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Hybrid high-order (HHO) methods ...
e In a nutshell
e Links to other methods

e Wave propagation problems
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Hybrid high-order (HHO) methods ...
e In a nutshell
e Links to other methods
e Wave propagation problems

@ Seminal references: [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]

@ Two textbooks
e HHO on polytopal meshes
[Di Pietro, Droniou 20]

o A primer with application to solid
mechanics [Cicuttin, AE, Pignet 21]
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Basicidens

@ Degrees of freedom (dofs) located on mesh cells and faces

@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
° ® < ) ' ‘e )
°
' ® . R ' ¢
° ° ¢ °° oo o ¢ cee b cee ¢
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@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM
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@ Degrees of freedom (dofs) located on mesh cells and faces

@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
° ® < ' ' ‘e )
°
' ® . R ® ¢
° ° ¢ °° oo o ¢ 006 b cse o

@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM

@ Generalization to higher order of ideas from Hybrid FV and Hybrid
Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
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@ Meshcell T € T, cell dofs ur € ]P’k(T), face dofs ugy € P (For)
iir = (ur, upr) € Ur :=PX(T) x P*(Far)
@ Local potential reconstruction Ry : /7 — P*!(T) s.t.
(VR (itr), Vg)r = =(ur, Ag)r + (uor, Vgnr)ar, Vg e P (T)/R

together with (R7(ii7), )7 = (ur, L)y
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@ Mesh cell T € 7, cell dofs uy € PX(T), face dofs uyr € PX(Far)
iir = (ur, uar) € Ur :=P*(T) x P*(Far)
@ Local potential reconstruction Ry : /7 — P*!(T) s.t.
(VRr(iir), Vg)r = =(ur. Aq)r + (uor. Vgnr)ar, Vg € PHY(T)/R
together with (Ry(itr), D)y = (ur, D)r
@ Local gradient reconstruction Gz (ii7) := VRr(iiy) € VP¥1(T)

@ Local stabilization operator acting on 6y, = urlar — usr

Sar(81,) = Ty (81, = ((1 = TIR7(0,61,))lor )

high-order correction

Taking Spr(d4,) := dz, is suboptimal ...
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@ Local bilinear form for Poisson model problem
ar(ir,wr) = (Gr(itr), Gr(wr)r + hy' (Sor(83,), Sar (64, )ar

(recall 8;, := urlar — uar)
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@ Local bilinear form for Poisson model problem
ar(ir,wr) = (Gr(itr), Gr(wr)r + hy' (Sor(83,), Sar (64, )ar
(recall &, = urlor — uor)
@ Stability and boundedness

a”flT”%,T <ar(ir, i) w”ﬁT”%T, Vig € Ur

with [[irlI7, = |IVurllF + hz 163,115,

B6/42



@ Global dofs i1, = (ug, ug) (7 := {mesh cells}, F := {mesh faces})

Uy =P x PX(F), PHT) = >< PT), PAF) = X PA(F)

TeT Fef

@ Dirichlet conditions enforced on face boundary dofs

UhO :={9hefjh|vF=0VFc69}
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@ Global dofs i1, = (ug, ug) (7 := {mesh cells}, F := {mesh faces})

Uy :=PHT) xP(F), PHT) = XX BAT), PH(F) = X PP

TeT Fef

@ Dirichlet conditions enforced on face boundary dofs

0},0 2={9h€0h|VF=0VFCGQ}

@ Discrete problem: Find i, € Uo s.t.

ap iy, Wp) = Z ar(iir,wr) = (f,wra, Vi, € Uy
TeT

(only cell component of test function used on rhs)
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@ Algebraic realization

[A'rfr A'r?—"] [UT] _ [F'r]
Arr Ags| [Us| |0

— submatrix A is block-diagonal!
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@ Algebraic realization

[Afrfr ArF
Arr Arr

I17]-[%]

— submatrix Aq is block-diagonal!

@ Cell dofs can be eliminated locally by static condensation

e global problem couples only face dofs

o cell dofs recovered by local post-processing

@ Summary

Assembly

Static condensation

L]
L]

o’ Cell unknowns

8/42
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@ General meshes: polytopal cells, hanging nodes

o Hanging node =——TFace I Quadrangle = Pentagon
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@ General meshes: polytopal cells, hanging nodes

o Hanging node =——TFace I Quadrangle = Pentagon

@ Local conservation

o optimally convergent and algebraically balanced fluxes on faces
e as any face-based method, balance at the cell level

@ Attractive computational costs

o only face dofs are globally coupled
e compact stencil (slightly less compact than DG though)
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@ Smooth solutions (in H*2(Q))

o O(h**1) H'-error estimate (face dofs of order k > 0)
o O(h¥*2) L2-error estimate (with full elliptic regularity)
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@ Smooth solutions (in H*2(Q))

o O(h**1) H'-error estimate (face dofs of order k > 0)
o O(h¥*2) L2-error estimate (with full elliptic regularity)

@ Less regularity
o O(h'") H'-error estimate if u € H'*'(Q), t € (%,k+ 1]
e fort e (0,1), see [AE, Guermond 21 (FoCM)]
o forf e H1(Q), see [AE, Zanotti 20 (IMAINA)]
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@ Smooth solutions (in H*2(Q))

o O(h**1) H'-error estimate (face dofs of order k > 0)
o O(h¥*2) L2-error estimate (with full elliptic regularity)

@ Less regularity
o O(h'") H'-error estimate if u € H'*'(Q), t € (%,k+ 1]
e fort e (0,1), see [AE, Guermond 21 (FoCM)]
o forf € H1(Q), see [AE, Zanotti 20 (IMAINA)]

@ Main consistency property: Introduce reduction operator
Ir : H\(T) - Ur, Ir(v) = (H];(V),HET(WBT))

Then we have
o hxllv=Rr(Ir)llr + IV = Rr(Ir () llr s Kt Vg2 (1)

_1 N
o W2 ISar(r()llar < K vl r)
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@ Variant on gradient reconstruction Gz : /7 — P¥(T;R?) s.t.
(Gr(itr), @)r = —(ur. div Q)7 + (usr. qnr)or. Vg € P(T;RY)

e same scalar mass matrix for each component of G (ii7)
o useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]
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varants

@ Variant on gradient reconstruction Gz : /7 — P¥(T;R?) s.t.
(Gr(itr), @)r = —(ur. div Q)7 + (usr. qnr)or. Vg € P(T;RY)

e same scalar mass matrix for each component of G (ii7)
o useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

@ Variants on cell dofs and stabilization

e mixed-order setting: k > 0 for face dofs and (k + 1) for cell dofs
o this variant allows for the simpler Lehrenfeld—Schoberl HDG stabilization

Sor(64,) = 115.(54,)

e another variant is k > 1 for face dofs and (k — 1) for cell dofs
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HHO on unfitte

@ Model problem with curved interface/boundary

Q

nr
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HHO on unfitted mes

@ Model problem with curved interface/boundary

Q

nr

@ HHO works optimally on cells with planar faces

@ One idea is to use unfitted meshes

e curved interface can cut arbitrarily through mesh cells
o numerical method must deal with ill cut cells
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@ Model problem with curved interface/boundary

Q)

nr

@ HHO works optimally on cells with planar faces

@ One idea is to use unfitted meshes

e curved interface can cut arbitrarily through mesh cells
o numerical method must deal with ill cut cells

@ Well developed paradigm for unfitted FEM
o double unknowns in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
@ ghost penalty [Burman 10] to counter ill cuts (gradient jump penalty across
faces near curved boundary/interface)
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@ Main ideas [Burman, AE 18 (SINUM)]
o double cell and face dofs in cut cells, no dofs on curved boundary/interface
e mixed-order setting: k > 0 for face dofs and (k + 1) for cell dofs
o local cell agglomeration as an alternative to ghost penalty
see [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13] for dG context
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@ Main ideas [Burman, AE 18 (SINUM)]

o double cell and face dofs in cut cells, no dofs on curved boundary/interface
e mixed-order setting: k > 0 for face dofs and (k + 1) for cell dofs
@ local cell agglomeration as an alternative to ghost penalty

see [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13] for dG context

] Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]

e novel gradient reconstruction = O(1) penalty parameter
e robust cell agglomeration procedure (ensures locality)

@ Extensions

o Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]
@ wave propagation [Burman, Duran, AE 21 (CMAME)]
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Global dofs

A
Up

o.:.u.:.o.;. .:. .;. .:.o.;.u.:.q
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@ The global dofs are in ®

iy € Oy = PRI x XX P (1) x KPRy x X PR (F)
TeT! TeT? FeF! Fef?

@ We set to zero all the face components attached to 9Q
@ All the cell dofs are eliminated locally by static condensation
@ Only the face dofs are globally coupled
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lllustration of agglomeration _

@ Circular interface

ENEENEEEEN

@ Flower-like interface

T
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HHO = WG = HDG = ncVEM

@ [Cockburn, Di Pietro, AE 16 (M2AN)], [Di Pietro, Droniou, Manzini 18 (JCP)],
[Cicuttin, AE, Pignet 21 (SpringerBriefs)]

@ !! Different devising viewpoints should be mutually enriching !!
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@ WG methods devised in [Wang, Ye 13] (vast litterature...)
@ Similar devising of HHO and WG

@ HHO gradient reconstruction is called weak gradient in WG
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@ WG methods devised in [Wang, Ye 13] (vast litterature...)
@ Similar devising of HHO and WG
@ HHO gradient reconstruction is called weak gradient in WG

@ WG often uses plain LS stabilization

HQT(5aT = (U =TE)Ry (0, 83,))lor)  (I=k)

WG N — S HHO . o
SaT((S“T) = 61,{7 VS. SaT (61,41‘) = {HZT((S&T) (I=k+1)

@ Plain LS stabilization leads to O(h*) H'-error bounds (not O(h**1) ...)

e achieving O(A*!) bounds requires using face polynomials of order (k + 1)
= more expensive
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@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
@ reviews in [Cockburn 16; Du, Sayas 19]
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@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]

@ reviews in [Cockburn 16; Du, Sayas 19]
@ HDG methods are formulated using a triple: dual variable (o), primal
variable (u), and its skeleton trace (1)
o the local equation for the dual variable is the grad. rec. formula in HHO!
e one passes from HDG to HHO formulation by static condensation of dual

variable
N R g St = ~(AF Vg + A Ug)
e ame el lugl = Fr| e e A o) - ]
HDG HDG HDG =
A A AT Y 0 ARS AT Vs 0
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Hybridizable DG

@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
@ reviews in [Cockburn 16; Du, Sayas 19]

@ HDG methods are formulated using a triple: dual variable (o), primal
variable (u), and its skeleton trace (1)

o the local equation for the dual variable is the in HHO!

e one passes from HDG to HHO formulation by static condensation of dual

variable
0 :—( U7‘+ U’]T)
ARG ARG U | = |Fyr| = [A;;;o Aol [Ug F¢]
HDG HDG =
A AulYsl L0 A ALCHUF] L0

@ HHO is an HDG method!
o this bridge uncovers HHO numerical flux trace

qor(ir) = -Gr(ir)ny + h}l (857 0 Sor) (84,)

e one HHO novelty: use of reconstruction in stabilization (equal-order case)

@ Main HHO benefit: simpler analysis based on L2-projections (avoids
special HDG projection!)
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
@ Virtual space
PN T) € Vo= {v e HI(T) | Av € PX(T), n-Vvlar € PX(Far)}

(original ncVEM devising with [ =k — 1,k > 1)
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]

@ Virtual space
PMUT) ¢ Vri={ve HY(T) | Av € P(T), n-Vv|sr € PX(For)}
(original ncVEM devising with [ =k — 1,k > 1)

@ HHO dof space {7 with [ := k — 1 isomorphic to virtual space V

e virtual reconstruction operator Ry : U — Vr
o Jr : Vr — Ur: restriction of reduction operator to virtual space
e then, 97 o Ry = Iij and Ry o Jr = I,
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
@ Virtual space
PMUT) ¢ Vri={ve HY(T) | Av € P(T), n-Vv|sr € PX(For)}
(original ncVEM devising with [ =k — 1, k > 1)

@ HHO dof space {7 with [ := k — 1 isomorphic to virtual space V

e virtual reconstruction operator Ry : Uy — Vr
o Jr : Vr — Ur: restriction of reduction operator to virtual space
e then, 97 o Ry = I, and Ry o Jr = I,

@ HHO grad. rec. is called computable gradient projection in ncVEM

@ Stabilization controls energy-norm of noncomputable remainder
e purely algebraic stab. from ncVEM could be explored in HHO
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Nonconforming virtual elements

@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
@ Virtual space
PM*YT) ¢ Vii= {v e HY(T) | Av € P/(T), n-Vv|gr € PX(For)}
(original ncVEM devising with [ =k — 1, k > 1)

@ HHO dof space U/7 with [ := k — 1 isomorphic to virtual space Vy

e virtual reconstruction operator Ry : Ur - Vv
o Jr : Vr — Ur: restriction of reduction operator to virtual space
e then, 97 o Ry = I[/T and Ry o 97 = I(VT

@ HHO grad. rec. is called in ncVEM

@ Stabilization controls energy-norm of noncomputable remainder
o purely algebraic stab. from ncVEM could be explored in HHO

@ Further link to Multiscale Hybrid Mixed (MHM methods)
[Chaumont, AE, Lemaire, Valentin 22]
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@ Second-order formulation in time: Newmark schemes
@ First-order formulation in time: Runge—Kutta (RK) schemes

@ [Burman, Duran, AE 22 (CAMC, CMAME)], [Burman, Duran, AE, Steins 21 (JSC)],
[Steins, AE, Jamond, Drui 23 (M2AN)]
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@ Domain Q c R?, time interval J := (0, T¢), T; > 0
@ Acoustic wave equation with wave speed ¢ := \/k/p

(9up (1), w) 1.0 + (VP(D), VW)%J;Q = (f(1),w)a, YweHy(Q)Vtel
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 Aooustio wave equation

@ Domain Q c R?, time interval J := (0, T¢), T; > 0
@ Acoustic wave equation with wave speed ¢ := \/x/p

(9up (1), w) 1.0 + (VP(D), VW)%J;Q = (f(1),w)a, YweHy(Q)Vtel
@ Energy balance: €(r) = €(0) + fot(f (5), 0ip(s))ads with

(1) := HlapI3 , + LIP3
K’ P
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Aco

@ Domain Q c R?, time interval J := (0, T¢), T; > 0
@ Acoustic wave equation with wave speed ¢ := \/x/p

(Oup(t), w)1.6 + (Vp(1), VW) 1. = (f(), W), VYwEe H(l) (Q)VrelJ
K P
@ Energy balance: €(r) = €(0) + fot(f (5), 0ip(s))ads with
&) = 31ap (I} o + IVPOIE

@ Everything can be extended to elastodynamics
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Local cell dofs in P/(T), I € {k, k + 1}, and local face dofs in P*(F4r)

iir = (ur, usr) € Ur := PI(T) x PX(Far)

@ Local gradient reconstruction G7(ii7) € PX(T;R?) (or in VP! (T))
@ Local stabilization acting on 8j, := ur|or — usr
Sor (8 = (84, — ((I = TX)R7(0,65,))lor)  if =k
oT\Our) - aT(éuT) ifl=k+1

@ Local bilinear form (with 7o7 := (pjrhr)™")

ar(ier, wr) = (Gr(itr), Gr(Wr)) 1,7 + Tor (Sar (63, ), Sor (85 ))or

Global bilinear form a;, on HHO space Upo (with Dirichlet BCs)
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@ Space semi-discrete form: Find p;, € C2(J; Ujo) s.t.

(Oup7 (D). wr) 1.0+ an(pi(0), 1) = (F(1), wrla, Vi € U Vr e J
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HHO sp

@ Space semi-discrete form: Find p;, € C2(J; Ujo) s.t.

(Bup7 (1), wr) 1.+ an(pi(t), ) = (f (1), wr)a,  Viv, € UVt el

@ Energy balance: € (1) = €,(0) + [/ (£(s), dp7(s))ads with
€u(1) = %”@PTU)”E.Q + %”G‘T(ﬁh(t))”i.g + 351 (Pi(t), p(1))
K p’

Stabilization is taken into account in the energy definition

@ HDG methods for wave equation in second-order form [Cockburn, Fu,
Hungria, Ji, Sanchez, Sayas 18]

22/49



Algebr

@ Bases for P/(77) and P¥(7) = vectors (P7(1), P#(f)) € RN x RM7

[MTTattPT(t)] . [ATT A’r¢] [PT(t)] _ [FT(t)]
0 Agr  Arr| |Pr(D) 0

@ Mass matrix Mg and stiffness submatrix Aq are block-diagonal

@ Stiffness submatrix A¢¢ is only sparse: face dofs from the same cell are
coupled together owing to reconstruction
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Err

@ [Burman, Duran, AE, Steins 21 (JSC)] proves (for smooth solutions)
o [|6p - atP‘T”Loo(];y(%;g)) +[|Vp - GT(ﬁh)”LZ(‘];LQ(%;Q)) < HH
o -(p) - prll Lo 2L S 1K+ (under full elliptic regularity)

@ Some comments on proofs

o adapt ideas from FEM analysis [Dupont 73; Wheeler 73; Baker 76]
e simpler than HDG (which needs special initialization)
o applies to DG using discr. gradients (revisit [Grote, Schneebeli, Schitzau 06])
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@ Newmark scheme with parameters (8, y) = (%, %
e implicit, second-order, unconditionally stable
@ p, Oip, Oyp are approximated by hybrid pairs iyz, f)Z, &;’l € Upp,Vn >0
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@ Newmark scheme with parameters (8, y) = (%, %
e implicit, second-order, unconditionally stable
@ p, Oip, Oyp are approximated by hybrid pairs iyz, f)Z, &Z € Upp,Vn >0

@ Discrete energy is exactly conserved
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@ Newmark scheme with parameters (8, y) = (%, %

e implicit, second-order, unconditionally stable
® p, 0ip, Oyp are approximated by hybrid pairs p}, 7, 4} € Upo.¥n = 0
@ Discrete energy is exactly conserved

@ Improvements on leapfrog scheme [Steins, AE, Jamond, Drui 23 (M2AN)]

o plain leapfrog not efficient: needs inverting stiffness submatrix A4

@ one can use an iterative method exploiting bock-diagonal structure of
face-face penalty submatrix

e convergence guaranteed if stabilization scaled with large enough weight

@ sharp estimate depending on trace inequality constant (h-independent)
@ mild impact on CFL condition despite increased stiffness (up to factor of 2)

e computational performances

@ close-to-optimal value of weight easy to set
@ generally outperforms plain leapfrog, especially for nonlinear problems
@ mixed-order HHO setting more efficient than equal-order
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@ Introduce velocity v := ,p and dual variable o := /l)Vp
@ Weak form: ¥(r,w) € L*(Q;RY) X H}(Q), Vi € J,

(00 (1), T)p: = (V(1), T)2 = 0 o pho-Vv=0
@1, w10+ (0 (0, IWa = (f().wa & dv-dive=f

@ Energy balance: €(r) = €(0) + _[Ot(f (5), v(s))ads with

€(1) = 5 IVDIE , + 5o Dl
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 HHO space semt discrete

@ 9, € C'(J; Uy) and o € C'(J;So) with S5 := P¥(7T;RY)
@ Space semi-discrete form:

(007 (1), T7)p0 — (G (¥ (1), T7)a =0
(v (1), wr)1.q + (007 (1), Gr-(Wa))a + 304 (2), W4) = (£ (1), wr)a

@ Stabilization 3, (-, -) with weight T57 = O(h;), one takes @ € {0, 1}
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P, € C'(J; Upo) and o7 € C'(J;S7) with S := PK(7;RY)

Space semi-discrete form:

(007 (1), T7)p0 — (G (¥ (1), T7)a =0
(v (1), wr)1.q + (007 (1), Gr-(Wa))a + 304 (2), W4) = (£ (1), wr)a

Stabilization 5y (-, -) with weight Tar = O(h;%), one takes a € {0, 1}

Energy balance: €, (1) := 3llvr (011}, + 3107 (D}

€(1) + /0 () )l = @y(0) + /0 (F(5). vr-(s))ads

Stabilization acts as a dissipative mechanism

HDG methods for wave equation in first-order form [Nguyen, Peraire,
Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]
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@ Component vectors Z7(t) € R¥7 and (V7(1), V(1)) € RN7>XN7

M7 0Zr(n] [0 -Gr -G7|[Zr (1) 0
Mo V7 (1) | + G:Z' Sy Sqs| (Vi ()| = [Fr(r)
0 Gr Sgr Sgg||[Vr(®) 0

@ Mass matrices M7~ and My are block-diagonal

@ Key point: stab. submatrix S¢#¢ block-diagonal only if / = k + 1

o for [ = k, high-order HHO correction in stabilization destroys this property
(couples all faces of the same cell)
e mixed-order HHO setting recommended for explicit schemes!
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@ Natural choice for first-order formulation in time
e single diagonally implicit RK: SDIRK(s, s + 1) (s stages, order (s + 1))
o explicit RK: ERK(s) (s stages, order s)

@ ERK schemes subject to CFL stability condition ”TA’ < B(s)u(k)
o f(s) slightly increases with s € {2, 3,4}
o u(k) essentially behaves as (k + 1)~ w.r.t. polynomial degree

20/42



1D heterogensaus media

@ 1D testcase, Q; = (0,0.5), Q; = (0.5,1), ¢;/c; = 10
o initial Gaussian profile in 1
o analytical solution available (series)

@ Benefits of increasing polynomial degree
o Newmark scheme, equal-order, k € {1,2,3}, h=0.1 X 278 Ar=0.1x279
o HHO-Newmark solution at 1 = % (after reflection/transmission at x = %)

k=1 k=2 k=3
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2D h

@ 2D test case, Ricker (Mexican hat) wavelet
0 Q1 =0,1)x(0,1),Q=0.1x.D.c/c=5
e pg=0,v9 = —14—0\/133(1600 - 1) n_élt exp (—800r2),
P = (x=x)? + (= y)% (ke ve) = (3. 5) € Q)

e semi-analytical solution (infinite media): garémore2d software (INRIA)

@ HHO-SDIRK(3,4) velocity profiles

e mixed-order, k = 5, polygonal meshes
o Ar=0.025x 270 (four times larger than Newmark for similar accuracy)

t=0.015 t=0.031 1=0.25
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@ Subdomains Q, Q, C Q, interface I', jump [a]r = ajq, — ajq,
@ Acoustic wave propagation across interface
$0up —div (IVp) =f  inJx(QU)
[plr =0, [[%Vp]]r-nr =0 onJxT

@ Use main ideas from elliptic interface problems

e mixed-order setting [ = k+ 1

e distinct gradient reconstructions Gr; in PR(T;RY), i € {1,2}
e O(1) penalty parameter

o LS stabilization on (T)', i € {1,2} = st (5 )

@ Unfitted HHO-Newmark, ERK and SDIRK available
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Fitt
@ 2D heterogeneous test case with flat interface
° Ql = (_%7 %) X (_%30)7 92 = (_%s %) X (0’ %)

o Ricker wavelet centered at (0, %) € Oy, sensor S| = (%, —%) €eQ
o fitted and unfitted HHO behave similarly, both benefit from increasing k
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@ 2D heterogeneous test case with flat interface
0 Q:=(-3.3)x(-3.0).Q :=(-3.3) x(0.3)
o Ricker wavelet centered at (0, %) € €y, sensor S| = (?—1, —%) € Q
o fitted and unfitted HHO behave similarly, both benefit from increasing k

@ HHO-Newmark, o signals
e comparison of semi-analytical and HHO (fitted or unfitted) solutions
e k=1 (top) and k = 3 (bottom)
e c3/ci = V3 (low contrast, left) or ¢5/c; = 8V3 (high contrast, right)

Newmark:
Nownark: more2D —— Fil-HHO k=1 — Cut-HHO k=
— Garbmore2D — Fi-HHO k=1 — Cut-HHO k=1 o CaEmoreEh - FIHAO ke o CutcHHO ket

0.02] Q.
001l | g
B 8
001,
-002)
00 02 04 06 08 10




@ Homogeneous test case, flat interface

@ CFL condition for ERK(s): CTAt < B(s)u(k)
o A(s) mildly depends on the number of stages
o (k) behaves as (k + 1)1 and is quantified by solving a generalized
eigenvalue problem with the mass and stiffness matrices

@ Additional jump penalties in unfitted HHO only mildly impact u(k)

k 0 1 2 3
Fitted-HHO 0.118 0.0522 0.0338 0.0229
Unfitted-HHO | 0.0765 0.0373 0.0232 0.0159
Ratio 1.5 1.4 1.5 1.4
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@ Homogeneous test case, circular interface

e study of impact of agglomeration parameter 0,5, on g (k)

o “ill cut” cells flagged if relative area of any subcell falls below 6,00

@ Agglomerated cells for 8,5, = 0.3 on a sequence of refined quad meshes

1T

all In | ™, VN
== L 1K

{
Hp gl
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CFLcondiion for ERK (22)

@ Homogeneous test case, circular interface

e study of impact of agglomeration parameter 0,5, on g (k)
o “ill cut” cells flagged if relative area of any subcell falls below 6,00

@ Agglomerated cells for 8,5, = 0.3 on a sequence of refined quad meshes

EEECI A
=l @ K

3
=] ! g

H i 0 0 T Eth[bcb:mﬂdjﬁl ~ = aﬁ““rf

@ Behavior of hu(k) and impact of 6,5, on p1(k)
o tolerating ill cut cells deteriorates the CFL condition
[ x [ 0 1 2 3]

Oagg =0.5 | 0.042  0.022 0.014  0.0099
Oagg =0.3 | 0030 0.015  0.0094  0.0065

Ratio 1.4 1.5 1.5 1.5
Oagg = 0.1 | 0.017 0.0087 0.0055 0.0039

Ratio 2.5 2.6 2.6 2.5
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Flo

@ Agglomerated cells for a flower-like interface (quad mesh, h = 27°),
HHO-SDIRK(3.4) signal for o, at two sensors, k € {1,2,3}, c2/c) = V3
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@ Pressure isovalues, SDIRK(3,4), k =3, h=0.1 X278, At =270

t=0.25 t=0.5 t=1
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Flow

@ Agglomerated cells for a flower-like interface (quad mesh, h = 27°),
HHO-SDIRK(3.4) signal for o, at two sensors, k € {1,2,3}, c2/c) = V3
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@ Pressure isovalues, SDIRK(3,4), k =3, h=0.1 X278, At =270

t=0.25 t=0.5 t=1

I Thank you for your attention !!
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Competition: Newmark vs. RK

All schemes deliver same max. rel. error on a sensor at (% %)
Disclaimer: preliminary results! (off-the-shelf solvers)

If no direct solvers allowed, ERK(4) wins despite CFL restriction
With direct solvers, SDIRK(3.4) wins

RK schemes more efficient than Newmark scheme

for SDIRK(3.,4), Tor = O(h}”), a = 1 more accurate/expensive than
a=0

| scheme | (LK)

solver | t/step  steps time  err |
[ERK(4) | (6.5 wa | 0410 5120 2000 223 |

a
0
Newmark (7,6) 1 iter | 56.74 2,560 58.265 2.15
SDIRK(3,4) | (6,5) 1 iter |3124 640 5,639 221

0

1

1

SDIRK(3,4) | (6,5) iter | 22.52 640 2200 4.45

Newmark (7,6) direct | 0.515 2,560 1,318 2.15
SDIRK(3,4) | (6,5) direct | 1.579 640 1,010 2.21
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Lo

k=0 k=0
. r
cut cell uncut cell

@ Mesh still composed of polygonal cells (with planar faces)
@ Decomposition of cut cells: T= Tl U Tz, ™m=Tnr

@ Decomposition of cut faces: d(T;) = (dT)' UT', i e {1,2}
@ Local dofs (no dofs on 771)

iir = (ur,, ur,, ugarys Uiare) € P T)XP (1) XPX(F a7y )XPH (F 7))
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Gradient rec

r

@ Gradient reconstruction Gr, (i) € PX(T;; RY) in each subcell

o (Option 1) Independent reconstruction in each subcell

(G, (ir), @1, = = (ur;, div @7, + (U 57)0, AN (97)i + (UT, @07, )gT

e (Option 2) Reconstruction mixing data from both subcells

(G, (ir), Qr; = —(ur,, div @7, + (U471, 4NT) (97 + (U ;> QDT 7T
(a7) (oT)

@ Both options avoid Nitsche’s consistency terms
e O(1) penalty parameter
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@ Local bilinear form

ar(ir,ivp) = ) Aki(Gr, (), G, (), + s, G, )+ 5§ G, wr)
ie{1,2}

@ LS stabilization inside each subdomain
st (ir, or) = ki) (HIEBT),-(%TI,), S J(aT)!
@ Interface bilinear form
SI;(MT, wr) = 77K1h}1([[u7]]1-, IIWT]]F)TF with 7 = O(1)

@ The use of two gradient reconstructions allows for robustness
w.r.t. contrast (k] < k3)

@ use option 1 in 1 and option 2 in Q,
@ ar is symmetric, but Q; /€, do not play symmetric roles
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Error analysis

@ Multiplicative and discrete trace inequalities [Burman, AE 18]

o for any cut cell 7, there is a ball T" of size O(hr) containing 7 and a finite
number of its neighbors, and s.t. all 7 N T is visible from a point in 77

o small ball with diameter O(h7) present on both sides of interface

@ achievable using local cell agglomeration if mesh fine enough

Error estimate

Assuming that ulo, € H'*(Q;) with ¢ € (%, k+1],

DD klVa—up)lz < Y kilul g,

T ie{l1,2} ie{l,2}

Convergence order O(AF1) if ulo, € H**?(Q;)
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