimal
strategy. A

2J. S. Rose. A problem of optimal choice assignment. Operarions Research, 30(1):172-181, 1982.
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5.2 Infinite horizon case

We assume in this section that ¢ = oo. Let (F,,n € N) be a filtration. For simplicity,
we write T = T for the set of stopping times taking values in N. Notice the definition
of stopping time, and thus of the set T, does not depend on the choice of F as long as
this o-field contains F, for all n € N. For this reason, we shall take for Foo = \/, ey Fn
the smallest possible o-field which contains | J,,cy Fn, see Proposition 1.2. We also use the
following convention for the limit operators: lim,_,., will be understood as lim;,—sc: n<oo,
and for a real sequence (a,,n € N), we set limsupa, = lim, o0 SUPssp>, Ak as well as
liminf a,, = lim;, o0 infoosi>p ag. -

The next two examples prove one can not remove the hypothesis (5.2) and (5.3) on the
gain process to ensure the existence of an optimal stopping time.

Example 5.9. We consider the gain process G = (G,,n € N) given by G, = n/(n + 1) for
n € N and G, = 0. Clearly we have V, = 1 and there is no optimal stopping time. Notice
that (5.3) does not hold in this case. A

Ezample 5.10. Let (X,,n € N*) be independent Bernoulli random variables such that P(X; =
1) = P(Xy = 0) = 1/2. We consider the gain process G = (G,,n € N) given by Gy = 0,
Gp = (2" —1) [l Xi for n € N* and a.s. Go = lim, 00 G, = 0. Let F be the natural
filtration of the process G. We have E[G,] = 1 — 27" so that Vi > 1. Notice G is a
non-negative sub-martingale as:

2n+1 -1

E[Gys1|Fn] Gn > Gy

=g
Thus, for any 7 € T, we have E[Gry] < E[Gy] < 1. And by Fatou Lemma, we get E[G,] < 1.
Thus, we deduce that V, = 1.

Since E[Gp41|Fn] > Gy on {G,, # 0} and G,+1 = G, on {G,, = 0}, we get at step n
that the expected future gain at step n + 1 is better than the gain G,. Therefore it is more
interesting to continue than to stop at step n. However this strategy will provide the gain
Goo = 0, and is thus not optimal. We deduce there is no optimal stopping time.

Consider the stopping time 7 = inf{n > 1; G,, = 0}. We have that 7 is a geometric
random variable with parameter 1/2. Furthermore, we have SUPycfo,¢] Gf =271 —-1and

thus E| sup,,c[o ¢ G;‘;] = 4o00. In particular, condition (5.2) does not hold in this case. A

The main result of this section is that if (5.2) and (5.3) hold, then there exists an optimal
stopping time 7, € T, see Corollary 5.18. The main idea of the infinite horizon case, inspired
by the finite horizon case, is to consider a process S = (S, n € [0, (]) satisfying the optimal
equations (5.4). But since the initialization of S given in the finite horizon case is now useless,
we shall rely on a definition inspired by (5.8) and (5.9). However, we need to consider a
measurable version of the supremum of E[G;|F,], where 7 is any stopping time such that
7 > n. This is developed in Section 5.2.1. In the technical Section 5.2.2, due to the fact we
don’t assume the gain to be integrable, following Ferguson [3], we use the notion of regular
stopping time to prove the existence of an optimal stopping time in the adapted case. We
connect this result with the optimal equations (5.4) in Section 5.2.3. Then, we consider the
general case in Section 5.2.4.
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5.2.1 Essential supremum

The following proposition asserts the existence of a minimal random variable dominating a
family (which might be uncountable) of random variables in the sense of a.s. inequality. We
set R = [—o00, +00].

Proposition 5.11. Let (Xy,t € T) be a family of real-valued random variables indexed by a
general set T'. There exists a unique (up to the a.s. equivalence) real-valued random variable
X« such that:

(i) Forallt €T, P(X, > X;) = 1.

(ii) If there exists a random variable Y such that for allt € T, P(Y > X;) = 1, then a.s.
Y > X..

The random variable X, of the previous proposition is called the essential supremum of
(Xt,t € T) and is denoted by:
X, = esssup X;.
te’l
Ezample 5.12. Tf U is a uniform random variable on [0, 1], and X; = 14—y for t € T = [0, 1],
then we have that a.s. sup;c7 X; = 1 and it is easy to check that a.s. esssup;cr Xy =0. A

Proof of Proposition 5.11. Since we are only considering inequalities between real random
variables, by mapping R onto [0, 1] with an increasing bijection, we can assume that X; takes
values in [0,1] for all ¢ € T'.

Let Z be the family of all countable sub-families of T. For each I € Z, consider the
(well defined) random variable X; = sup;c; X and define o = sup;c7 E[X7]. There exists a
sequence (I,,n € N) such that lim;,, o E[X7,] = . The set I, = |J,,cy In is countable and
thus I, € Z. Set X, = X,. Since E[X1,] < E[X,] < a for all n € N, we get E[X,] = a.

For any ¢t € T, consider J = I.|J{t}, which belongs to Z, and notice that X; =
max(X¢, Xi). Since a = E[X,] < E[X;] < «, we deduce that E[X,] = E[X ;] and thus
a.s. Xj= X,, that is P(X, > X;) = 1. This gives (i).

Let Y be as in (ii). Since I, is countable, we get that a.s. Y > X,. This gives (ii). O

5.2.2 The adapted case: regular stopping times

We assume in this section that the sequence G = (G,,n € N) is adapted to the filtration
F = (Fp,n € N), with Foo = \/,,cy Fn. We shall consider the following hypothesis which is
slightly weaker than (5.2):

(H) There exists a non-negative integrable random variable M such that for all n € N, we
have a.s. G} <E[M|F,].

Condition (H) and (4.1) imply that for all 7 € T, we have a.s. Gi < E[M|F;]. Notice that
if (5.2) holds then (H) holds with M = sup, 5 G} .

For n € N, let T,, = {7 € T; 7 > n} be the set of stopping times larger than or equal to
n. We say a stopping times 7 € T, is regular, which will be understood with respect to G, if
for all finite k > n:
E[G;|Fk] > G a.s. on {1 > k}.
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We denote by T/, the subset of T,, of regular stopping times. Notice that T/, is non-empty as
it contains n.

Lemma 5.13. Assume that G is adapted and a.s. E[G}] < +oo for all 7 € T. Let n € N.

1) If T € T, then there exists a reqular stopping time ™ € T! such that 7/ < 7 and a.s.
(1) 9 pping n
E|G|Fn] = E[G-|Fn).

(it) If 7', 7" € T}, are regular, then the stopping time 7 = max(7',7") € T), is regular and

a.s. E[G+|F,] > max (E[G|F,], E[G|Fy)).

Proof. We prove property (i). Let 7 € T,, and set 7/ = inf{k > n; E[G,|F;] < Gi} with the
convention that inf ) = co. Notice that 7/ is a stopping time and that a.s. n < 7 < 7. On
{r' = 0}, we have 7 = 00 and a.s. G+ = Go, = G,. For co > m > n, we have, on {7/ = m},
that a.s. E[G./|Fn] = Gp, > E[G7|Fn]. We deduce that for all finite k& > n a.s. on {7/ > k}:

me[k,00] me [k,00]
And thus, for all finite k > n:
E[Go | Frllrsry > ElGr | Frl 1>k - (5.15)

We have on {7" > k}, E[G,|Fi] > Gk. Then use (5.15) to get that 7’ is regular. Take k = n
in (5.15) and use that 7/ > n a.s. to get the last part of (i).

We prove property (ii). Let 7/,7” € T, and 7 = max(7',7”). By construction 7 is a
stopping time, see Proposition 4.4. We have for all m > k > n and k finite:

B (G- L] = B [Gordmrrsry ]+ E [Go Lo .
Using that 7/ € T}, we get for all finite m > k > n:
E[Grr Lz —my|Fi] = E [E[Grr | Fin]Lrrsmy Lrr=my | Fi] = E[GunLirrsrr—my | Fil.
We deduce that for all m > k > n and k finite:
(G sy | Fi] > E[Gr sy | Fil. (5.16)
By summing (5.16) over m with m > k and using that 7" € T/, we get:
ElGr|Fu]lrohy = E[Go|Fillirsky > Grlirsgy-

By symmetry, we also get B[G|Fi]1ispy > Grlirsgy. Since {7 >k} = {7/ > k} U{7" >
k}, this implies that E[G;|Fk] > Gi a.s. on {T > k}. Thus, 7 is regular.

By summing (5.16) over m with m > k = n, and using that 7/ > n a.s., we get E[G|F,] >

E[G|F,]. By symmetry, we also have E[G,|F,] > E[G,/|F,]. We deduce the last part
of (ii). O

The next lemma is the main result of this section.



96 CHAPTER 5. OPTIMAL STOPPING

Lemma 5.14. We assume that G is adapted and hypothesis (H) and (5.3) hold. Then, for
alln € N, there exists 7, € T,, such that a.s. esssup,cp, E[G7|F,] = E[Gro|F,].

Proof. We set X, = esssup, ¢, E[G;|F,]. According to the proof of Proposition 5.11, there
exists a sequence (73, k € N) of elements of T,, such that X, = supyey E[Gr,|Fn]. Thanks
to (i) of Lemma 5.13, there exists a sequence (77, k € N) of regular stopping times, elements
of Ty, such that E[G|Fn] > E[Gr|F,]. According to (i) of Lemma 5.13, for all k €
N, the stopping time 7}/ = max<;<x 7} belongs to T;,, the sequence (]E[GT]/CILFH], k € N)
is non-decreasing and E[G./|F,] > E[G|Fy] = E[Gr,|[Fy]. In particular, we get X, =
supen E[Gr, [Fn] < supgen E[Gry|Fn] < X, so that a.s. Xy = limp,0 E[Gry|Fo].

Let 7;; € Ty, be the limit of the non-decreasing sequence (77, k € N). Set Y}, = E[M|F.,].
We deduce from the optional stopping theorem for closed martingale, see Proposition 4.26,
that (Yy,k € N) is a martingale with respect to the filtration (F;,, k € N), which is closed
thanks to property (ii) from Theorem 4.24. In particular, the sequence (Y, k € N) converges
a.s. and in L' towards Yo = E[M|F..] according to Corollary 4.25. Notice also that
a.s. E[Yy|Fn] = E[Yoo| Fp]. Then, we use Lemma 5.30 with X = G,/ to get that as.
X, < E[limsupy_, o, G| Fn]. Thanks to (5.3), we have a.s. limsupy, ., G < Gre. So we get
that a.s. X, <E[Gro|F,]. To conclude use that by definition of X, we have E[Gro|F,] < X,
and thus X, = E[Go|F,]. O

We have the following Corollary.

Corollary 5.15. We assume that G is adapted and hypothesis (H) and (5.3) hold. Then,
we have that 7q is optimal that is Vi = E[Go].

Proof. Lemma 5.14 gives that E[G] < E[G,] for all 7 € T. Thus 73 is optimal. O

Ezercise 5.3. Assume that hypothesis (H) and (5.3) hold. Let n € N. Prove that the limit
of a non-decreasing sequence of regular stopping times, elements of T/, is regular. Deduce
that 70 in Lemma 5.14 is regular, that is 7,7 belongs to T/,. A

5.2.3 The adapted case: optimal equations

We assume in this section that the sequence G = (G,,n € N) is adapted to the filtration
F = (Fo,n € N), with Foo = \/,,cy Fn- Recall that T, = {7 € T; 7 > n} for n € N. We
assume (H) holds. We set for n € N:

Sy, = esssup E[G,| F]. (5.17)
TETTL

The next proposition is the main result of this section.

Proposition 5.16. We assume that G is adapted and hypothesis (H) and (5.3) hold. Then,
for alln € N, we have E[S;'] < 400. The sequence (Sp,n € N) satisfies the optimal equations
(5.4). We also have Vi = E[Sp].

Proof. Recall that (H) implies E[G] < +oo for all 7 € T,,. Then use Lemma 5.14 to deduce
that E[S;"] = E[G.] < +oo. For 7 € T,, we have (5.10) and (5.11) by definition of the
essential supremum for S,41. We deduce that a.s. E[G;| Fn] < max(Gy, E[Sp+1| Frn]). This
implies, see (ii) of Proposition 5.11, that a.s. S, < max(Gy, E[Sp+1| Fn])-
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Thanks to Lemma 5.14, there exists 7, € Tp41 such that a.s. S,41 = [GTZ+1 | Frt1]-
Since 7., (resp. n) belongs also to Ty, we have S, > E[Gre, [Fn] = E[Sn+1]Fy] (resp.
Sp > Gy). This implies that S, > max(Gp, E[S,+1| Fn]). And thus (S,,n € N) satisfies the
optimal equations.

Use Corollary 5.15 and Lemma 5.14 to get Vi, = E[Sp]. O

We conclude this section by giving an explicit optimal stopping time.

Proposition 5.17. We assume that G is adapted and hypothesis (H) and (5.3) hold. Then
T defined by (5.5), with (Sp,n € N) given by (5.17), is optimal: Vi, = E[G..].

Proof. If V, = —oo then nothing has to be proven. So, we assume V, > —oo. According to
Corollary 5.15, there exists an optimal stopping time 7.

In a first step, we check that 7 = min(7,7y) is also optimal. Since E[G}] < +o0, by
Fubini and the definition of S,,, we have:

E[Grliany] =Y E[Grliarn_n] =D E[EGAFllian—n] D E[Sulirar_n]-
neN neN neN
Since S, = G,, on {7, = n} for n € N, we deduce that:
E[Grlory] <Y E[Gulisn—n] =E[Grlismn].
neN

This implies that:
E[Gr] =E[Crlgrory] +E[Grlireny] SE[Grlfrony] +E[Grli<,)] = EIGH].

And thus 7/ is optimal.

In a second step we check that a.s. 7/ = 7. Let us assume that P(7' < 7.) > 0. Recall 7
defined in Lemma 5.14. We define the stopping time 7"/ by 7/ = 7, on {7/ = 7.} and 7/ = 7%
on {n = 7' < 7,} for n € N. Since E[G,] < 400, by Fubini and the definition of S,, we
have:

E [GT”]‘{’T/<T*}:| :Z]E [Gn‘;]—{n:’r’<n} Z]E 7'O |]: l{n T/ <Tx} :ZE [Snl{n:7’<7'*}] :

neN neN neN

Since P(7/ < ) > 0 and S,, > G,, on {7 > n} for n € N, we deduce that:

E[Grrlcry] > D E [Gulinercry] = E[Grlpcry]
neN

unless E [GTul {T/<T*}] = E [GTfl{T/<T*}] = —oo. The latter case is not possible since
E[G;] = Vi > —oo. Thus, we deduce that E [GT"]-{T’<T*}:| > E [GT/1{7/<T*}]' This im-
plies (using again that E[G,/] > —o0) that:

E [GT//} =E [GT/ 1{7_/:7_*}] + E [GT”]-{T/<7'*}:| >E [GT/ 1{7/27*}] +E [GT/ 1{7'/<7'*}:| =E [GT/] .

This is impossible as 7 is optimal. Thus, we have a.s. 7/ = 7, and 7, is optimal. ]
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Ezercise 5.4. Assume that G is adapted and hypothesis (H) and (5.3) hold and V, > —oc.

1. Deduce from the proof of Proposition 5.17, that 7. defined by (5.5) is the minimal
optimal stopping time: if 7 is an optimal stopping time then a.s. 7 > 7,.

2. Deduce that if G5, = —00 a.s., then a.s. 7, is finite.

A
FEzercise 5.5. Assume that G is adapted and hypothesis (H) and (5.3) hold. We set for n € N:

Wy, = esssup E[G,| F,] (5.18)

TETnJrl

with the convention that inf () = co. Recall 7, and 7., defined by (5.5) and (5.6).

1. Prove that W,, = E[Sy4+1|F,].
2. Prove that (Spar..,n € N) is such that E[Sy] = E[Syar,.] for all n € N.
3. Prove that E[Sy| < E[limsup Syar,.] < E[G-,.]. Deduce that 7., is optimal.

4. Assume that V, > —oo. Prove that if 7 is an optimal stopping time, then 7 A 7 is also
optimal. Prove that a.s. 7 < Ty,.

5. Assume that V, > —oco. Prove that 7 is an optimal stopping time if and only if a.s.
Sy =Gron {r < oo} and 7. <7 < Ty

A
Ezercise 5.6. Assume that G is adapted and hypothesis (H) and (5.3) hold, as well as V, >
—o00. Prove that 7, defined by (5.5) is regular. A

5.2.4 The general case

We state the main result of this section. Let T denote the set of stopping times (taking values
in N) with respect to the filtration (F,,n € N).

Corollary 5.18. Let G = (G, n € N) be a sequence of random variables such that (5.2) and
(5.3) hold. Then there exists an optimal stopping time.

Proof. According to the first paragraph of Section 5.2, without loss of generality, we can
assume that Foo = \/,cy Fn. If G is adapted to the filtration F = (F,,n € N) then use
M = sup,, .y G, , so that (H) holds, and Corollary 5.15 to conclude.

If the sequence G is not adapted to the filtration F, then we shall consider the correspond-
ing adapted sequence G’ = (G!,,n € N) given by G!, = E[G,,|F,] for n € N. Notice G’ is well
defined thanks to (5.2). Thanks to (5.2), we can use Fubini lemma to get for 7 € T:

E[G;] = ZE[Gnl{T:n}} = ZE[Gg’Ll{T:TL}] = E[G;]

neN neN

We thus deduce the maximal gain for the game G is also the maximal gain for the game G'.
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Let M = E[sup, G, |Fx]. Notice then that (H) holds with G replaced by G'. To
conclude using Corollary 5.15, it is enough to check that (5.3) holds with G replaced by G'.

For n > k finite, we have G}, < E[supge[[k,oo]] G(‘ ]:n]. Since E[supge[[kpo]] Gﬂ is finite
thanks to (5.2), we deduce from Lemma 5.31 that:

limsqu;lglimsupE[ sup Gg‘]:n] §E[ sup Ge‘foo]-
n n t€[[k,00] Le[k,00]

Since k is arbitrary, we get:

limsup G}, < limsupE[ sup Ge‘ Foo] <E[limsup sup Gg‘ Foo] € E[Goo| Foo) = G,
n k Le[k,00] k Le(k,o0]

where we used Lemma 5.30 (with X = supcpy o) Ge and Yy = Y = M) for the second
inequality and (5.3) for the last. Thus (5.3) holds with G replaced by G’. This finishes the
proof. O

Exercise 5.7. Let G = (G,,n € N) be a sequence of random variables such that (5.2) and
(5.3) hold. Let 7. = inf{n € N; esssup, g, E[G;|F,] = E[G,|F,]} with inf() = co. Prove
that 7, is optimal. A

5.3 From finite horizon to infinite horizon

In the finite horizon case, the solution to the optimal equations (5.4) are defined recursively in
a constructive way. There is no such constructive way in the infinite horizon case. Thus, it is
natural to ask if the infinite horizon case can be seen as the limit of finite horizon cases, when
the horizon ( goes to infinity. We shall give sufficient condition for this to hold in Section
5.3.1 for the adapted case then derive a solution to the castle selling problem of Example 5.2
in Section 5.3.2 and a solution in a Markov chain setting in Section 5.3.3.

5.3.1 From finite horizon to infinite horizon

We assume in this section that the gain sequence G = (Gpn,n € N) is adapted to the filtration
F = (Fp,n € N), with Foo = \/,,cy Fn- We also assume that (5.2), or the weaker Condition
(H) page 94, holds. We consider the following assumptions which are stronger than (5.3):

limsupG,, = G a.s. (5.19)
lim G, = G as.. (5.20)
n—o0

Remark 5.19. We comment on the conditions (5.19) and (5.20). In particular, (5.20) holds if
(5.3) holds and a.s. G = —0o. We now prove that if (5.3) holds and

li_>m ElGeo|Fn] = G ass., (5.21)

then we can modify the gain so that the maximal gain is the same and (5.19) holds for the
modified gain. Notice the convergence (5.21) holds in particular if G is integrable, thanks
to Corollary 4.25.
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Assume that Condition (H) page 94 holds for G. We consider the gain G’ = (G/,,n € N)
with G!, = max(Gy, E[Go|Fy]) which satisfies Condition (H) with M’ = M + G as well
as (5.19), since (5.21) holds. According to Proposition 5.17, there exists an optimal stopping
time, say 7', for the gain G’. The maximal gain is V] = E[G]. Set 7 = 7" on {J,, {7 =
n, G, = G, } and 7 = +0o otherwise. Roughly speaking, the stopping rule 7 can be described
as follows: on {7’ = n}, then either G,, = G/, and then one stops the game at time n to get
the gain G, or G, < G, and then one never stops the game to get the gain G,. Notice T
is a stopping time. We have:

E[G:] =) ElGnl{—n)]

neN
=Y ElGnl{rmngu=ci] + O BlGoolirmnu<cr}) + ElGool{r—o)]
neN neN
- Z E G 1{7‘ =n,Gn=G},} + Z E OO|]: 1{7”:n Gn<Gl, }] + E[GOO]-{T/:OO}]
neN neN
=Y E[G1r—ny] + E[Gool (/=]
neN

As E[G;] = E[GL/], we get that E[G.,] < V,. Since G), > G, and 7’ is optimal, we also
get that E[G.,] > V.. We deduce that V] = E[G’,] = V. = E[G,], which implies that 7 is
optimal.

Thus, if (5.21) holds, then (5.19) holds with G’ instead of G, and if (H) holds for G, then
we can recover an optimal stopping times for G' from an optimal stopping times for G’, the
maximal gain being the same. O

Recall T,, = {7 € T; 7 > n} is the set of stopping time equal to or larger than n € N and
T¢ = {7 € T; 7 < ¢} is the set of stopping times bounded by ¢ € N. For ¢ € N and n € [0, (]
we define 'I[‘% =T, T¢ as well as:

S = esssup E[G,| F). (5.22)
TE€TS,

From Sections 5.1.1 and 5.2.3, we get that SC G¢ and S¢ = (S5, n € [0,¢]) satisfies
the optimal equations (5.4). For n € N, the sequence (STCL,C € [n,oo]) is non-decreasing
and denote by Sy its limit. For n € N, we have a.s. S = esssup__pw) E[G-|Fy], where

']I‘%b) =T,.N T®) and T®) ¢ T is the subset of bounded stopping times. By construction of
Sn, we have for all n € N:

Sy < Sn, (5.23)
The sequence (7$,¢ € N), with ¢ = inf{n € [0,(]; S5 = Gy}, is non-decreasing and thus
converge to a limit, say 7 € N and

= lim 7¢ = inf{n € N; S} = G,,}. (5.24)

(—o0

Thanks to (5.23) we deduce that a.s. 7° < 7.. We set V& = E[Sg] = sup,er¢ E[G7] and
Vi = E[So] = sup,er E[G-]. Let V;* be the non-decreasing limit of the sequence (V&,¢ €N),
so that V. < V,.
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Remark 5.20. Assume that (5.2) holds and G,, is integrable for all n € N. Since G,, < 5’% <
E[supk,eN Gﬂ ]-"n] = M, for all { > n, using dominated convergence, we deduce from (5.2)
that (S}, n € N) satisfies the optimal equations (5.4) with ( = oo. In fact, it is easy to
check that S* = (S}, n € N) is the smallest sequence satisfying the optimal equations (5.4)
with {( = oco. Following Remark 5.7, we deduce that S* is the smallest super-martingale
which dominates (Gy,n € N). And the process (S ,,.,n € N) is a martingale, which is a.s.

n

converging thanks to (5.2). O
Definition 5.21. The infinite horizon case is the limit of the finite horizon cases if V. = V.

It is not true in general that V;* = V., see Example 5.22 below taken from Neveu [6].

Ezample 5.22. Let (X,,n € N*) be independent random variables such that P(X,, = 1) =
P(X, =—1) =1/2 for all n € N. Let ¢ = (¢,,n € N*) be a strictly increasing sequence such
that 0 < ¢, < 1 for all n € N* and lim, .o ¢, = 1. We define Gy = 0, G = 0, and for
n € N*:

G, = min (1, Wn) — Cp,

with W, = >, Xj. Notice that G,, <1 and a.s. limsup G, = G so that (5.2) and (5.19)
hold. (Notice also that E[|Gy|] for all n € N.) Since E[W,41|F,] = W,, we deduce from
Jensen inequality that a.s. E[min(1, W,41)|F,] > min(1,W,,). Then use that the sequence
c is strictly increasing to get that for all n € N a.s. G,, > E[Gy+1|F,]. Using a backward
induction argument and the optimal equations, we get that Sfl = G, for all n € [0,(] and
¢ € N and thus ¢ = 0. We deduce that Sy =Gy forallneN, 77 =0and V' =0.

Since (5.2) and (5.3) hold, we deduce there exists an optimal stopping time for the infinite
horizon case. The stopping time 7 = inf{n € N*; W,, = 1} is a.s. strictly positive and finite.
On {7 = n}, we have that G,, = 1 — ¢, as well as G,,, < 0 < G, for all m € [0,n[ and
Gm <1—c¢y < Gy, for all m €]n,o0]. We deduce that G; = super G, that is 7 = 7, is
optimal. Notice that Vi, > V = 0 and a.s. 7. > 77 = 0. Thus, the infinite horizon case is
not the limit of the finite horizon cases. AN

We give sufficient conditions so that V;* = V,. Recall that (5.2) implies Condition (H).

Proposition 5.23. Let (G,,n € N) be an adapted sequence of R-valued random wvariables
and define G by (5.19). Assume that (H) holds and that the sequence (T,,n € N), with
T, = supy>,, G — Gn, is uniformly integrable. If there exists an a.s. finite optimal stopping
time or if (5.20) holds, then the infinite horizon case is the limit of the finite horizon cases.

Proof. 1f V, = —o0, nothing has to be proven. Let us assume that V, > —oo. According to
Proposition 5.17, there exists an optimal stopping time, say 7. Since E[Gin(rn)] < Vi, we
get:

0< Vi~ Vv*n < E[GT - Gmin(r,n)] = [1{n<T<oo}(GT - Gn)] +E [1{7:00} (Goo - Gn)]

E
E [1(n<rcotTn] + B[00} (Goo — Gn) ']

IN

As (T, n € N) is uniformly integrable, we deduce from property (iii) of Proposition 7.18 that
(Lfn<r<oo}Tn,n € N) is also uniformly integrable. Since a.s. limy 400 Lnerco} = 0 and
thus limy,— 400 1{<r<oo)Tn = 0, we deduce from Proposition 7.21 that this latter convergence
holds also in L' that is lim,, . E [1{n<T<oo}Tn] =0.
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If 7 is a.s. finite, then we have E [1{7200}((?00 — Gn)ﬂ = 0. Otherwise, if (5.20) holds,
then the sequence (1{;—}(Goo — Gn)t,n € N) converges a.s. to 0. Since 1y} (Goo —
Gn)t < |T,| and (T,,n € N) is uniformly integrable, we deduce from property (iii) of
Proposition 7.18 that the sequence (1{;—}(Goo — Gn) T, 7 € N) is uniformly integrable. Use
Proposition 7.21 to get it converges towards 0 in L': lim,,_, o E [I{T:oo}(Goo — Gn)+] =0.
In both cases, we deduce that lim,,_,. Vi, — V,* = 0. This gives the result. ]

The following exercise complete Proposition 5.23 by giving the convergence of the minimal
optimal stopping time in the finite horizon case to 7, the minimal optimal stopping time in
the infinite horizon case defined in (5.5).

Ezercise 5.8. Let (Gn,n € N) be an adapted sequence of random variables taking values in
R and define G by (5.19). Assume that (H) holds and that the sequence (7,,,n € N), with
Ty, = supy>,, G, — Gy, is uniformly integrable. Recall 7 defined in (5.24).

1. If 7, is a.s. finite, prove that a.s. S

ar = Onar, for all n € N and thus a.s. 77 = 7.

2. If (5.20) holds, prove that S} = S,, for all n € N and thus a.s. 7} = 7,.

We give an immediate Corollary of Proposition 5.23.

Corollary 5.24. Let (Gy,n € N) be an adapted sequence of R-valued random variables and
define G, by (5.19). Assume that for n € N we have G, = Z, — W, with (Z,,n € N)
adapted, E[sup,,cy |Zn|] < 400 and (Wy,n € N) an adapted non-decreasing sequence of non-
negative random variables. If there exists an a.s. finite optimal stopping time or if (5.20)
holds, then the infinite horizon case is the limit of the finite horizon cases.

Proof. For k > n, we have Gy, — G, < Zj, — Zy, < 2supycy |Z¢|. This gives that the sequence
(T = supg>, Gx — Gn,n € N) is non-negative and bounded by 2supycy|Z;|, hence it is
uniformly integrable. We conclude using Proposition 5.23. O

Using super-martingale theory, we can prove directly the following result (which is not a
direct consequence of the previous Corollary with W,, = 0).

Proposition 5.25. Let (G, n € N) be an adapted sequence of random variables taking values
in R and define G by (5.19). Assume that E[sup,,cy |Gn|] < +00. Then the infinite horizon
case is the limit of the finite horizon cases. Furthermore, we have that (Sp,n € N) given by
(5.17) is a.s. equal to (S},n € N) given by (5.22), and thus the optimal stopping time T
defined by (5.5) is a.s. equal to ) defined by (5.24).

Proof. According to Remark 5.20, the process S* = (S, n € N) satisfies the optimal equations
(5.4) with ¢ = oco. Since it is bounded by sup,cy|Gr| which is integrable, it is a super-
martingale and it converges a.s. to a limit say S5,. We have S} > G,, for all n € N, which
implies thanks to (5.19) that S¥ > G.

Let n € N. We have for all stopping times 7 > n that a.s. S} > lim,,_yo0 B[S} A | Fn] =
E[SZ| F,.], where we used the optional stopping theorem for the inequality, and the dominated
convergence from property (vi) in Proposition 2.7 (with ¥ = sup,ey|Gr| and X, = S;)
for the equality. This implies that, for all stopping times 7 > n, a.s. S) > E[G.|F,],
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which thanks to Proposition 5.11 implies that a.s. S} > S,. Thanks to (5.23), we get that
a.s. S; < S5, and thus a.s. S; = 5, for all n € N. By dominated convergence, we have
Ve = lime 00 E[Sg] = E[S}] = Vi. Thus, the infinite horizon case is the limit of the finite
horizon cases. Using (5.24), we get that a.s. 7. = 7. O

Ezxercise 5.9. Extend Proposition 5.25 to the non adapted case. A

5.3.2 Castle to sell

Continuation of Example 5.2. We model the proposal of the n-th buyer of the castle by a
random variable X,,. We assume (X,,,n € N*) is a sequence of independent random variables
distributed as a random variable X which takes values in [—oo, +00) with E[(X+)?] < 400
and P(X > —oo) > 0. We assume each visit of the castle has a fixed cost ¢ > 0. We first
consider the case, where a previous buyer can be called back, so that the gain at step n € N*
is given by G,, = M,, — nc, with M,, = max;<i<, X3. We set Goc = —00. We consider the
o-field F, = 0(X1,...,X,) for n € N* and Foo = V/,,cn+« Fn- (Notice that to stick to the
presentation of this section, we could set Gy = —oo and Fy the trivial o-field.)

Notice that max(z,y) = (z — y)™ +y for z € [—00,+00) and y € R. In particular, if ¥
is a R-valued random variable independent of X, we get Elmax(X,Y)|Y] = f(Y) + Y with
f(z) =E[(X — z)T]. We deduce for n € N* that on {M,, > —oo}:

E[Gyy1|Fp] = Elmax(Xpi1, M) Mp] — (n+ e = f(My) — ¢ + Gh. (5.25)

We set g = sup{z € R; P(X > z) > 0} and zp € (—o0,+o0] as P(X > —o0) > 0. Since
E[X ] is finite, we get that the function f(z) = E[(X — x)*] is continuous strictly decreasing
on (—oo, ) and such that lim, o f(x) = 400 and lim,_,, f(z) = 0. By convention, we
set f(—o0) = +o00. Since a.s. limy, oo M, = ¢, we get that a.s. lim, o f(M;,) = 0. Thus
the stopping time 7 = inf{n € N*, f(M,,) < c} is a.s. finite. From the properties of f, we
deduce there exists a unique ¢, € R such that f(c.) = c¢. Using that (f(M,),n € N*) is
non-increasing and that it jumps at record times of the sequence (X,,n € N*), we get the
representation:
T =inf{n € N*, X,, > ¢, }.

We shall prove that 7 is optimal and:
7 =7as. and V,=E[G;] = c,.
Since 7 is geometric with parameter P(X > ¢, ), we have E[7] = 1/P(X > ¢,) < 400 and:

EX1{x>cy) —¢  E[(X —c)t]—c
P(X>c) —  PX2>c)

+ Cx = Cx,

E[G;] = E[X;] — cE[r] =

where we used that E[(X — ¢,)T] = f(c«) = c for the last equality. Furthermore, for n € N*,
we deduce from (5.25) that a.s. :

E[Gn+1|Fn] > G on {n<Tt} ﬂ{Gn > —o0}, (5.26)
E[Gn+1|Fn) < Gp on {n>r71}. (5.27)

We now state a technical Lemma whose proof is postponed to the end of this section.
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Lemma 5.26. Let X be a random variable taking values in [—oo, +00). Let (X,,,n € N*) be a
sequence of random variables distributed as X. Let ¢ €]0,4o00[. Set Gy, = maxj<p<n Xy — nc
forn € N*. If E[(XT)?] < +o0, then E[sup,en+ G;t] < +00 and limsup G,, = —o0.

According to Lemma 5.26, we have that (5.2) and (5.3) hold. According to Proposition
5.17, 7 given by (5.5) is optimal. This implies that Vi, = E[G,] > E[G,;] > —oo and since
a.s. G = —00, we get that 7, is finite. We deduce also from (5.26) that a.s. 7, > 7.

We have with ¢ = ¢/2:

o _ . o n < N 2
oo < E[G.,] ]E[kg[llaiﬂ)(k 7] — E[nc] < E[:g@(lrél]?;{n)(k nc' )] — Elre
Using Lemma 5.26 with ¢ replaced by ¢, we get that E[sup,,cy-(maxj<g<n, Xip — nd)t] is
finite and thus E[r,] is finite. Let n € N*. On {7 = n}, we have for finite £ > n that
Gr — ¢ < Gropnk < sup,eny G and thus a.s.:

Lir=n) E[iiﬁ Gronkl | Fn] < +o0. (5.28)

Mimicking (5.14) with G instead of S and using that 7. > 7, we deduce from (5.27) that
a.s., on {7 = n}, E[G, k| Fn] < Gy, for all finite k > n. Letting k goes to infinity, since 7 is
a.s. finite, we deduce by dominated convergence, using (5.28), that E[G.,|F,] < G, a.s. on
{7 =n}. Since 7 is finite, this gives E[G,] < E[G]. Since 7, is optimal, we deduce that 7 is
also optimal. This gives V, = E[G,] = ¢,. Notice also that a.s. 7 = 7, as 7, is the minimal
optimal stopping time according to Exercise 5.4.

If one can not call back a previous buyer, then the gain is G, = X, — nc. Let V/
be the corresponding maximal gain. On the one hand, since G!! < G, for all n € N, we
deduce that V) < V,. On the other hand, we have G = G, = G,,. This implies that
V! > E[GY] = E|G,] = Vi. We deduce that V" = ¢, and 7 is also optimal in this case.

In this last part, we assume furthermore that E[|X|] < +00. We shall prove directly, as
Corollary 5.24 can not be used here, that the infinite horizon case is the limit of the finite
horizon cases. We first consider the case where previous buyers can be called back, so the
gain is G, = maxj<i<p X — nc for n € N*. For n € N*, we have a.s. that X; —7¢c <
Gran < SUD, G,'. By dominated convergence, we get that lim, . E[Grnn] = E[G;] = Vi.
We deduce that V* > lim,, 00 E[Grnn] = Vi and V) =V, as Vi, > V*. Therefore the infinite

horizon case is the limit of the finite horizon cases. (Notice that if 1 > P(X = —o0) > 0,
then the infinite horizon case is no more the limit of the finite horizon cases as V,* = —oo for
all n € N*.)

We now consider the case where previous buyers can not be called back, so the gain is
G! = X, —nc for n € N*. Let V! = V, (resp. V)'") denote the maximal gain when the
horizon is infinite (resp. equal to n). We have:

0< V>-k// - V*/m < E[Gfr/* - Gfr/*/\n] <E [1{n<7'*<oo}(XT* - Xn)] =E [1{n<fr*<oo} (XT* - Xl)] )

where we used that G — G}/ < X, —X,, on {n < 7.} for the second inequality and that con-
ditionally on {n < 7. < oo}, (Xr.,X,) and (X, ., X1) have the same distribution for the last
equality. Since X, and X; are integrable, we get that lim,— 1. E [1{n<7—*<oo}(XT* — Xl)] =0
by dominated convergence. We deduce that the infinite horizon case is the limit of the finite
horizon cases.
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Proof of Lemma 5.26. Assume that E[(XT)?] < 4+o0. Since X, —nc < G,, < maxj<p<n(Xg—
kc) for all n € N*, we deduce that sup, ey« G, = sup,, e+ (X, — nc). This gives:

E{ sup Gﬂ :E[ sup (Xn—nc)+] gE[ Z (X, —nc)ﬂ :E[ Z (X—nc)ﬂ,

neN* neN* neN* neN*

where we used Fubini (twice) and that X, is distributed as X in the last equality. Then use

that for € R:
Z (m - n>+ < Z x+1{n<x+} < (x+)27
neN* neN*
toget Bl Y cne (X — nc)*} < E[(XT)?]/e < +00. So we obtain E[supneN* G,J{] < +o0.

Set G, = maxj<k<, Xy — nc/2. Using the previous result (with ¢ replaced by c¢/2),
we deduce that sup,cn«(G,)T is integrable and thus a.s. limsupG] < +oo. Since G,, =
G!, — nc/2, we get that a.s. limsup G,, < limsup G}, — limnc/2 = —oo. O

With the notation of Lemma 5.26, one can prove that if the random variables (X,,,n € N¥)
are independent then E[sup,,cy+ G;f] < 400 implies that E[(X)?] < 4o0.
5.3.3 The Markovian case

Let (Fn,n € N) be a filtration. Recall T is the set of stopping times and T¢ is the set of
stopping times bounded by ¢ € N. Let (X,,,n € N) be a Markov chain with state space E
(at most countable) and transition kernel P. Let ¢ be a non-negative function defined on
E. We shall consider the optimal stopping problem for the game with gain G,, = p(X,,) for
n € N and G4, = limsup G,, with horizon ¢ € N. We set:

vo=¢ and ¢p+1 =max(p, Pp,) forneN.

We have the following result for the finite horizon case.

Lemma 5.27. Let ( € N, x € E and ¢ a non-negative function defined on E. Assume that
Ex[p(Xn)] < 400 for all n € [0,(]. Then, we have:

90(('7:) = S;II‘)C Ex[cp(XT)] = Ex[@(XTf)]a

with 76 =inf{n € [0,¢]; X, € {¢ = pc_n}}.

Proof. We keep notations from Section 5.3. Recall definition (5.22) of S5 for the finite horizon
¢ € N. We deduce from Proposition 5.6 and Sé = G¢ that SS = ©c—n(Xp) forall 0 <n < ¢

and that the optimal stopping time is = inf{n € [0,(]; pc—n(Xn) = ©(Xn)}. O
We give a technical lemma.

Lemma 5.28. The sequence of functions (pn,n € N) is non-decreasing and converges to
a limit say @, such that ¢. = max(p, Py.). For any non-negative function g such that
g > max(p, Pg), we have that g > ¢..
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Proof. By an elementary induction argument, we get that the sequence (¢,,n € N) is non-
decreasing. Let ¢, be its limit. By monotone convergence, we get that ¢. = max(p, Ppy).
Let g be a non-negative function g such that g > max(y, Pg), we have by induction that
g > ¢y and thus g > @,. O

We now give the main result of this section on the infinite horizon case. Recall T() is the
set of bounded stopping times.

Proposition 5.29. Let © € E and ¢ a non-negative function defined on E. Assume that
E,[sup,ey ¢(Xn)] < +00. Then, the mazimal gain under P, is given by:

pu(x) = sup Ex[p(Xr)] = sup E;[p(X7)] = E[p(Xr,)],
TeT(®) T€T

with the optimal stopping time:
T« = inf{n € N; X, € {¢o = @i }}, (5.29)

and the conventions inf() = oo and ¢(Xoo) = limsup p(X,,). Furthermore, the infinite
horizon case is the limit of the finite horizon case and a.s. T, = T, .

Proof. We keep notations from the proof of Lemma 5.27. Lemma 5.28 implies that S;; =
lime o0 S§ = ©«(Xpn). Recall that by definition 77 = lim¢_o 7$. According to Proposition
5.25, the infinite horizon case is the limit of the finite horizon cases and the optimal stopping
time 7, is given by (5.5) that is by (5.29) with the conventions inf() = co and ¢(Xs) =
lim sup p(X,,). We also get it is a.s. equal to 75 and that Vi, = E[G,] = E;[S§] = p«(z). O

Exercise 5.10. Let © € E and ¢ a non-negative function defined on E. Assume that
E[sup,en 9(Xn)] < +oo and consider the gain sequence (Gp,n € N) with G, = ¢(X,)
and G, = limsup G,,. Recall the minimal stopping time 7, defined by (5.5) or equivalently
(5.29) and the maximal stopping time 7., defined by (5.6). Prove that:

T =inf{n e N; X,, € {9 > Pp,}} and 7 =inf{neN; X, € {¢ > Pp.}},

with the convention inf ) = oco. A

5.4 Appendix

We give in this section some technical Lemmas related to integration. Let (Q2,P, F) be a
probability space.

Lemma 5.30. Let X and (X,,,n € N) be real-valued random variables. LetY and (Y, n € N)
be mnon-negative integrable random wvariables. Assume that a.s. X, <Y, for alln € N,
lim, oo Y, =Y and lim,_, E[Y,,|H] = E[Y|H], where H C F is a o-field. Then we have
that a.s.:

limsupE[X,|H] <E [limsuan|7-[] .

n—oo n—o0
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Proof. By Fatou Lemma, we get lim inf,,_,o, E [X,|H] > E [liminf,_, X,, |H]. We also have:

limsupE [X,[|H] = —liminfE [V, — X;7| H] — ILm E[Y,| H]

n—o00 n—00

< E [liniinf(Yn — X)) ’H} _E[Y|H]

n—oo n—oo

=E [nmsupx,ﬂ 7—[] —E [ lim Y,,| 7—[} —E[Y|H]|=E [limsupX,ﬂ H] ,
n—o0
where we used Fatou lemma for the inequality. To conclude, use that a.s.: :

limsup E[X,|H] < limsup E[X||H] — lirginfE[X,ﬂ”H}

and limsup,,_, ., X;7 — liminf,_, X,; = limsup,,_,., X,. O

Let F = (Fn,n € N), with F,, C F, be a filtration. We set Foo = \/,,cry Fn the smallest
possible o-field which contains J,,c Fa-

Lemma 5.31. Let M be random variable taking values in [—00, +00) such that E[M*] < +oc.
Let M,, = E[M| F,] for n € N. Then, we have that a.s. limsup M,, < M.

Proof. Let a € R. By Jensen inequality, we have that M, V a < E[M V a| F,]. According
to Corollary 4.25, we have a.s. limsup M,, < limsup M,, Va < E[M V a| Fo]. By monotone
convergence, we deduce by letting a goes to —oo, that limsup M,, < E[M|Fs]| = Ms. O
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Chapter 6

Brownian motion

6.1 Gaussian process

6.1.1 Gaussian vector

We recall that X is a Gaussian (or normal) random variable if it is a real-valued random
variable whose distribution has density f,, ,2 with respect to the Lebesgue measure on R
given by:

P () = e @D o R,

V2mo?

with parameters m € R and ¢ > 0. The random variable X is square integrable and the
parameter m is the mean of X and o? its variance. The law of X is often denoted by
N(m,0?). By convention, the constant m € R will also be considered as a (degenerate)
Gaussian random variable with o2 = 0 and we shall denote its distribution by A'(m,0). The
characteristic function v, ,2 of X with distribution N (m, 0?) is given by:

; 1
Umo2(u) =E [eZ“X] = exp (wm ~3 02u2> for u € R. (6.1)

In the next definition we recall the extension of the Gaussian distribution in higher di-
mension. We recall that a matrix ¥ € R4 with d > 1, is positive semi-definite if it is
symmetric and (u, Yu) > 0 for all u € R?, where (-, -) is the Euclidean scalar product on R¢.

Definition 6.1. Let d > 1. Let p € R? and ¥ € R¥? be a positive semi-definite matriz. A
Re-valued random variable X has Gaussian distribution N'(u, X)) if its characteristic function

Y5 s gwen by:
Pux(u) =E [e““’xq = exp <z<u, ) — %(u, Zu>> for u € RY (6.2)

If X is a Gaussian random variable with distribution AV (u, ¥), then X is square integrable
with mean E[X]| = p and covariance matrix (see Definition 1.61) Cov(X, X) = X. Further-
more using the development of the exponential function in series, we get that for all A € C¢,
the random variable eX) is integrable, and we have:

E [ewﬂ — exp (()\, 1)+ %u, EA>>. (6.3)

111
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Using (6.2) with u replaced by M'u, we deduce the following lemma, which asserts that
every affine transformation of a Gaussian random variable is still a Gaussian random variable.

Lemma 6.2. Let p,d € N*. Let X be a R*-valued Gaussian random variable with distribution
N(p,X). Let M € RP*? and ¢ € RP. ThenY = ¢+ MX is a RP-valued Gaussian random
variable with parameter E[Y] = c+ My and Cov(Y,Y) = MXM .

The next remark ensures that for all 4 € R? and ¥ € R4*? a positive semi-definite matrix,
the distribution N (p, X) is meaningful.

Remark 6.3. Let d > 1. Let (Gy,...,Gq) be independent real-valued Gaussian random
variables with the same distribution A(0,1). Using (6.2), we get that the random vector
G = (Gq,...,Gy) is Gaussian with distribution A'(0, I;) and I; € R9*? the identity matrix.

Let 4 € R? and ¥ € R¥? a positive semi-definite matrix. There exists an orthogonal
matrix O € R¥? (that is OO = 00" = I;) and a diagonal matrix A € R?*? with non-
negative entries such that ¥ = OA207". According to Lemma 6.2, we get that 4+ OAG has
distribution NV (u, X). O

We have the following result on the convergence in distribution of Gaussian vectors.

Lemma 6.4. Let d > 1. The family of Gaussian probability distributions {N(u,X); u €
RY, Y € R positive semi-definite} is closed for the convergence in distribution. Further-
more, if (Xn,n € N) are Gaussian random variables on R?, then the sequence (X,,n € N)
converges in distribution towards a limit, say X, if and only if X is a Gaussian random
variable, (E[Xy], n € N) and (Cov(X,, X,), n € N) converge respectively towards E[X] and
Cov(X, X).

Proof. We consider the one-dimensional case d = 1. (The general case d > 1 which is
proved similarly is left to the reader.) Let (X,,n € N) be a sequence of real-valued Gaussian
random variables which converges in distribution towards a limit, say X. Let m, = E[X,,]
and Jz = Var(X,,), and 1, be the characteristic function of X,,. As the sequence of functions
(¥n,n € N) converges pointwise towards 1, the characteristic function of X, we get that
limy, s 4o [P (uw)| = |¢(w)|. This and (6.1) readily implies that the sequence (o,,n € N)
converges to a limit o € [0, +o00]. Use that ¢(0) = 1 to deduce that o is finite.

We shall now prove that the sequence (m,,n € N) converges. We deduce from the
first part of the proof that (e™"» = eu*on/2 Yn(u), n € N) converges pointwise towards
o(u) = e¥’7*/24)(u). Notice that ¢ is continuous on R and that lo(u)| =1 for u € R. Let G
be Gaussian random variable with distribution A/(0,1). By dominated convergence, we get
that for all z € R and a > 0:

e—(mn—m)2a2/2 —F [ei(mn—x)aG} E [e—imaG QO(CLG)} ] (64)
n—oo

This implies that the sequence (m,,n € N) either converges in R or lim, o |my,| = 400.
In the latter case, we deduce from (6.4) that E [e=**%C p(aG)] = 0 for all @ > 0. Letting a
goes to 0, we deduce by dominated convergence, as |¢| = 1, from the continuity of ¢ at 0
that ©(0) = 0 which is a contradiction. Thus the sequence (m,,n € N) converges to a limit
m € R. We deduce that, for all u € R, 1, (u) converges towards elum=0u?/2 which is thus
equal to 1 (u). We deduce from (6.1) that X has distribution A/ (m, o?).
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We have proved that if the sequence (X,,,n € N) of real-valued Gaussian random variables
converges in distribution towards X, then X is a Gaussian random variable and (E[X,,], n €
N) as well as (Cov(X,, X,,), n € N) converge respectively towards E[X] and Cov(X, X). The
converse is a direct consequence of (6.1). O

We give in the next remark an alternative characterization for Gaussian vectors.

Remark 6.5. Let d > 1 and X a R%valued random variable. If (u, X) is Gaussian for all
u € R4, then X has a Gaussian distribution.

Indeed, since (u,X) is square integrable for all u € R? we deduce that X is square
integrable. Let p = E[X] and ¥ = Cov(X, X). Notice that ¥ is positive semi-definite as
(u,Yu) = Var({u, X)) > 0 for u € R Since (u, X) is Gaussian with mean (u, E[X]) and
variance Var({u, X)), its distribution is N ((u, u), (u, Xu)). We deduce from (6.1) (with v and
X replaced respectively by 1 and (u, X)) that (6.2) holds. Thus, by Definition 6.1, X is a
Gaussian random vector with distribution N (p, X). O

It is easy to characterize the independence for Gaussian vectors.

Lemma 6.6. Let d > 1, p > 1, X be a R%-valued random variable and Y be a RP-valued
random wvariable. Assume that (X,Y) has a Gaussian distribution. Then X and Y are
independent if and only if Cov(X,Y) = 0.

Proof. Since Cov(X,Y) =0, we get, with W = (X,Y), that:

Cov (W, W) = (COV(X,X) 0 >

0 Cov(Y,Y)
and thus for all w = (u,v) € R4FP:
(w, Cov(W, W)w) = (u, Cov(X, X)u) + (v, Cov(Y,Y)v).

Using (6.2) (three times), we get that = E[e/wW)] = E[e! X E[e! )] for all w = (u,v) €
R*P. Since the characteristic function characterizes the distribution of R9-valued random
variables for ¢ € N*, we deduce that (X,Y’) has the same distribution as (X’,Y”) where X’
and Y’ are independent and respectively distributed as X and Y. This implies that X and
Y are independent.

The converse is immediate. t

6.1.2 Gaussian process and Brownian motion

We refer to [6, 4, 5] for a general theory of Gaussian processes. The next definition gives an
extension of Gaussian vectors to processes.

Definition 6.7. Let T' be a set. Consider the Borel o-field B(R) on R, and the product
space E = RT with the corresponding product o-field €& = B(R)®T. We say a measurable
E-valued random variable X = (X, t € T) is a Gaussian process indezxed by T if for all finite
set J C T, the vector (X, t € J) is Gaussian. In this case the mean process m is given
by m = (m(t) = E[X¢J;t € T) and the covariance kernel K is given by K = (K(s,t) =
Cov(Xs, Xy); s,t €T).
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Lemma 6.8. The distribution of a Gaussian process is characterized by its mean process and
covariance kernel.

Proof. Let X = (Xy,t € T) be a Gaussian process indexed by 7" with mean process m
and covariance kernel K. For all J C T finite, the vector (X, ¢ € J) is Gaussian and its
distribution is characterized by its mean (m(t),t € J) and its covariance (K(s,t); s,t € J),
hence by m and K. Then use Lemma 1.29 to get that the distribution of X is characterized
by m and K. O

Let K = (K(s,t); s,t € T') be the covariance kernel of a Gaussian process indexed by
T. From the proof of Lemma 6.8, we get that (K (s,t); s,t € J) is a positive semi-definite
matrix for all finite J C T. We deduce that the covariance kernel K is a positive semi-definite
function, that is K(s,t) = K(t,s) for all s,t € T" and for all finite set J C T" and all R-valued
vector (at,t € J), we have:

Z asay K(s,t) > 0.

s,tedJ

We admit the converse, see Corollary 3.5 in [6].

Theorem 6.9. Let T be a set, m a real-valued function defined onT" and K a positive semi-
definite function defined on T'. Then there exist a probability space and a Gaussian process
defined on this probability space with mean process m and covariance kernel K.

One very interesting Gaussian process is the so called Brownian motion. We first give its
covariance kernel.

Lemma 6.10. The function K = (K (s,t); s,t € Ry) defined by K (s,t) = sAt is a covariance
kernel on R...

Proof. Let X be the Lebesgue measure on R . We recall that (f, g) = [ fgdA defines a scalar
product on L*(Ry,B(Ry),\). Set f; = 1oy for t € Ry, and notice that K(s,t) = (fs, fi)
for all s, € R;. The function K is clearly symmetric and for all n € N*, ¢1,... ¢, € Ry,
ai,...,an € R, we have:

Z a;a; K(tivtj):/( Z aifti)QdAZO-

1<i,5<n 1<i<n

Thus the function K is positive semi-definite. O

The existence of the Brownian motion, see below, is justified by Theorem 6.9 and Lemma
6.10. We say a Gaussian process is centered if its mean function is constant equal to 0.

Definition 6.11. A standard Brownian motion B = (B, t € Ry) defined a probability
space (2, F,P) is a centered Gaussian process with covariance kernel K given in Lemma
6.10. A Brownian motion with drift b € R and diffusion coefficient o € R is distributed as
(bt S O'Bt, te R+)
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We derive some elementary computations for a standard Brownian motion B = (B, t €
Ry). For t > s > u > 0, we have:

Var(B; — Bs) = Var(By) + Var(Bs) —2Cov(By, Bs) =t — s = Var(By_s), (6.5)
Cov(B; — Bs, B,,) = Cov(By, B,) — Cov(Bs, By) = 0.

6.2 Properties of Brownian motion

We refer to [3, 7] for a general presentation of Brownian motion.

6.2.1 Continuity

There is a technical difficulty when one says the Brownian motion is a.s. continuous, because
one sees the Brownian motion as a R®+-valued random variable and one can prove that the
set of continuous functions is not measurable with respect to o-field B(R)®®+ on R¥+. For
this reason, we shall consider directly the set of continuous functions.

For an interval I C Ry, let CY(I) = C°(I,R) be the set of R-valued continuous functions
defined on I. We define the uniform norm |||, on C°(I) as ||f||l = supes|f(z)| for
f € C°(I). It is easy to check that (C°(I),|||l,,) is a Banach space. And we denote by
B(C°(I)) the corresponding Borel o-field. Notice that CO(I) is a subset of R (but it does
not belong to B(R)®!). We consider C°(I) N B(R)®! = {C°(I)N 4; A € B(R)®!} which is
a o-field on CO(I); it is called the restriction of B(R)®! to C%(I). We admit the following
lemma which states that the Borel o-field of the Banach space C°(I) is C°(I) N B(R)®!, see
Example 1.3 in [1]. (The proof given in [1] has to be adapted when I is not compact).

Lemma 6.12. Let I be an interval of Ry. We have B(C*(I)) = C°(I) N B(R)®1.

Since a probability measure on R’ is characterized by the distribution of the corresponding
finite marginals, one can then prove that a probability measure on C°(I) is also character-
ized by the distribution of the corresponding finite marginals. We also admit the following
theorem, which says that the Brownian motion is a.s. continuous, see Theorem 1.2.2 and
Corollary 1.2.6 in [7].

Theorem 6.13. There exists a probability space (2, F,P) and a C°(R,)-valued process B =
(Bi,t € Ry) defined on it which is a Brownian motion (when one sees B as a R®+-valued
process). Furthermore, for any ¢ > 0, B is a.s. Hélder with index 1/2 — ¢ and a.e. not
Hélder with index 1/2 + €.

In particular, the Brownian motion has no derivative.

6.2.2 Limit of simple random walks

Let Y be a R-valued square integrable random variable such that E[Y] =0 and Var(Y) = 1.
Let (Y,,n € N) be independent random variables distributed as Y. We consider the random
walk S = (S, n € N) defined by:

So=0 and S :ZYk for n € N*.
k=1
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We consider a time-space scaling X () = (Xt(n),t € R;) of the process S given by, for n € N*:

1

We have the following important result.

Proposition 6.14. Let B = (B;,t € Ry) be a standard Brownian motion. The sequence
of processes (X("), n € N*) converges in distribution for the finite dimensional marginals
towards B: for all k € N*, t1,...,t;, € Ry, the sequence of vectors ((Xt(ln), ... ,Xt(:)), n € N¥)
converges in distribution towards (By,, ..., By,).

Proof. We deduce from the central limit theorem that (|nt] /25 Int],7 € N¥) converges in
distribution towards a Gaussian random variable with distribution N(0,1). This implies
that (Xt("),n € N*) converges in distribution towards B;. This gives the convergence in
distribution of the 1-dimensional marginals of X (™ towards those of B.

Let t > s > 0. By construction, we have that Xt(n) - Xﬁ”) is independent of U(Xi(tn),u €

[0, s]) and distributed as a,(t, S)Xt(il) with ap(t,s) = [n(t—s)]/(|nt]—|ns])if |nt] —|ns| >0

and a,(t,s) = 1 otherwise. Since lim, o a,(t,s) = 1, we deduce that ((Xﬁ”),X§”) —

X §”)), n e N*) converges in distribution towards (G1, Gz2), where G and G2 are independent
Gaussian random variable with G; ~ N(0,s) and Go ~ N(0,t — s). Notice that (G1,G2)
is distributed as (Bs, By — Bs). Indeed (Bs, By — Bs) is Gaussian vector as the linear trans-
formation of the Gaussian vector (Bs, By); it has mean (0,0) and we have Var(B;) = s,
Var(By — Bs) = t — s, see (6.5), and Cov(Bs, By — Bs) = 0, see (6.6), so the mean and
covariance matrix of (G1,G2) and (Bs, By — Bs) are the same. This gives they have the
same distribution. We deduce that ((X S(n), Xt(n)), n e N*> converges in distribution towards

(Bs, By). This gives the convergence in distribution of the 2-dimensional marginals of X (n)
towards those of B.

The convergence in distribution of the k-dimensional marginals of X (™ towards those of
B is then an easy extension which is left to the reader. ]

In fact we can have a much stronger statement concerning this convergence by considering
a continuous linear interpolation of the processes X (™. For n € N*, we define the continuous

process X (") = (X't(n), t € Ry) by X't(") = Xt(n) + C’t(n), where C’t(n) = ﬁ(nt — [nt])Y|nt)41-

Notice that E[]Ct(n)|2] < n~! so that (C't(n),n~ € N*) converges in probability towards 0 for
all t € R,. We deduce that the sequence (X, n € N*) converges in distribution for the
finite dimensional marginals towards B. The Donsker’s theorem state this convergence in
distribution holds for the process seen as continuous functions. For a function f = (f(¢),t €
R, ) defined on Ry, we write fo 1) = (f(t), t € [0,1]) for its restriction to [0,1]. We admit
the following result, see Theorem 8.2 in [1].

Theorem 6.15 (Donsker (1951)). The sequence of processes (f([(gli], n e N*) converges in
distribution, on the space C°([0,1]), towards Byo,1), where B is a standard Brownian motion.
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In particular, we get that for all continuous functional F' defined on C°([0,1]), we have

that (F(X)

real-valued functionals, say F', on C°([0,1]) are continuous, for f € C°([0,1]):

,n € N*) converges in distribution towards F'(Bjg 17). For example the following
[0,1]

F() =1l F(f)=?315(f), F(f) = [Ol]fd/\, F(f) = f(to) for some g € [0,1].

6.2.3 Markov property

Let F = (F;,t € Ry) be a filtration on (£2, F,P), that is a non-decreasing of family of o-fields,
subsets of F. A process (X;,t € R;) defined on 2 is said F-adapted if X; is F;-measurable
for all t € Ry

Definition 6.16. Let X = (Xt € Ry) be a R-valued process adapted to the filtration
F: (ft,tER+)

(i) We say that X is a Markov process with respect to the filtration F if for all t € R4,
conditionally on the o-field o(X¢) the o-fields F; and o(X,,u > t) are independent.

(ii) We say that X has independent increments if for allt > s > 0, X; — X is independent
of Fs.

(i1i) We say that X has stationary increments if for all t > s, Xy — X, is distributed as
Xi—s — Xo.

In the previous definition, usually one takes F the natural filtration of X, that is F; =
o(Xy,u € [0,¢]). Clearly, if a process has independent increments, it has the Markov property
(with respect to its natural filtration).

Lemma 6.17. The Brownian motion is a Markov process (with respect to its natural filtra-
tion), with independent and stationary increments.

Proof. Let B = (By,t € R;) be a standard Brownian motion and F = (F,t € Ry) its natural
filtration, that is F; = o(By, v € [0,t]). It is enough to check that it has independent and
stationary increments. Let ¢ > s > 0. Since B is a Brownian process, we deduce that By — B,
is Gaussian, and we have Var(B; — B;) =t —s = Var(B;_s), see (6.5). Since B is centered, we
deduce that By — Bs and B;_s have the same distribution A/ (0,¢ — s). Thus B has stationary
increments. Since B is a Gaussian process and, according to (6.5), Cov(B,, By — Bs) = 0 for
all u € [0, s], we deduce that B; — By is independent of Fs = o(By,u € [0,s]). Thus, B has
independent increments. The extension to a general Brownian motion is immediate. O

We mention that the Brownian motion is the only continuous random process with inde-
pendent and stationary increments (the proof of this fact is beyond those notes), and that
the study of general random process with independent and stationary increments is a very
active domain of the probabilities.
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6.2.4 Brownian bridge and simulation

Let B = (By,t € Ry) be a standard Brownian motion. Let 7' > 0 be given. The Brownian
bridge over [0, T] is the distribution of the process W1 = (W t € [0,T]) defined by:

t
Wl =B, - B

See Exercise 8.38 for the recursive simulation of the Brownian motion using Brownian
bridge approach.

6.2.5 Martingale and stopping times

We shall admit all the results presented in this section and refer to [2, 3, 7, 8, 9]. We consider
a standard Brownian motion B = (B;,t € R ) seen as a random variable on C°(R, ) defined
on a probability space (2, F,P). The Brownian filtration F = (F;,¢ € R, ) of the Brownian
motion is given by F; generated by o(B,,u € [0,t]). We set Fo = \/teR+ Fi.

A non-negative real-valued random variable 7 is a stopping time with respect to the
filtration F if {7 <t} € F; for all ¢ € Ry. The o-field F; of the events which are prior to a
stopping time 7 is defined by:

Fr={BeFsx; BN{r<tteF foral teRy}.

Remark 6.18. We recall the convention that inf() = +oo. Let A be an open set of R. The
entry time 74 = inf{t > 0; B; € A} is a stopping time !. Indeed, we have for ¢t > 0 that:

{ractt= |J {B.cd}eF.
s€Qy,s<t

O

A real-valued process M = (M;,t € R, ) is called a F-martingale if it is F-adapted (that
is My is Fyp-measurable for all ¢ € Ry ) and for all ¢t > s > 0, M, is integrable and:

E[M| Fs] = Ms a.s.. (6.7)

If (6.7) is replaced by E[M;| Fs] > Mj a.s., then M is called an F-sub-martingale.
If (6.7) is replaced by E[M;| Fs] < Mj a.s., then M is called an F-super-martingale.

In this setting, we admit the following optional stopping theorem, see [7].

Theorem 6.19. If M is a continuous F-martingale and T, S are two bounded stopping times
such that S < T, then we have:

E[Mr|Fs] = Mg a.s.. (6.8)

In particular, we get that E[Mp] = E[My].

1One can prove that if X = (Xt,t € Ry) is an a.s. continuous process taking values in a metric space F
and A a Borel subset of E then: the entry time 74 = inf{t > 0; B; € A} is a stopping time with respect to the
natural filtration F = (F;, ¢ € Ry) where Fy = (X, u € [0,¢]); and the hitting time T4 = inf{t > 0; B, € A}
is a stopping time with respect to the filtration (Fi4,t € Ry) where Fry = (1,5, Fs-
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We admit that the Brownian motion has the strong Markov property, see [7].

Theorem 6.20. Let T' be a finite stopping time. Then B = (Bt = Brit— Br,t €eRy) isa
standard Brownian motion independent of Fr.

6.3 Wiener integrals

Let (€2, F,P) be a probability space on which is defined a Brownian motion B = (By,t € Ry).
In Section 6.3.1, we shall give a precise meaning of the Wiener integral fg f(s)dBg for some
general function f, whereas the Brownian motion is not differentiable. This integral (and
its generalization known as the It integral when the integrand f is also random) has been
intensively used in physics, biology, finance, applied mathematics, ... The Wiener integral
can also bee seen as an extension of the stochastic discrete integrals (see Lemma 4.14) to the
continuous case. This approach, which is not developed here, known as stochastic calculus
with respect to martingales is another very important generalization of the integrals with
respect to the Brownian motion. We refer to [7, 8, 9] for a complete exposition. We present
in Section 6.3.2 an application to the Langevin equation which describes the evolution of
the speed of a particle in a fluid. In Section 6.3.3, we use the Wiener integral to define the
Cameron-Martin change of probability measure and compute the Laplace transform of the
hitting time of a line by the Brownian motion.

6.3.1 Gaussian space

Let A be the Lebesgue measure on R. The vector space L?(\) = L?(R,, B(R,), \) endowed
with the scalar product (f, g)\ = fR+ fgdAX is an Hilbert space. We consider the vector space
T = Vect(1)py), t € Ry) C L? of finite linear combinations of indicators of intervals [0,¢) for
t € R, that is:

7= {Zak_ll[tk—lztk) for somen € N*, 0 =tg < --- <ty and ag,...,an_1 € R}. (6.9)
k=1

We have the following density result.
Lemma 6.21. The vector space T is dense in the Hilbert space L.

Proof. Assume the vector space Z is not dense in the Hilbert space L?, that is, there exists f €
L? orthogonal to Z and non zero. We get that for all ¢ > 0, fR+ 1y frdX = fR+ 1o fo dA,
and denote by ¢; this common value. Since f is non-zero, there exits 1" such that ¢y > 0. The
two probability measures 1(y 71+ A/cr and 1jg 71/~ A/cr coincide on the sets C = {[0,], ¢ €
Ry }. Since the o-field generated by C is the Borel o-field on R, we deduce from the monotone
class theorem, see Corollary 1.14, that 1jg 7+ A = 1o f- A, and thus 1 77 f+ = 1077/~
By definition of fi and f_, this implies that f = 0 a.e. on [0, 7], and thus ¢z = 0. Since this
is absurd, we deduce that the vector space 7 is dense in the Hilbert space L?. ]

We deduce from Proposition 1.50 that L?(P) = L?(2, F,P) endowed with the scalar
product (X,Y)p = E[XY] for X,Y € L?(P) is an Hilbert space. Let Zg = Vect(B;, t €



120 CHAPTER 6. BROWNIAN MOTION
R, ) € L?(PP) be the vector space of finite linear combinations of marginals of B, that is:

n
Ip = {Zak_l(Btk — By, ,) forsomen e N*, 0=ty <--- <t, and ag,...,an_1 € ]R}.
k=1
Let Hp be the closure in L?(P) of Zg. Notice that Hp is also an Hilbert space. The space
Hp is a Gaussian space in the following sense.

Lemma 6.22. Let d € N* and X1