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Abstract

We consider the optimal allocation of (perfect) vaccine in an heterogeneous SIS model. Using
a coupling approach, we explain how different models for the heterogeneity of the population
lead to the same Pareto frontier in the cost/loss valuation of the vaccinations strategies. This
covers in particular the elementary continuous representation of discrete models and the
measure preserving transformation which appears in graphon theory.
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1 Introduction
We consider the effect of vaccination in an heterogeneous SIS model (with S=Susceptible

and I=Infectious), in the framework introduced in [1]. The model, which will be recalled in
detail below, is parametrized by four elements: a feature space, denoted by 𝒳 ; two real-valued
functions 𝛾 and 𝔠 on𝒳, representing the feature-dependent recovery rate and vaccination cost;
a real-valued function 𝑘 on 𝒳2, encoding the infection rate between individuals of different
features. We focus on optimizing feature-dependent vaccination strategies, as discussed in [2].

In classical probability theory, the same random experiment may be represented by two
different probability spaces and random variables, with the same distribution. Unsurprisingly,
the same situation occurs here in the choice of the trait space and the associated parameters. The
goal of this article is to describe precisely a notion of equivalence between models via a coupling,
and to compare equilibria and optimal vaccination strategies between equivalent models.

We address the three following questions, see Theorem 3.6 and Corollary 3.7:

1. Do equivalent models lead to comparable optimal vaccination strategies? Is knowing the
optima for one model enough to find the optima in equivalent models?

2. If the feature space is “too rich”, and encodes features that are not relevant to the propagation
of the epidemic, is it possible to reduce the model by “forgetting” irrelevant features?

3. Do equivalent models evolve in the same way, and in particular can we compare their
equilibria?
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Equivalence by coupling for heterogeneous SIS models

In the next section, we introduce the necessary notation, borrowing heavily from the pre-
sentation of [7]. The main result is stated in Section 3 and gives positive answers to the three
questions; the proofs are postponed to Section 5. Detailed examples are discussed in Section 4.

2 Framework and notation
2.1 The heterogeneous SIS model

We recall the differential equations governing the epidemic dynamics in meta-population SIS
models introduced in [1], to which we refer for additional context and details.

Let (𝒳,ℱ, 𝜇) be a probability space, where 𝑥 ∈ 𝒳 represents a feature and the probability
measure 𝜇(d𝑥) represents the fraction of the population with feature 𝑥. The parameters of the SIS
model are given by a recovery rate function 𝛾, which is a positive bounded measurable function
defined on 𝒳, and a transmission rate kernel 𝑘, where a kernel is a nonnegative measurable
function defined on𝒳2. In accordance with [1], we consider for a kernel k on𝒳 and 𝑞 ∈ (1, +∞)
its norm: ‖ k ‖∞,𝑞 = sup𝑥∈𝒳 (∫𝒳 k(𝑥, 𝑦)𝑞 𝜇(d𝑦))1∕𝑞 . For a kernel k on 𝒳 such that ‖ k ‖∞,𝑞 is
finite for some 𝑞 ∈ (1, +∞), we define the integral operator 𝒯k on the set ℒ∞ of bounded
measurable real-valued function on 𝒳 by:𝒯k(𝑔)(𝑥) = ∫𝒳 k(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ ℒ∞ and 𝑥 ∈ 𝒳.

By convention, for 𝑓, 𝑔 two nonnegative measurable functions defined on 𝒳 and k a kernel
on 𝒳, we denote by 𝑓k𝑔 the kernel on 𝒳 defined by:𝑓k𝑔 ∶ (𝑥, 𝑦) ↦ 𝑓(𝑥) k(𝑥, 𝑦)𝑔(𝑦). (2.1)

We shall consider the kernel 𝐤 = 𝑘𝛾−1, which is thus defined by:𝐤(𝑥, 𝑦) = 𝑘(𝑥, 𝑦) 𝛾(𝑦)−1.
We assume that: ‖ 𝐤 ‖∞,𝑞 < ∞ for some 𝑞 ∈ (1, +∞). (2.2)

The integral operator 𝒯𝐤 is the so called next-generation operator.
Let ∆ = {𝑓 ∈ ℒ∞ ∶ 0 ≤ 𝑓 ≤ 1} be the subset of nonnegative functions bounded by 1, and let𝟘, 𝟙 ∈ ∆ be the constant functions equal respectively to 0 and to 1. The SIS dynamics considered

in [1] follows the vector field 𝐹 defined on ∆ by:𝐹(𝑔) = (𝟙 − 𝑔)𝒯𝑘(𝑔) − 𝛾𝑔.
More precisely, we consider 𝑢 = (𝑢𝑡, 𝑡 ∈ ℝ), where 𝑢𝑡 ∈ ∆ for all 𝑡 ∈ ℝ+, and 𝑢 solves inℒ∞:𝜕𝑡𝑢𝑡 = 𝐹(𝑢𝑡) for 𝑡 ∈ ℝ+, (2.3)

with initial condition 𝑢0 ∈ ∆. The value 𝑢𝑡(𝑥) = 𝑢(𝑡, 𝑥)models the probability that an individual
of feature 𝑥 is infected at time 𝑡; it is proved in [1] that such a solution 𝑢 exists and is unique.

An equilibrium of (2.3) is a function 𝑔 ∈ ∆ such that 𝐹(𝑔) = 0. According to [1], there exists a
maximal equilibrium 𝔤, that is, an equilibrium such that all other equilibria ℎ ∈ ∆ are dominated
by 𝔤: ℎ ≤ 𝔤. This maximal equilibrium is obtained as the long time pointwise limit of the SIS
model started with its whole population infected: lim𝑡→∞ 𝑢𝑡 = 𝔤 where 𝑢0 = 𝟙. The fraction of
infected individuals at equilibrium, ℑ0, is thus given by:ℑ0 = ∫𝒳 𝔤 d𝜇.
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For 𝑇 a bounded operator onℒ∞ endowed with its usual supremum norm, we denote by ‖ 𝑇 ‖ℒ∞
its operator norm. The spectral radius of 𝑇 is then given by 𝜌(𝑇) = lim𝑛→∞ ‖ 𝑇𝑛 ‖1∕𝑛ℒ∞ . The
reproduction number 𝑅0 associated to the SIS model given by (2.3) is the spectral radius of the
next-generation operator: 𝑅0 = 𝜌(𝒯𝐤). (2.4)

If 𝑅0 ≤ 1 (sub-critical and critical case), then 𝑢𝑡 converges pointwise to 𝟘 when 𝑡 → ∞. In
particular, the maximal equilibrium 𝔤 is equal to 𝟘 and ℑ0 = 0. If 𝑅0 > 1 (super-critical case),
then 𝟘 is still an equilibrium but different from the maximal equilibrium 𝔤, as ℑ0 = ∫𝒳 𝔤 d𝜇 > 0.
2.2 Vaccination strategies

A vaccination strategy 𝜂 of a vaccine with perfect efficiency is an element of ∆, where 𝜂(𝑥)
represents the proportion of non-vaccinated individuals with feature 𝑥. Notice that 𝜂 d𝜇 cor-
responds in a sense to the effective population. In particular, the “strategy” that consists in
vaccinating no one corresponds to 𝜂 = 𝟙, the constant function equal to 1, while 𝜂 = 𝟘, the
constant function equal to 0, corresponds to vaccinating everybody.

Recall the definition of the kernel 𝑓k𝑔 from (2.1). For 𝜂 ∈ ∆, the kernel 𝐤𝜂 = 𝑘𝜂∕𝛾 has finite
norm ‖ ⋅ ‖∞,𝑞, so we can consider the bounded positive operators𝒯𝐤𝜂 and𝒯𝑘𝜂 onℒ∞. According
to [1, Section 5.3.], the SIS equation with vaccination strategy 𝜂 is given by 𝑢𝜂 = (𝑢𝜂𝑡 , 𝑡 ≥ 0)
solution to (2.3) with 𝐹 is replaced by 𝐹𝜂 defined by:𝐹𝜂(𝑔) = (𝟙 − 𝑔)𝒯𝑘𝜂(𝑔) − 𝛾𝑔.
The quantity 𝑢𝜂𝑡 (𝑥) = 𝑢𝜂(𝑡, 𝑥) then represents the probability for a non-vaccinated individual of
feature 𝑥 to be infected at time 𝑡; so at time 𝑡 among the population of feature 𝑥, a fraction 1−𝜂(𝑥)
is vaccinated, a fraction 𝜂(𝑥) 𝑢𝜂𝑡 (𝑥) is not vaccinated and infected, and a fraction 𝜂(𝑥) (1 − 𝑢𝜂𝑡 (𝑥))
is not vaccinated and not infected.

We define the effective reproduction number 𝑅𝑒(𝜂) associated to the vaccination strategy 𝜂 as
the spectral radius of the effective next-generation operator 𝒯𝐤𝜂:𝑅𝑒(𝜂) = 𝜌(𝒯𝐤𝜂). (2.5)

For example, for the trivial vaccination strategieswe get𝑅𝑒(𝟙) = 𝑅0 and𝑅𝑒(𝟘) = 0. We also denote
by 𝔤𝜂 the corresponding maximal equilibrium and, using that 𝜂 d𝜇 is the effective population,
we define the effective fraction of infected individuals at equilibrium as:ℑ(𝜂) = ∫𝒳 𝔤𝜂 𝜂 d𝜇. (2.6)

For example, we have ℑ(𝟙) = ℑ0 and ℑ(𝜂) = 0 for all 𝜂 ∈ ∆ such that 𝑅𝑒(𝜂) ≤ 1.
2.3 Optimal strategies

For a vaccination strategy 𝜂 ∈ ∆, we consider its loss L(𝜂), given either by the effective
reproduction number (L = 𝑅𝑒) or by the effective fraction of infected individuals at equilibrium
(L = ℑ). Following [2], we measure the cost for the society of a vaccination strategy (production,
diffusion, ...) by a nonnegative function 𝐶 defined on ∆. We shall concentrate on the affine case:𝐶(𝜂) = ∫𝒳(𝟙 − 𝜂) 𝔠 d𝜇
where the nonnegative function 𝔠 ∈ 𝐿1 represents the feature-dependent cost of vaccinating
individuals. Notice that doing nothing costs nothing, that is, 𝐶(𝟙) = 0. A simple and natural
choice is the uniform cost 𝐶uni corresponding to 𝔠 = 𝟙.
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Let us note that if 𝐻 is any of the three functionals 𝑅𝑒, ℑ or 𝐶, and if 𝜂1 = 𝜂2 𝜇-a.s., then𝐻(𝜂1) = 𝐻(𝜂2). Following [2] we therefore consider the set of vaccination strategies as a subset
of 𝐿∞: ∆ = {𝜂 ∈ 𝐿∞ ∶ 0 ≤ 𝜂 ≤ 1 𝜇 − a.s.}. (2.7)

In [2, Section 4], we formalized and study the problem of optimal allocation strategies for
a perfect vaccine in the SIS model. This question may be viewed as a bi-objective minimiza-
tion problem, where one tries to minimize simultaneously the cost of the vaccination and its
corresponding loss: min∆ (𝐶, L).

We call a strategy 𝜂⋆ Pareto optimal if no other strategy is strictly better:𝐶(𝜂) < 𝐶(𝜂⋆) ⟹ L(𝜂) > L(𝜂⋆) and L(𝜂) < L(𝜂⋆) ⟹ 𝐶(𝜂) > 𝐶(𝜂⋆).
The set of Pareto optimal strategies will be denoted by 𝒫 ⊂ ∆, and we define the Pareto frontier
as the set of Pareto optimal outcomes:ℱ = {(𝐶(𝜂⋆), L(𝜂⋆)) ∶ 𝜂⋆ ∈ 𝒫}.
We call a strategy 𝜂⋆ anti-Pareto optimal if no other strategy is strictly worse, that is, 𝐶(𝜂) >𝐶(𝜂⋆) ⟹ L(𝜂) < L(𝜂⋆) and L(𝜂) > L(𝜂⋆) ⟹ 𝐶(𝜂) < 𝐶(𝜂⋆). The set of anti-Pareto
optimal strategies will be denoted by 𝒫Anti ⊂ ∆, and we define the anti-Pareto frontier as the
set of anti-Pareto optimal outcomes ℱAnti = {(𝐶(𝜂⋆), L(𝜂⋆)) ∶ 𝜂⋆ ∈ 𝒫Anti}. We refer to [2] for
an extensive study and alternate characterizations of the Pareto and anti-Pareto frontiers; let us
simply mention that under our assumptions both frontiers are non-trivial.

2.4 Parameters of the SIS model in a nutshell
Let us summarize the setup. The SIS model is given by a probability space (𝒳,ℱ, 𝜇), a

positive recovery rate function 𝛾 ∈ ℒ∞(𝒳,ℱ), a transmission rate kernel 𝑘 (that is, a measurable
nonnegative function defined on 𝒳2) such that ‖ 𝑘∕𝛾 ‖∞,𝑞 < ∞ for some 𝑞 ∈ (1, +∞), see (2.2),
and an affine cost functionwith a nonnegative density 𝔠 ∈ 𝐿1(𝒳,ℱ, 𝜇). We denote the parameters
of the SIS model by: Param = [(𝒳,ℱ, 𝜇), (𝑘, 𝛾), 𝔠 ].
Finally, we write𝐻[Param] to emphasize the dependence of any quantity𝐻 on the parameters:
for example 𝑅𝑒[Param](𝜂) is the effective reproduction number associated to the vaccination
strategy 𝜂 in the model defined by Param.
3 Equivalence of models by coupling

We now define our main tool: the coupling of two SIS models, which gives rise to a notion of
conjugation between functions defined on the first and the second model. This tool is then used
to state our main results. All proofs are postponed to Section 5.
Remark 3.1 (Graphons and weak isometry). In Section 4, we present an example where
discrete models can be represented as a continuous models and an example based on measure
preserving transformation in the spirit of the graphon theory. We refer the reader to [12] for
similar developments in the graphon setting.

3.1 Onmeasurability
Let us recall some well-known facts on measurability. Let (𝐸, ℰ) and (𝐸′, ℰ′) be two measur-

able spaces. If 𝐸′ = ℝ, then we takeℰ′ = ℬ(ℝ) the Borel 𝜎-field. Let 𝑓 be a function from 𝐸 to 𝐸′.
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We denote by 𝜎(𝑓) = {𝑓−1(𝐴) ∶ 𝐴 ∈ ℰ′} the 𝜎-field generated by 𝑓. In particular the function 𝑓
is measurable from (𝐸, ℰ) to (𝐸′, ℰ′) if and only if 𝜎(𝑓) ⊂ ℰ. Let 𝜑 be a measurable function
from (𝐸, ℰ) to (𝐸′, ℰ′). For 𝜈 a measure on (𝐸, ℰ), we write 𝜈′ = 𝜑#𝜈 for the push-forward
measure on (𝐸′, ℰ′) of the measure 𝜈 by the function 𝜑; by definition of 𝜈′, for a nonnegative
measurable function 𝑔 defined from (𝐸′, ℰ′) to (ℝ,ℬ(ℝ)), we have:∫𝐸′ 𝑔 d𝜈′ = ∫𝐸 𝑔◦𝜑 d𝜈. (3.1)

In particular, if 𝑓, 𝑔 are measurable functions defined from (𝐸′, ℰ′) to some measurable space,
then we have that 𝜈′-a.e. 𝑓 = 𝑔 if and only if 𝜈-a.e. 𝑔◦𝜑 = 𝑓◦𝜑. Thus, if 𝑔 belongs to 𝐿𝑝(𝐸′, ℰ′, 𝜈′),
then 𝑔◦𝜑 is well defined as an element of 𝐿𝑝(𝐸, ℰ, 𝜈).

Let 𝑓 be a measurable function from (𝐸, ℰ) to (ℝ,ℬ(ℝ)). We recall (see for example [13,
Lemma 1.14]) that: 𝜎(𝑓) ⊂ 𝜎(𝜑) ⟹ 𝑓 = 𝑔◦𝜑, (3.2)

for some measurable function 𝑔 from (𝐸′, ℰ′) to (ℝ,ℬ(ℝ)).
In what follows the random variables are defined on some probability space (Ω0, ℱ0, ℙ).

3.2 Coupling and conjugate functions
Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be measurable spaces. A coupling is a measure 𝜋 on (𝐸1 ×𝐸2, ℰ1 ⊗ ℰ2) with marginals 𝜇1 and 𝜇2. By abuse of notation we also call coupling a random

variable 𝑍 = (𝑍1, 𝑍2) with distribution 𝜋, and also say that 𝐸1 and 𝐸2 are coupled trough 𝑍.
We introduce a notion of conjugacy whose basic properties are similar to convex conjugation.

Definition 3.2 (Conjugate functions). Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be coupled through(𝑍1, 𝑍2). Let 𝑓𝑖 ∈ 𝐿1(𝐸𝑖 , 𝜇𝑖) for 𝑖 = 1, 2. The conjugate 𝑓∗1 of 𝑓1 is the element of 𝐿1(𝐸2) defined by:𝑓∗1 (𝑍2) = 𝔼 [𝑓1(𝑍1)|||𝒞] with 𝒞 = 𝜎(𝑍1) ∩ 𝜎(𝑍2);
its existence is justified by (3.2). Similarly 𝑓∗2 ∈ 𝐿1(𝐸1) is defined by 𝑓∗2 (𝑍1) = 𝔼 [𝑓2(𝑍2)|||𝒞].

The pair (𝑓1, 𝑓2) is called conjugate if 𝑓1 = 𝑓∗2 and 𝑓2 = 𝑓∗1 ; it is called pre-conjugate if the
pair (𝑓∗2 , 𝑓∗1 ) is conjugate (that is, 𝑓∗2 = 𝑓∗∗1 and 𝑓∗1 = 𝑓∗∗2 ).

Notice that a conjugate pair is also pre-conjugate, but the converse is false in general.
We shall see below that if the transmission kernels, recovery functions and the density of

the cost functions of two SIS model are conjugate, then any vaccinations strategies which are
pre-conjugate have the same loss and cost, and thus are (anti-)Pareto optima simultaneously.

We first give another characterization of the conjugation.
Lemma 3.3 (Characterization of conjugation). Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be coupled
through (𝑍1, 𝑍2). Let 𝑓𝑖 ∈ 𝐿1(𝐸𝑖) for 𝑖 = 1, 2. We have:(𝑓1, 𝑓2) is conjugate ⟺ 𝑓1(𝑍1) = 𝑓2(𝑍2) 𝜋-a.s..
If the pair (𝑓1, 𝑓2) is conjugate, then 𝑓𝑖(𝑍𝑖) is 𝒞-measurable for 𝑖 = 1, 2, with 𝒞 = 𝜎(𝑍1) ∩ 𝜎(𝑍2).
Proof. The proof is immediate as, for 𝑋 and 𝑌 integrable random variables and a sub-𝜎-field 𝒞,
the equalities 𝔼[𝑋|𝒞] = 𝑌 and 𝔼[𝑌|𝒞] = 𝑋 imply that a.s. 𝑋 = 𝑌.

We shall complete the next result with other properties in Section 5.
Lemma 3.4 (Properties of conjugation). Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be coupled through𝑍 = (𝑍1, 𝑍2). Let 𝑓 ∈ 𝐿1(𝐸1).
(i) The pair (𝑓, 𝑓∗) is pre-conjugate and the pair (𝑓∗∗, 𝑓∗) is conjugate.
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(ii) Set 𝒞 = 𝜎(𝑍1) ∩ 𝜎(𝑍2). We have:𝑓(𝑍1) is 𝒞-measurable ⟺ 𝑓 = 𝑓∗∗ ⟺ (𝑓, 𝑓∗) is conjugate.
Proof. By definition, we have 𝑓∗∗(𝑍1) = 𝔼 [𝑓∗(𝑍2)|||𝒞] = 𝔼 [𝔼 [𝑓(𝑍1)|||𝒞]|||𝒞] , which yields that𝑓∗∗(𝑍1) = 𝑓∗(𝑍2). By Lemma 3.3 this implies that (𝑓∗∗, 𝑓∗) is conjugate and thus that (𝑓, 𝑓∗) is
pre-conjugate. This gives (i).

We now prove (ii). Notice first that 𝑓∗∗ = 𝑓 is equivalent to the pair (𝑓, 𝑓∗) being conju-
gate. Secondly, if (𝑓, 𝑓∗) is conjugate, then by Lemma 3.3, we get that 𝑓(𝑍1) is 𝒞-measurable.
Conversely, if 𝑓(𝑍1) is 𝒞-measurable, we deduce that 𝑓∗(𝑍2) = 𝑓(𝑍1) and thus 𝑓∗∗ = 𝑓.

Let two spaces 𝐸1 and 𝐸2 be coupled through 𝜋. The product spaces 𝐄1 = 𝐸1 × 𝐸1 and𝐄2 = 𝐸2 ×𝐸2 may always be coupled through the random variable (𝐙1, 𝐙2) = ((𝑋1, 𝑌1), (𝑋2, 𝑌2)),
where the two vectors (𝑋1, 𝑋2) and (𝑌1, 𝑌2) are independent and follow the distribution 𝜋. We
denote the distribution of (𝐙1, 𝐙2) by 𝝅 and call it the extended coupling. Conjugates are preserved
by extension in the following sense; the proof is given in Section 5.2.
Lemma 3.5 (Extended coupling and conjugacy). If the measurable function 𝑔 ∶ 𝐄1 → ℝ
only depends on its first argument, 𝑔(𝑥1, 𝑦1) = 𝑓(𝑥1), then 𝑔∗(𝑋2, 𝑌2) = 𝑓∗(𝑋2) (where 𝑔∗ is the
conjugate through 𝝅 and 𝑓∗ the conjugate through 𝜋).
3.3 Coupled models

We consider the SIS models Param𝑖 = [(𝒳𝑖 , ℱ𝑖 , 𝜇𝑖), (𝑘𝑖 , 𝛾𝑖), 𝔠𝑖] for 𝑖 = 1, 2. In what follows,
we simply write ∆𝑖 for the set of functions ∆, see (2.7), in the model Param𝑖 .
Theorem 3.6 (Coupling, equilibria and optimal vaccinations). Consider two SIS modelsParam1 and Param2, with a coupling between (𝒳1, ℱ1, 𝜇1) and (𝒳2, ℱ2, 𝜇2). Let 𝜂𝑖 ∈ ∆𝑖 be a
vaccination strategies for the SIS model 𝑖 = 1, 2.
(i) If the pair (𝑘1∕𝛾1, 𝑘2∕𝛾2) is conjugate (for the extended coupling), then(𝜂1, 𝜂2) is pre-conjugate ⟹ 𝑅𝑒[Param1](𝜂1) = 𝑅𝑒[Param2](𝜂2).
(ii) If both pairs (𝑘1, 𝑘2) and (𝛾1, 𝛾2) are conjugate, then the equilibria are (pre-)conjugate: if 𝑔1

is an equilibrium of Param1, then there exists an equilibrium 𝑔2 of Param2 such that the pair(𝑔1, 𝑔2) is conjugate. We also have:(𝜂1, 𝜂2) is pre-conjugate ⟹ ℑ[Param1](𝜂1) = ℑ[Param2](𝜂2).
(iii) Suppose the assumptions of item (i), for L = 𝑅𝑒, or of item (ii), for L = ℑ, hold. Assume also

that the pair (𝔠1, 𝔠2) is conjugate. If the pair (𝜂1, 𝜂2) is pre-conjugate, then::𝜂1 is (anti-)Pareto optimal for Param1 ⟺ 𝜂2 is (anti-)Pareto optimal for Param2. (3.3)

For 𝜂 ∈ ∆1, we have 𝜂∗ ∈ ∆2 and𝐻[Param1](𝜂) = 𝐻[Param2](𝜂∗) for𝐻 equal to the loss L
or the cost 𝐶; in particular, if 𝜂 is (anti-)Pareto optimal for Param1, then its conjugate 𝜂∗ is
(anti-)Pareto optimal for Param2.

As a direct consequence, we get the following result, where the set of outcomes is defined as𝐅 = {(𝐶(𝜂), L(𝜂)), 𝜂 ∈ ∆}.
Corollary 3.7 (Coupling and frontiers). Let Param1 and Param2 be coupled SIS models, with
conjugate parameters 𝛾, 𝔠 and 𝑘. For any of the two choices L ∈ {𝑅𝑒, ℑ}, the models Param1 andParam2 have the same set of outcomes 𝐅 and the same (anti-)Pareto frontiersℱ andℱAnti.
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Remark 3.8 (Obvious couplings). If the costs are uniform in both models Param1 and Param2,
then the pair (𝔠1, 𝔠2) is trivially conjugate as both functions are a.s. constant equal to 1.

Using a trivial coupling, one sees that the recovery rate and transmission kernel in the SIS
model could have been defined only almost everywhere without affecting the set of outcomes
and the (anti-)Pareto frontiers.

The coupling hypotheses are strong and give strong results, allowing to compare equilibria
and vaccinations between models. Let us note that other, weaker ways of comparing models
exist, and may yield interesting results.
Remark 3.9 (Life without coupling — normalizing 𝛾 and 𝔠). If we are only interested in
the loss function L = 𝑅𝑒, various invariance properties of the spectral radius may be used to
normalize models. Indeed, consider a SIS model Param = [(𝒳,ℱ, 𝜇), (𝑘, 𝛾), 𝔠] for which both𝛾 and 𝔠 are bounded away from zero, and assume without loss of generality that ∫𝒳 𝔠 d𝜇 = 1.
Define another model by Param0 = [(𝒳,ℱ, 𝜇0), (𝑘0, 𝛾0), 𝔠0], where:𝜇0(d𝑥) = 𝔠(𝑥) 𝜇(d𝑥), 𝑘0 = 𝑘∕(𝔠𝛾), 𝛾0 = 𝔠0 = 𝟙.
Notice that as (2.2) holds for the model Param, then it also holds for the model Param0 as we
assumed 𝔠 to be bounded away from 0.

We trivially have ∆(Param) = ∆(Param0). Clearly, we have 𝐶(𝜂) for the model Param is
equal to 𝐶uni(𝜂) for the model Param0. Using also that 𝐿𝑝(𝜇) and 𝐿𝑝(𝜇0) are compatible (see [5,
Lemma 2.2]) and the corresponding integral operators are consistent (see [5, Section 2.2] and
Lemma 2.1(iii)), we get that 𝑅𝑒(𝜂) for the model Param is equal to 𝑅𝑒(𝜂) for the model Param0,
for all strategies 𝜂 ∈ ∆. In particular the (anti-)Pareto optimal strategies and the (anti-)Pareto
frontiers are the same for the two models. Therefore we may focus on Param0 and assume
without loss of generality that the only dependence on the features is in the transmission kernel,
while both the vaccination cost and the recovery rate are uniform.

4 Examples of couplings
We discuss three examples, all of which are built on the following special case of coupling,

each one taking a slightly different point of view.
Lemma 4.1 (Deterministic coupling). Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be two probability spaces
and assume that 𝜙 ∶ 𝐸1 → 𝐸2 is measurable and pushes 𝜇1 forward to 𝜇2. Then 𝐸1 and 𝐸2 are
coupled through (𝑋1, 𝜙(𝑋1)), with 𝑋1 ∼ 𝜇1, and for any two functions 𝑓𝑖 ∈ 𝐿1(𝐸𝑖), 𝑖 = 1, 2 we have,
with 𝔼1 the expectation w.r.t. 𝜇1:

1. 𝑓∗2 = 𝑓2◦𝜙, 𝑓∗1◦𝜙 = 𝔼1[𝑓1 | 𝜎(𝜙)] and 𝑓∗∗2 = 𝑓2;
2. The pair (𝑓1, 𝑓2) is conjugate if and only if 𝑓1 = 𝑓2◦𝜙;
3. The pair (𝑓1, 𝑓2) is pre-conjugate if and only if 𝑓2 = 𝑓∗1 ;
4. The pair of kernels (𝑘1, 𝑘2) (respectively on 𝐄1 and 𝐄2) is conjugate (through the extended

coupling) if and only if 𝜇1(d𝑥1) ⊗ 𝜇1(d𝑦1)-a.e. 𝑘1(𝑥1, 𝑦1) = 𝑘2(𝜙(𝑥1), 𝜙(𝑦1)).
The proof is elementary and left to the reader.

4.1 Starting from 𝐸1: model reduction using deterministic coupling
We consider a SIS model Param1 = [(𝒳1, ℱ1, 𝜇1), (𝑘1, 𝛾1), 𝔠1]. Let 𝜙 be a measurable function

from (𝒳1, ℱ1) to (𝒳2, ℱ2), let 𝜇2 be the push-forward 𝜙#𝜇1, and consider the coupling given by(𝑋1, 𝜙(𝑋1)) where 𝑋1 ∼ 𝜇1. By Lemma 4.1, the functions 𝔠1, 𝛾1 and 𝑘1 will be part of conjugate
pairs for this coupling if and only if they all factor through 𝜙, in the sense that for some functions𝔠2, 𝛾2 on 𝒳2 and 𝑘2 on 𝒳2 × 𝒳2:𝔠1 = 𝔠2◦𝜙, 𝛾1 = 𝛾2◦𝜙 and 𝑘1(⋅, ⋅) = 𝑘2(𝜙(⋅), 𝜙(⋅)). (4.1)
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If that is the case, then by Theorem 3.6 and Lemma 4.1, the vaccination strategy 𝜂1 ∈ ∆1 is
(anti-)Pareto optimal for Param1 if and only if its conjugate 𝜂∗1 defined by 𝜂∗1◦𝜙 = 𝔼 [𝜂1|||𝜎(𝜙)] is
(anti-)Pareto optimal for the simplified model Param2. In words, the behaviour of an individual 𝑥
only depends on 𝜙(𝑥), and in the trait space 𝒳2, individuals with identical behavior are merged.

We may deduce the following result.
Corollary 4.2 (Model reduction). Let Param = [(𝒳,ℱ, 𝜇), (𝑘, 𝛾), 𝔠] be a SIS model with loss
function L ∈ {𝑅𝑒, ℑ}. Let 𝒢 ⊂ ℱ be a 𝜎-field such that 𝛾 and 𝔠 are 𝒢-measurable and 𝑘 is 𝒢 ⊗𝒢-
measurable. Then, for any 𝜂 ∈ ∆, we have, with 𝔼𝜇 the expectation w.r.t. 𝜇:𝜂 is (anti-)Pareto optimal ⟺ 𝔼𝜇[𝜂 |𝒢] is (anti-)Pareto optimal. (4.2)

Proof. Denote with a subscript 1 the parameters of the original model (e.g., set 𝒳1 = 𝒳). LetParam2 = [(𝒳2, ℱ2, 𝜇2), (𝑘2, 𝛾2), 𝔠2] where most parameters are the same: 𝒳2 = 𝒳, 𝑘2 = 𝑘, 𝛾2 =𝛾, 𝔠2 = 𝔠, but we equip𝒳2 withℱ2 = 𝒢, and themeasure 𝜇2 = (𝜇1)|𝒢 . Note that this is legitimate,
in the sense that the measurability hypotheses on (𝑘, 𝛾, 𝔠), imply that 𝛾2, 𝔠2 are measurable from(𝒳2, ℱ2) to (ℝ,ℬ(ℝ)) and 𝑘2 is measurable on the product space (𝒳2 × 𝒳2, ℱ2 ⊗ℱ2).

Now we define 𝜙 ∶ 𝒳1 → 𝒳2 by 𝜙(𝑥) = 𝑥; since 𝒢 ⊂ ℱ, 𝜙 is measurable from (𝒳1, ℱ1) =(𝒳,ℱ) to (𝒳2, ℱ2) = (𝒳,𝒢). This function defines a deterministic coupling between the two
spaces. Since 𝜙 is the identity if we forget the measure structure, it is clear that 𝛾1 = 𝛾2◦𝜙,𝔠1 = 𝔠2◦𝜙 and 𝑘1(⋅, ⋅) = 𝑘2(𝜙(⋅), 𝜙(⋅)), so that all three pairs of functions are conjugate, by
Lemma 4.1. Applying Theorem 3.6 twice, we get that 𝜂 ∈ ∆ is Pareto-optimal for Param1 if and
only if 𝜂∗ is Pareto-optimal for Param2, if and only if 𝜂∗∗ is Pareto-optimal for Param1.

Let us finally identify 𝜂∗∗. Let 𝑋 be 𝜇1-distributed. The coupling is (𝑍1, 𝑍2) where 𝑍1 = 𝑋
and 𝑍2 = 𝜙(𝑍1), so 𝒞 = 𝜎(𝑍1) ∩ 𝜎(𝑍2) = 𝜎(𝑍2) = 𝑋−1(𝜙−1(𝒢)) = 𝑋−1(𝒢). By definition we have𝜂∗∗(𝑋) = 𝔼 [𝜂(𝑋)||||𝑋−1(𝒢)] .We deduce that 𝜂∗∗ = 𝔼𝜇[𝜂 |𝒢] as for any 𝐵 ∈ 𝒢 and 𝐴 = 𝑋−1(𝐵):

𝔼 [𝜂(𝑋)𝟙𝐴] = 𝔼 [𝜂(𝑋)𝟙𝐵(𝑋)] = ∫𝒳 𝜂(𝑥)𝟙𝐵(𝑥) 𝜇1(d𝑥) = ∫𝒳 𝔼𝜇[𝜂 |𝒢](𝑥) 𝟙𝐵(𝑥) 𝜇1(d𝑥)= 𝔼 [𝔼𝜇[𝜂 |𝒢](𝑋)𝟙𝐴] .
4.2 Linking 𝐸1 and 𝐸2: discrete and continuous models

We now consider a particular case, and formalize how finite population models can be seen
as images of models with a continuous population. We denote by ℬ([0, 1)) and by Leb the
Borel 𝜎-field and the Lebesgue measure on [0, 1).

Let 𝒳d ⊂ ℕ,ℱd the set of subsets of 𝒳d and 𝜇d a probability measure on 𝒳d. Without loss
of generality, we can assume that 𝜇d({𝓁}) > 0 for all 𝓁 ∈ 𝒳d. We set 𝒳c = [0, 1),ℱc = ℬ([0, 1))
and let 𝜇c be a probability measure on (𝒳c, ℱc) without atoms (for example one can take the
Lebesgue measure Leb). Let (𝐵𝓁, 𝓁 ∈ 𝒳d) be a partition of [0, 1) in measurable sets such that𝜇c(𝐵𝓁) = 𝜇d({𝓁}) for all 𝓁 ∈ 𝒳d. The map 𝜙 ∶ 𝒳c → 𝒳d defined by 𝜙(𝑥) = ∑𝓁𝟙𝐵𝓁(𝑥) clearly
defines a deterministic coupling between 𝜇c and 𝜇d. If the kernels 𝑘d on 𝒳d and 𝑘c on 𝒳c and
the functions (𝛾d, 𝔠d) and (𝛾c, 𝔠c) are related through the formula:𝛾c(𝑥) = 𝛾d(𝓁), 𝔠c(𝑥) = 𝔠d(𝓁) and 𝑘c(𝑥, 𝑦) = 𝑘d(𝓁, 𝑗) for 𝑥 ∈ 𝐵𝓁, 𝑦 ∈ 𝐵𝑗 and 𝓁, 𝑗 ∈ 𝒳d,
then all pairs are conjugate, and all the hypotheses of Theorem 3.6 an Corollary 3.7 are satisfied.

Roughly speaking, we can blow up the atomic part of the measure 𝜇d into a continuous part,
or, conversely, merge all points that behave similarly for 𝑘c, 𝛾c and 𝔠c into an atom, without
altering the Pareto frontier.
Example 4.3 (The stochastic block model). To be more concrete, we consider the so called
stochastic block model, with 2 populations for simplicity and give in this elementary case the
corresponding discrete and continuous models. Then, we explicit the relation with the formalism
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of the same model developed in [14] by Lajmanovich and Yorke. For simplicity, we assume the
cost is uniform (that is, 𝔠 = 𝟙), so that the conjugation condition for the costs is trivially satisfied.

The discrete SIS model is defined on 𝒳d = {1, 2} with the probability measure 𝜇d defined by𝜇d({1}) = 1 − 𝜇d({2}) = 𝑝 with 𝑝 ∈ (0, 1), and a transmission kernel 𝑘d and recovery function 𝛾d
given by the matrix and the vector:

𝑘d = (𝑘11 𝑘12𝑘21 𝑘22) and 𝛾d = (𝛾1𝛾2) .
Notice 𝑝 is the relative size of population 1. The corresponding discrete model is Paramd =[({1, 2},ℱd, 𝜇d), (𝑘d, 𝛾d), 𝔠d = 𝟙]; see Figure 1a.

The continuous SISmodel is defined on the probability space (𝒳c = [0, 1),ℱc = ℬ([0, 1)), 𝜇c =Leb). The segment 𝒳c = [0, 1) is partitioned into two intervals 𝐵1 = [0, 𝑝) and 𝐵2 = [𝑝, 1), the
transmission kernel 𝑘c and recovery rate 𝛾c are given by:𝑘c(𝑥, 𝑦) = 𝑘𝑖𝑗 and 𝛾c(𝑥) = 𝛾𝑖 for 𝑥 ∈ 𝐵𝑖 , 𝑦 ∈ 𝐵𝑗 , and 𝑖, 𝑗 ∈ {1, 2}.
The corresponding continuous model is Paramc = [(𝒳c, ℱc, 𝜇c), (𝑘c, 𝛾c), 𝔠c = 𝟙]; see Figure 1b.
By the general discussion above, these two models have the same (anti-)Pareto frontiers, and
their equilibria and optimal vaccinations may be transferred to one another by conjugation. Let
us note that, in this example, by Lemma 4.1 a function 𝑓d on 𝒳d = {1, 2} and 𝑓c on 𝒳c are :

• pre-conjugate if and only if 1𝜇c(𝐵𝑖) ∫𝐵𝑖 𝑓c d𝜇c = 𝑓d(𝑖), for 𝑖 = 1, 2;
• conjugate if and only if 𝑓c(𝑥) = 𝑓d(𝑖), a.e. for 𝑥 ∈ 𝐵𝑖 and 𝑖 = 1, 2.

Therefore, in this case, the optimal strategies of the continuous model are easily deduced from
the optimal strategies of the discrete model.

To conclude this example, using the formalism of the discrete model Paramd, the next-
generation matrix 𝐾 in the setting of [14], and the effective next-generation matrix 𝐾𝑒(𝜂) when
the vaccination strategy 𝜂 is in force (recall 𝜂𝑖 is the proportion of population with feature 𝑖 which
is not vaccinated), are given by:

𝐾 = (𝐤11 𝑝 𝐤12 (1 − 𝑝)𝐤21 𝑝 𝐤22 (1 − 𝑝)) and 𝐾𝑒(𝜂) = (𝐤11 𝑝 𝜂1 𝐤12 (1 − 𝑝) 𝜂2𝐤21 𝑝 𝜂1 𝐤22 (1 − 𝑝) 𝜂2) with 𝐤𝑖𝑗 = 𝑘𝑖𝑗∕𝛾𝑗 .
4.3 Starting from 𝐸2: measure preserving function

Finally, let us briefly discuss an example motivated by the theory of graphons, which are
indistinguishable by measure preserving transformation, see [15, Sections 7.3 and 10.7].

Let (𝒳,ℱ, 𝜇) be a probability space. We say a measurable function 𝜑 ∶ 𝒳 → 𝒳 ismeasure
preserving if 𝜇 = 𝜑#𝜇. For example the function 𝜑 ∶ 𝑥 ↦ 2𝑥 mod (1) defined on the probability
space ([0, 1],ℬ([0, 1], Leb) is measure preserving. Note it is not one-to-one in general.

Now consider a SIS model with parameters Param2 = [(𝒳,ℱ, 𝜇), (𝑘, 𝛾), 𝔠] and a measure
preserving function 𝜙. Define 𝛾1 = 𝛾◦𝜙, 𝔠1 = 𝔠◦𝜙 and 𝑘1(⋅, ⋅) = 𝑘2(𝜙(⋅), 𝜙(⋅)). Then the modelsParam1 = [(𝒳,ℱ, 𝜇), (𝑘1, 𝛾1), 𝔠1] and Param2 are coupled and all consequences of Theorem 3.6
and Corollary 3.7 hold. Roughly speaking, we can give different labels to the features of the
population without altering the (anti-)Pareto frontiers.
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(a) Discrete model: kernel 𝑘d on𝒳d = {1, 2} with
the measure 𝜇d = 𝑝𝛿1 + (1 − 𝑝)𝛿2.
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(b) Continuous model: kernel 𝑘c on 𝒳c = [0, 1)
with the Lebesgue measure 𝜇c.

Figure 1: Coupled discrete model (left) and continuous model (right).

5 Proofs
5.1 Elementary properties of conjugation

We give further technical properties of the conjugation.
Lemma 5.1 (Other properties of conjugation). Let (𝐸1, ℰ1, 𝜇1) and (𝐸2, ℰ2, 𝜇2) be coupled
through 𝑍 = (𝑍1, 𝑍2). Let 𝑓 ∈ 𝐿1(𝐸1) and 𝑓𝑖 ∈ 𝐿1(𝐸𝑖), 𝑖 = 1, 2.
(i) We have 𝑓∗∗∗ = 𝑓∗.
(ii) Let 𝑔 ∈ 𝐿∞(𝐸1). If 𝑓∗∗ = 𝑓, then we have (𝑓𝑔)∗ = 𝑓∗𝑔∗.
(iii) If the pair (𝑓1, 𝑓2) is pre-conjugate, then ∫𝐸1 𝑓1 d𝜇1 = ∫𝐸2 𝑓2 d𝜇2.
(iv) Let 𝑔𝑖 ∈ 𝐿∞(𝐸𝑖), 𝑖 = 1, 2 If the pair (𝑓1, 𝑓2) is conjugate and the pair (𝑔1, 𝑔2) is pre-conjugate,

then the pair (𝑓1𝑔1, 𝑓2𝑔2) is pre-conjugate.
Proof. Since (𝑓∗∗, 𝑓∗) is conjugate by Lemma 3.4, we deduce that 𝑓∗∗∗ = 𝑓∗ by definition of
conjugation. To prove (ii) note that (𝑓𝑔)∗(𝑍2) = 𝔼 [𝑓(𝑍1)𝑔(𝑍1)|||𝒞], but 𝑓(𝑍1) is 𝒞-measurable
as 𝑓∗∗ = 𝑓, so we may pull it out. Since 𝑓(𝑍1) = 𝑓∗(𝑍2) and 𝔼 [𝑔(𝑍1)|||𝒞] = 𝑔∗(𝑍2), the result
follows.

If (𝑓1, 𝑓2) is pre-conjugate, we have 𝔼 [𝑓1(𝑍1)|||𝒞] = 𝑓∗1 (𝑍2) = 𝑓∗2 (𝑍1) = 𝔼 [𝑓2(𝑍2)|||𝒞]; then
take the expectation to get (iii). Point (iv) is a direct consequence of Point (ii) and Lemma 3.3.

5.2 Proof of Lemma 3.5 and a key lemma
Let us first recall an elementary result on conditional independence. The random variables

we consider are defined on a probability space, say (Ω0, ℱ0, ℙ). Let𝒜,ℬ andℐ be sub-𝜎-fields
ofℱ0. We recall that𝒜 andℬ are conditionally independent givenℐ, denoted by𝒜 ⫫ℐ ℬ, ifℙ [𝐴 ∩ 𝐵|ℐ] = ℙ [𝐴|ℐ]ℙ [𝐵|ℐ] for all 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ. According to [13, Theorem 8.9], ifℐ ⊂ 𝒜 ∩ℬ, the conditional independence𝒜 ⫫ℐ ℬ holds if and only if𝔼 [𝑊|ℬ] = 𝔼 [𝑊|ℐ] for any nonnegative𝒜-measurable variable𝑊. (5.1)

We start by a probabilistic result.
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Lemma 5.2. Let 𝐸1 and 𝐸2 be coupled, and 𝐄1 and 𝐄2 coupled through the extended coupling(𝐙1, 𝐙2) = ((𝑋1, 𝑌1), (𝑋2, 𝑌2)). Let 𝒞 = 𝜎(𝐙1) ∩ 𝜎(𝐙2), 𝒞𝑋 = 𝜎(𝑋1) ∩ 𝜎(𝑋2) and 𝒞𝑌 = 𝜎(𝑌1) ∩𝜎(𝑌2).
(i) The following conditional independence holds: 𝜎(𝑋1, 𝑋2) ⫫𝒞𝑋 𝒞 and 𝜎(𝑌1, 𝑌2) ⫫𝒞𝑌 𝒞.
(ii) Let𝐾,𝑉 be nonnegative randomvariables. If𝐾 is𝒞-measurable and𝑉 is𝜎(𝑌1, 𝑌2)-measurable,

then we have: 𝔼 [𝐾𝑉|||𝑋𝑖] = 𝔼 [𝐾 𝔼 [𝑉|𝒞]|𝒞𝑋] = 𝔼 [𝐾 𝔼 [𝑉|𝒞]|||𝑋𝑖] , 𝑖 = 1, 2. (5.2)

Proof. By (5.1) the first independence in Point (i) holds if, for any 𝒞-measurable nonnegative
random variable𝑊, 𝔼 [𝑊|𝒞𝑋] = 𝔼 [𝑊|𝑋1, 𝑋2]. Let𝑊 be 𝒞-measurable and nonnegative; so𝑊 = 𝜙(𝑋1, 𝑌1) for some function 𝜙. Let𝑊′ = 𝔼 [𝑊|𝑋1, 𝑋2]. Since 𝜎(𝑋1, 𝑋2) ⫫𝜎(𝑋1) 𝜎(𝑋1, 𝑌1),𝑊′ = 𝔼 [𝜙(𝑋1, 𝑌1)|||𝑋1, 𝑋2] = 𝔼 [𝜙(𝑋1, 𝑌1)|||𝑋1] = 𝔼 [𝑊|𝑋1] .
Therefore the random variable𝑊′ is 𝜎(𝑋1)-measurable. By symmetry, it is also 𝜎(𝑋2)-measurable,
so it is in fact 𝒞𝑋-measurable. Therefore, by the tower property, we get:𝔼 [𝑊|𝑋1, 𝑋2] = 𝑊′ = 𝔼 [𝑊′||||𝒞𝑋] = 𝔼 [𝑊|𝒞𝑋] .
This proves the first point.

Since 𝐾 is 𝒞-measurable we may write it as 𝐾 = 𝑘(𝑋1, 𝑌1); similarly 𝑉 = 𝑣(𝑌1, 𝑌2). Since𝜎(𝑋1, 𝑌1, 𝑌2) ⫫𝜎(𝑋1) 𝜎(𝑋1, 𝑋2), and since 𝐾𝑉 is 𝜎(𝑋1, 𝑌1, 𝑌2)-measurable, we get:𝔼 [𝐾𝑉|𝑋1] = 𝔼 [𝐾𝑉|𝑋1, 𝑋2] .
Let𝑊 denote this random variable. The same argument applied with the conditional indepen-
dence 𝜎(𝑋2, 𝑌1, 𝑌2) ⫫𝜎(𝑋2) 𝜎(𝑋1, 𝑋2) yields symmetrically 𝔼 [𝐾𝑉|𝑋2] = 𝔼 [𝐾𝑉|𝑋1, 𝑋2] = 𝑊. In
particular𝑊 is measurable with respect to both 𝑋1 and 𝑋2, so𝑊 is 𝒞𝑋-measurable. Using the
tower property of conditional expectations with 𝒞𝑋 ⊂ 𝜎(𝑋1, 𝑋2) and 𝒞𝑋 ⊂ 𝒞, and the fact that 𝐾
is 𝒞-measurable, we get:𝑊 = 𝔼 [𝑊|𝒞𝑋] = 𝔼 [𝐾𝑉|𝒞𝑋] = 𝔼 [𝔼 [𝐾𝑉|𝒞]|𝒞𝑋] = 𝔼 [𝐾𝔼 [𝑉|𝒞]|𝒞𝑋] .
This proves the first equality of (5.2) for 𝑖 = 1 and then for 𝑖 = 2 by symmetry. Set 𝑉′ = 𝔼 [𝑉|𝒞]
which is 𝒞𝑌-measurable and then 𝜎(𝑌1, 𝑌2)-measurable. Then apply the first equality of (5.2)
with 𝑉 replaced by 𝑉′ to get the second equality of (5.2). The proof is then complete.

The fact that conjugacy behaves well on extended spaces is now easy to establish.

Proof of Lemma 3.5. Let 𝜙(𝑋1, 𝑌1) = 𝑓1(𝑋1). Since 𝜎(𝑋1) ⫫𝒞𝑋 𝒞 by the first point of Lemma 5.2,
we get by (5.1) that 𝔼 [𝜙(𝑋1, 𝑌1)|||𝒞] = 𝔼 [𝑓1(𝑋1)|||𝒞] = 𝔼 [𝑓1(𝑋1)|||𝒞𝑋] .

The next lemma is the key to all our main results. For a probability space (𝐸, ℰ, 𝜇), say that a
kernel k on 𝐸 is nice if k ∈ 𝐿1(𝐸2) and satisfies ∫𝐸 k(⋅, 𝑦) 𝜇(d𝑦) ∈ 𝐿∞(𝐸). For a nice kernel k we
define the bounded operator 𝑇k on 𝐿∞(𝐸) by 𝑇k(𝑔) = ∫𝐸 k(⋅, 𝑦)𝑔(𝑦) 𝜇(d𝑦).
Lemma 5.3 (Operator defined by conjugated kernels). Let two spaces 𝐸1 and 𝐸2 be coupled
through 𝜋. If the nice kernel k on 𝐸1 satisfies k = k∗∗ (for the extended coupling) and if 𝑣 ∈ 𝐿∞(𝐸1),
then k∗ is a nice kernel on 𝐸2, 𝑣∗ ∈ 𝐿∞(𝐸2) and:𝑇k(𝑣) = 𝑇k(𝑣)∗∗ = 𝑇k(𝑣∗∗) and 𝑇k(𝑣)∗ = 𝑇k∗(𝑣∗). (5.3)
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Proof. Let (𝑋1, 𝑌1, 𝑋2, 𝑌2) ∼ 𝝅 denote the extended coupling. Let k be a nice kernel on 𝐸1
such that k = k∗∗. As k = k∗∗, we deduce from Lemma 3.4 (ii) that (k, k∗) is conjugate and by
Lemma 3.3 that a.s. k(𝑋1, 𝑌1) = k∗(𝑋2, 𝑌2) and that this random variable is 𝒞-measurable.

Let 𝑣 ∈ 𝐿∞(𝐸1). The function 𝑇k(𝑣) admits the probabilistic representation:𝑇k(𝑣)(𝑋1) = 𝔼 [k(𝑋1, 𝑌1)𝑣(𝑌1)|||𝑋1] .
We apply Lemma 5.2 (ii) with 𝐾 = k(𝑋1, 𝑌1) and 𝑉 = 𝑣(𝑌1) to get that 𝑇k(𝑣)(𝑋1) is 𝒞𝑋-
measurable, and by Lemma 3.4 (ii) that 𝑇k(𝑣) = 𝑇k(𝑣)∗∗. This gives the first equality of (5.3).

It is obvious that if 𝑣∗ ∈ 𝐿∞(𝐸2). Using the definition of the conjugate, and then 𝔼 [𝑉|𝒞] =𝑣∗(𝑌2) from Lemma 3.5 and Equation (5.2), we obtain:𝑇k(𝑣)∗(𝑋2) = 𝔼 [k(𝑋1, 𝑌1) 𝑣(𝑌1)|||𝒞𝑋] = 𝔼 [k∗(𝑋2, 𝑌2) 𝑣∗(𝑌2)|||𝑋2] = 𝑇k∗(𝑣∗)(𝑋2).
Taking 𝑣 = 𝟙, we deduce that 𝑇k∗(𝟙) = 𝑇k(𝟙)∗ belongs to 𝐿∞(𝐸2), thus k∗ is a nice kernel on 𝐸2
and 𝑇k∗ is a bounded operator on 𝐿∞(𝐸2). We have also proven that 𝑇k(𝑣)∗ = 𝑇k∗(𝑣∗) which is
the last equality of (5.3). Using this equality again with k and 𝑣 replaced by k∗ and 𝑣∗, we obtain
that 𝑇k(𝑣)∗∗ = 𝑇k∗(𝑣∗)∗ = 𝑇k∗∗(𝑣∗∗) = 𝑇k(𝑣∗∗), which is the second equality of (5.3).
5.3 Proof of the main result, Theorem 3.6
The spectrum and effective reproduction number. We prove the first item of Theorem 3.6.
Recall the spectral radius of a bounded operator is themaximalmodulus of its complex eigenvalues
Set k𝑖 = 𝑘𝑖∕𝛾𝑖 for 𝑖 = 1, 2. Notice the bounded operators 𝑇k𝑖 on 𝐿∞(𝐸𝑖) and 𝒯k𝑖 onℒ∞(𝐸𝑖) have
the same spectrum and thus the same spectral radius and more generally 𝑅𝑒(𝜂𝑖) = 𝜌(𝑇k𝑖𝜂𝑖 ) for𝜂𝑖 ∈ ∆𝑖 . For simplicity, write k = k1 and thus, as (k1, k2) is a conjugate pair, k∗ = k2 and k∗∗ = k.

Let 𝜂 ∈ ∆1 and 𝜆 be a non-zero eigenvalue of 𝑇k𝜂 associated with an eigenvector 𝑣 ∈ 𝐿1(𝐸1).
By definition, we have: 𝜆𝑣 = 𝑇k𝜂(𝑣) = 𝑇k(𝜂𝑣).
Thanks to the first two equalities in (5.3) of Lemma 5.3, the function 𝜆𝑣 is equal to its biconjugate
(that is, the pair (𝑣, 𝑣∗) is conjugate) and 𝜆𝑣 = 𝑇k((𝜂𝑣)∗∗).

Assume the pair (𝜂, 𝜂2) is pre-conjugate. By Lemma 5.1 (iv), the pair (𝜂𝑣, 𝜂2𝑣∗) is pre-
conjugate, and thus (𝜂2𝑣∗)∗ = (𝜂𝑣)∗∗. Then, using Lemmas 5.3 and 5.1 (ii), we get:𝑇k∗(𝜂2𝑣∗) = 𝑇k∗((𝜂2𝑣∗)∗∗) = 𝑇k((𝜂2𝑣∗)∗)∗ = 𝑇k((𝜂𝑣)∗∗)∗ = 𝜆𝑣∗.
Since 𝑣∗∗ = 𝑣 ≠ 𝟘, the function 𝑣∗ is non-zero and it is therefore an eigenvector of 𝑇k∗𝜂2 ,
associated to the eigenvalue 𝜆. By symmetry we deduce that the spectrum up to {0} of 𝑇k𝜂
and 𝑇k∗𝜂2 coincide, and thus their spectral radius are equal. This proves Point (i).
The equilibria. Let us now prove the first part of Point (ii) on the equilibria are conjugate. Let𝑔 ∈ ℒ∞(𝐸1) be an equilibrium of the model Param1. Since 𝐹𝜂(𝑔) = 0, we have:𝑔 = 𝒯𝑘1(𝜂𝑔)𝛾1 + 𝒯𝑘1(𝜂𝑔) ⋅
By Lemma 5.3, seeing 𝑔 as an element of 𝐿∞(𝐸1), we get that 𝑇𝑘1(𝜂𝑔) is equal to its biconjugate.
Since 𝜇1-a.e. 𝛾∗∗1 = 𝛾1 , we easily deduce using Lemma 5.1 (ii) that:𝑔∗ = 𝑇𝑘1(𝜂𝑔)∗𝛾∗1 + 𝑇𝑘1(𝜂𝑔)∗ and then 𝑔∗∗ = 𝑇𝑘1(𝜂𝑔)𝛾1 + 𝑇𝑘1(𝜂𝑔) ,
that is, 𝜇1-a.e. 𝑔∗∗ = 𝑔. So (𝑔, 𝑔∗) is conjugate. By Lemma 5.1 (iv), the pair (𝜂𝑔, 𝜂2𝑔∗) is pre-
conjugate, and thus (𝜂𝑔)∗ = (𝜂2𝑔∗)∗∗. We get, using Lemma 5.3 for the first and last equalities:𝑇𝑘1(𝜂𝑔)∗ = 𝑇𝑘2((𝜂𝑔)∗) = 𝑇𝑘2((𝜂2𝑔∗)∗∗) = 𝑇𝑘2(𝜂2𝑔∗).
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Notice that if 𝜇2-a.s. 𝑓 = ℎ then 𝒯𝑘2(𝑓) = 𝒯𝑘2(𝑔), so that 𝒯𝑘2(𝜂2𝑔∗) is a well defined element ofℒ∞(𝐸2). Thus defining 𝑔2 ∈ ℒ∞(𝐸2) by:𝑔2 = 𝒯𝑘2(𝜂2𝑔∗)𝛾2 + 𝒯𝑘2(𝜂2𝑔∗) ,
we get that 𝜇2-a.e. 𝑔2 = 𝑔∗ and that 𝐹𝜂2(𝑔2) = 0. In other words, 𝑔2 is an equilibrium for the
model given by Param2 when using the vaccination strategy 𝜂2, and, seeing 𝑔𝑖 as an element of𝐿1(𝐸𝑖), the pair (𝑔1, 𝑔2) is conjugate. This proves the first part of Point (ii).
The fraction of infected individualsℑ. Wenow prove thatℑ[Param1](𝜂1) = ℑ[Param2](𝜂2)
whenever the pair (𝜂1, 𝜂2) is preconjugate. We assumewithout loss of generality that𝑅0[Param1] =𝑅𝑒[Param1](𝟙) > 1 which is equivalent to 𝑅0[Param2] = 𝑅𝑒[Param2](𝟙) > 1, thanks to Theo-
rem 3.6 (i) as the pair (𝟙, 𝟙) is conjugate and thus pre-conjugate. Let 𝑔1 = 𝔤𝜂1 be the max-
imal equilibrium for the model Param1 when using the vaccination strategy 𝜂1. By the pre-
vious result there exists an equilibrium 𝑔2 for SIS model Param2 such that 𝜇2-a.s. 𝑔2 = 𝑔∗1 .
Let us now prove that it is the maximal one. Since (1 − 𝑔2) = (1 − 𝑔1)∗ in 𝐿1(𝐸2), we get𝑅𝑒[Param1](1 − 𝑔1) = 𝑅𝑒[Param2](1 − 𝑔2), again by Theorem 3.6 (i). Since 𝑅0[Param1] > 1
and 𝑔1 is the maximal equilibrium for Param1, we deduce from [7, Proposition 5.5] that the
vaccination strategy associated to 𝑔1 is critical, that is, 𝑅𝑒[Param1](1 − 𝑔1) = 1. Since 𝑔2 is an
equilibrium for Param2 satisfying 𝑅𝑒[Param2](1 − 𝑔2) = 1, we deduce using again [7, Proposi-
tion 5.5] that 𝑔2 is also the maximal equilibrium for Param2. Using Point (iv) of Lemma 5.1,
we deduce that the pair (𝑔1𝜂1, 𝑔2𝜂2) is pre-conjugate and then from Point (iii) therein thatℑ1(𝜂1) = ∫𝐸1 𝜂1𝑔1 d𝜇1 = ∫𝐸2 𝜂2𝑔2 d𝜇2 = ℑ2(𝜂2). This ends the proof of Point (ii).
Proof of Point (iii). Thanks to Points (i) and (ii), it is enough to check that 𝐶[Param1](𝜂1) =𝐶[Param2](𝜂2) whenever the pair (𝜂1, 𝜂2) is pre-conjugate. Since the pair (𝔠1, 𝔠2) is conjugate,
this is a direct consequence of Points (iii) and (iv) from Lemma 5.1.
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