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o HHO methods in a nutshell
o Links to other methods
o Unfitted HHO

e Stabilization by polynomial extension
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@ Seminal references: [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]

@ Two textbooks
e HHO on polytopal meshes
[Di Pietro, Droniou 20]

o A primer with application to solid
mechanics [Cicuttin, AE, Pignet 21]
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Basicidens

@ Degrees of freedom (dofs) located on mesh cells and faces

@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
° ® < ) ' ‘e )
°
' ® . R ' ¢
° ° ¢ °° oo o ¢ cee b cee ¢
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@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM
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@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM

@ Generalization to higher order of ideas from Hybrid FV and Hybrid
Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
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@ Mesh cell T € T, cell dofs uy € PK(T), face dofs uyr € PX(Far)

iir = (ur, upr) € Ur :=P*(T) x P*(Far)
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@ Mesh cell T € T, cell dofs uy € PK(T), face dofs uyr € PX(Far)

iir = (ur, upr) € Ur :=P*(T) x P*(Far)

@ Local potential reconstruction Ry : /7 — P*!(T) s.t.
(VRr(itr), V@)r = =(ur, AQ)r + (uor, Vgnr)or, Vg € PHY(T)/R

together with (Ry(ii7), )7 = (ur, L)y
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@ Mesh cell T € T, cell dofs uy € PK(T), face dofs uyr € PX(Far)

iir = (ur, upr) € Ur :=P*(T) x P*(Far)

@ Local potential reconstruction Ry : /7 — P*!(T) s.t.
(VRr(iir), Va)r = —(ur, AQ)r + (uor, Vgnr)or, Vg € P*Y(T)/R
together with (Ry(ii7), )7 = (ur, L)y

@ Local gradient reconstruction Gr(iiy) := VRr(ity) € VP*1(T)
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@ Mesh cell T € T, cell dofs uy € PK(T), face dofs uyr € PX(Far)

iir = (ur, ugr) € Ur := PX(T) x PX(Far)

@ Local potential reconstruction Ry : /7 — P*!(T) s.t.
(VRr(ii7), Vg)r = ~(ur, Aq)r + (uar, Vgnr)ar, Vg € PHY(T)/R
together with (Ry(itr), D)y = (ur, Dr
@ Local gradient reconstruction Gz (ii7) := VRr(iiy) € VP*1(T)

@ Local stabilization operator acting on 6, = urlar — usr
e penalizing S57(6y,) = d3, is suboptimal (too much stab.) ...
e one optimal choice for equal-order polynomials is

Sar(6ir) = W (83, = (1 = IR (0, 3,)lor

HHO high-order correction
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@ Local bilinear form for Poisson model problem (recall 63, := urlor — usr)

ar(ir,wr) = (Gr(itr), Gr(wr)r + hy' (Sor(84,), Sar(64,)ar
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_ Local bilmear form

@ Local bilinear form for Poisson model problem (recall 63, := urlor — usr)
ar(ir,wr) = (Gr(itr), Gr(wr)r + hy' (Sor(84,), Sar(64,)ar
@ Local H'-like seminorm for hybrid variables
Iﬁrll%,T = |Vurliz + bz 1164, 15,
Notice that |12T|UT =0 = ur=uspr=c
@ Stability and boundedness

01|b7T|éT < ar(ir,ir) < wlﬁTléT, Vg € Ur
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@ Global dofs i1, = (ug, ug) (7 := {mesh cells}, F := {mesh faces})

Uy =P x PX(F), PHT) = >< PT), PAF) = X PA(F)

TeT Fef

@ Dirichlet conditions enforced on face boundary dofs

UhO :={9hefjh|vF=0VFc69}

7/43



@ Global dofs i1, = (ug, ug) (7 := {mesh cells}, F := {mesh faces})

Uy :=PHT) xP(F), PHT) = XX BAT), PH(F) = X PP

TeT Fef

@ Dirichlet conditions enforced on face boundary dofs

0},0 2={9h€0h|VF=0VFCGQ}

@ Discrete problem: Find i, € Uo s.t.

ap iy, Wp) = Z ar(iir,wr) = (f,wra, Vi, € Uy
TeT

(only cell component of test function used on rhs)
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@ Algebraic realization

[A'rfr A'r?—"] [UT] _ [F'r]
Arr Ags| [Us| |0

— submatrix A is block-diagonal!
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@ Algebraic realization

[Afrfr ArF
Arr Arr

I17]-[%]

— submatrix Aq is block-diagonal!

@ Cell dofs can be eliminated locally by static condensation

e global problem couples only face dofs

o cell dofs recovered by local post-processing

@ Summary

Assembly

Static condensation

L]
L]

o’ Cell unknowns

8/43
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@ General meshes: polytopal cells, hanging nodes (as dG and VEM)

o Hanging node  ===TFace [ Quadrangle =3 Pentagon
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@ General meshes: polytopal cells, hanging nodes (as dG and VEM)

o Hanging node  ===TFace [ Quadrangle =3 Pentagon

@ Local conservation

o (as any reasonable method) admits algebraically balanced fluxes on faces
o (as any face-based method) local (cell based) post-processing

@ Attractive computational costs
o only face dofs are globally coupled
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@ General meshes: polytopal cells, hanging nodes (as dG and VEM)

o Hanging node  ===TFace [ Quadrangle =3 Pentagon

@ Local conservation

o (as any reasonable method) admits algebraically balanced fluxes on faces
o (as any face-based method) local (cell based) post-processing

@ Attractive computational costs
o only face dofs are globally coupled

@ More complex problems
o stab. weight only positive and element-based (no face-based diffusion)
@ no call to nonlinear behavior law at interfaces
e symmetric (variational) formulation

9/43



@ Full-regularity solutions (in H**2(Q))

o O(h*1y H'-error estimate (face dofs of order k > 0)
o O(K*2) I2-error estimate (with full elliptic regularity)
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@ Full-regularity solutions (in H**2(Q))

o O(h*1y H'-error estimate (face dofs of order k > 0)
o O(K*2) I2-error estimate (with full elliptic regularity)

@ Less regularity?
o O(h') H'-error estimate if u € H'*/(Q), Vi € (1. k+1]
e fort e (0, %), see [AE, Guermond 21 (FoCM)]
o fort=0andf € H! (Q), see [AE, Zanotti 20 (IMAINA)]
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@ Full-regularity solutions (in H**2(Q))

o O(h*1y H'-error estimate (face dofs of order k > 0)
o O(K*2) I2-error estimate (with full elliptic regularity)

@ Less regularity?
o O(h') H'-error estimate if u € H'*/(Q), Vi € (1. k+1]
e fort e (0, %), see [AE, Guermond 21 (FoCM)]
o fort=0andf € H! (Q), see [AE, Zanotti 20 (IMAINA)]

@ Main consistency property: Introduce reduction operator
Ir:H(T) — Ur,  Ir(v) = (T (0), 115, (v]ar))

Then,
e Rpoly= 8;‘?1 is the elliptic projection onto PK*1(T)

_1 ~
o hp2IISar (Ir(M)llar < IV(v = EEL () lIr
R -1 X
= VO = ReUrW)lr + k> 1Sar(Tr W) llor < Ky Vg 7
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@ Variant on gradient reconstruction Gz : /7 — P¥(T;R?) s.t.
(Gr(itr), @)r = —(ur. div Q)7 + (usr. qnr)or. Vg € P(T;RY)

e same scalar mass matrix for each component of G (ii7)
o useful for nonlinear problems
[Di Pietro, Droniou 17; Abbas, AE, Pignet 18]
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varants

@ Variant on gradient reconstruction Gz : /7 — P¥(T;R?) s.t.
(Gr(itr), @)r = —(ur. div Q)7 + (usr. qnr)or. Vg € P(T;RY)

e same scalar mass matrix for each component of G (ii7)
o useful for nonlinear problems
[Di Pietro, Droniou 17; Abbas, AE, Pignet 18]

@ Variants on cell dofs and stabilization

e mixed-order setting: k > 0 for face dofs and / := (k + 1) for cell dofs
o this variant allows for the simpler Lehrenfeld—Schoberl HDG stabilization

Sor(64,) = 115.(54,)

e another variant is k > 1 for face dofs and (k — 1) for cell dofs
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HHO = WG = HDG = ncVEM

@ [Cockburn, Di Pietro, AE 16 (M2AN)]
[Di Pietro, Droniou, Manzini 18 (JCP)], [Cicuttin, AE, Pignet 21 (SpringerBriefs)]

@ !! Different devising viewpoints should be mutually enriching !!
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@ WG methods devised in [Wang, Ye 13] (vast litterature...)
@ Similar devising of HHO and WG

@ HHO gradient reconstruction is called weak gradient in WG
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@ WG methods devised in [Wang, Ye 13] (vast litterature...)
@ Similar devising of HHO and WG
@ HHO gradient reconstruction is called weak gradient in WG

@ WG often uses plain least-squares stabilization

» o _ (80, = (U =TE)R7 (0, 63,)) lar)  (1=k)
ST(dur) =0p, vs. S (6147') { T(6“T) ! (I=k+1)

@ Plain least-squares stabilization leads to O(h¥) H'-error bounds

o O(h**1) bounds require face polynomials of order (k + 1)
o fails for pcw. constant approximation
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@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
@ reviews in [Cockburn 16; Du, Sayas 19]
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@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]

@ reviews in [Cockburn 16; Du, Sayas 19]
@ HDG methods are formulated using a triple: dual variable (o), primal
variable (u), and its skeleton trace (1)
o the local equation for the dual variable is the grad. rec. formula in HHO!
e one passes from HDG to HHO formulation by static condensation of dual

variable
N R g St = ~(AF Vg + A Ug)
e ame el lugl = Fr| e e A o) - ]
HDG HDG HDG =
A A AT Y 0 ARS AT Vs 0
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Hybridizable DG

@ HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
@ reviews in [Cockburn 16; Du, Sayas 19]

@ HDG methods are formulated using a triple: dual variable (¢7), primal
variable (u), and its skeleton trace (1)

o the local equation for the dual variable is the in HHO!

e one passes from HDG to HHO formulation by static condensation of dual

variable
0 :—( U7‘+ U’]?)
ARG ARG U | = |Fyr| = [A;;;o Aol [Ug F¢]
HDG HDG =
A AulYsl L0 A ALCHUF] L0

@ HHO is an HDG method!
o this bridge uncovers HHO numerical flux trace

qor(ir) = -Gr(ir)ny + h}l (857 0 Sor) (84,)
e HHO novelty: use of reconstruction in stabilization (equal-order case)

@ One HHO benefit: simpler analysis based on L2-projections
(standard HDG projection works on simplicial meshes)
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]

@ Virtual space
PUT) ¢ V= {v e HY(T) | Av € PX(T), n-Vv|or € PX(Far)}

(original ncVEM devising with [ =k — 1,k > 1)
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]

@ Virtual space
PUNT) € V= {v e H'(T) | Av € PT), n-Vvlor € PX(Far)}
(original ncVEM devising with [ =k — 1,k > 1)

@ HHO dof space (/7 with [ := k — 1 isomorphic to virtual space Vr

e virtual reconstruction operator Ry : Ur - Vr
o Jr : Vr — Ur: restriction of reduction operator to virtual space
e then, Y7 o Ry = If/r and Ry o Jr = Iy,
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@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]

Virtual space
PMYTY ¢ V= {v e HY(T) | Av € P/(T), n-Vv|gr € PX(For)}

(original ncVEM devising with/ =k -1,k > 1)

HHO dof space /7 with [ := k — 1 isomorphic to virtual space V
e virtual reconstruction operator Ry : Ur —» Vr

° jT : Vy — Up: restriction of reduction operator to virtual space
e then, Y7 o Ry = IUT and Ry o g7 = I(VT

HHO grad. rec. is called computable gradient projection in ncVEM

Stabilization controls energy-norm of noncomputable remainder
e purely algebraic stab. from ncVEM could be explored in HHO
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Nonconforming virtual elements

@ ncVEM devised in [Ayuso, Manzini, Lipnikov 16]

Virtual space
PMYTY ¢ V= {v e HY(T) | Av € P/(T), n-Vv|gr € PX(For)}

(original ncVEM devising with/ =k -1,k > 1)

HHO dof space {/7 with [ := k — 1 isomorphic to virtual space V7

e virtual reconstruction operator Ry : Ur — Vr
o Jr : Vr — Ur: restriction of reduction operator to virtual space
e then, Y7 o Ry = IUT and Ry o Jr =1,

HHO grad. rec. is called computable gradient projection in ncVEM

Stabilization controls energy-norm of noncomputable remainder
e purely algebraic stab. from ncVEM could be explored in HHO

@ Further link to Multiscale Hybrid Mixed (MHM methods)
[Chaumont, AE, Lemaire, Valentin 22]; see alsSo [Lemaire 21]
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@ [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
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@ Model problem with curved interface (class C> for simplicity)

@ Findu € H' (Q UL) s.t.

-V-(«Vu) =f in Q) U )
[ulr=gp onT
[«Vulr -nr =gy onTl
u=0 onodQ

0))

nr

o dataf € I2(Q, UQy), gp € H3 (), gy € L2(I)

@ «k; = k|g, constant (for simplicity)
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Model

@ Model problem with curved interface (class C> for simplicity)

@ Findu € H' (Q UL) s.t.

=V-(«Vu) =f
[u]r = gp
[«Vu]r -nr = gy
u=0

in Q; U Q)
onl

onl

on 0Q

Q

nr

o dataf € I2(Q, UQy), gp € H3 (), gy € L2(I)
@ «k; = k|g, constant (for simplicity)

@ Weak formulation

Find u € Vg,

ie{1,2}

a(u,w) =£(w) Yw € Vp

with Vg, := {v € H'(Q UQ) | [VI[r = gponT, v=00n8Q}, Vo = H} (Q), and

a(u,w) = Z ki(Vui, Vwi)g,,

17/43

t(w) == (f,w)a + (gn.W)r




@ HHO works optimally on cells with planar faces
e face normal being constant plays a role in the analysis
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@ HHO works optimally on cells with planar faces
e face normal being constant plays a role in the analysis

@ First possibility: enrich face basis functions with non-polynomial
functions [Yemm 24]
(also explored in ncVEM context [Beirao da Veiga, Liu, Mascotto, Russo 24])
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@ HHO works optimally on cells with planar faces
e face normal being constant plays a role in the analysis

@ First possibility: enrich face basis functions with non-polynomial
functions [Yemm 24]
(also explored in ncVEM context [Beirao da Veiga, Liu, Mascotto, Russo 24])

@ Alternative idea: use unfitted meshes

@ background mesh very simple to devise
o curved interface can cut arbitrarily through mesh cells
o numerical method must deal with ill cut cells

Q)

nr
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@ Well developed paradigm for unfitted FEM
o double nodal dofs in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
o ghost penalty [Burman 10] to counter ill cuts (gradient jump penalty across
faces near curved boundary/interface)
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@ Improvements on unfitted HHO in [Burman, Cicuttin, Delay, AE 21 (SISC)]
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@ Other developments
e Stokes interface problems [Burman, Delay, AE 20 (IMAJNA)]
@ wave propagation [Burman, Duran, AE 21 (CMAME)]
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Unfitted HHO

@ Well developed paradigm for unfitted FEM

double nodal dofs in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]

ghost penalty [Burman 10] to counter ill cuts (gradient jump penalty across
faces near curved boundary/interface)

@ Main ideas for unfitted HHO [Burman, AE 18 (SINUM)]

double cell and face dofs in cut cells, no dofs on curved boundary/interface
mixed-order setting: k& > 0 for face dofs and (k + 1) for cell dofs
large enough penalty parameter

local cell agglomeration as an alternative to ghost penalty
[Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13] for dG context,

see also aggregated FEM [Badia, Verdugo, Martin 18]

@ Improvements on unfitted HHO in [Burman, Cicuttin, Delay, AE 21 (SISC)]

novel gradient reconstruction = O(1) penalty parameter
robust cell agglomeration procedure (ensures locality)

@ Other developments

Stokes interface problems [Burman, Delay, AE 20 (IMAJNA)]
wave propagation [Burman, Duran, AE 21 (CMAME)]

@ Everything readily extends to domains with curved boundary
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@ Circular interface

T

@ Flower-like interface

:E

T
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Agglomeration procedure

@ Circular interface

T T T T

T

@ Flower-like interface

11T
|
|
I

T

T

IHEEEN

@ Usual numerical analysis tools available on agglomerated mesh

e discrete inverse and trace inequalities, optimal polynomial approximation
@ precise statements in [Burman, AE 18]
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@ Partition of 7 into cut and uncut cells

T = Tcut U (runcut’ Tuncut — 7—1 U 7~2
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@ Partition of 7 into cut and uncut cells

T = Tcut U (runcut Tuncut — .7-1 U 7~2
@ Forall T € 7", we set

T :=TnQ Vie{1,2}, m.=Tnr

Boundary of cut cells: d(77) := (dT)' U T"
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@ Partition of 7 into cut and uncut cells
g .= geut (runcut’ gruncut _ -1y g2
@ Forall T € 7", we set
T :=TNnQVie{l,2}, m.=Tnr
Boundary of cut cells: d(77) := (dT)' U T"
@ Doubling of HHO unknowns in cut cells
i = (lig, i) = (U, Uegry g, o)) € Uy = ‘LIATl X (L7T2

with Uy = B (TP X BX(F o)) and PX(F 7)) = Xrier,,, B(F)

21/43



Loc

@ Partition of 7 into cut and uncut cells
T = Tcut U (runcut Tuncut — .7-1 U 7~2
@ Forall T € 7", we set
T :=TNnQVie{l,2}, m.=Tnr
Boundary of cut cells: d(77) := (dT)' U T"
@ Doubling of HHO unknowns in cut cells
ilT = (ﬁTl, ilfl) = (MTI, M(aT)l, ur2, u(aT)z) € 7/7T = ﬂTl X (L7T2
with Uy := PRU(TY) X PH(F o)) and PX(Fg7y0) = Xriet o PK(FY)
@ Similar notation in uncut cells:

i = (ur, ugr,0,0) VT € T, 7 = (0,0, ur, ugr) VT € T2
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F2eF?

T2e7?
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FleF!

.oo” o/« ouu.onn o “oou.
= %8 .00“. oou.oou. oou. o3¢
S 0035|800 oou.onn. Q¢ Q¢

Global dofs

>< Pk+1(T1) % >< Pk(Fl) x >< Pk+I(T2) % >< Pk(FZ)

TleT!

A~

e Uy,

iy

@ Set to zero all the face components attached to 9Q (Dirichlet BCs)

@ The global dofs are in



Global dofs

i
oy Seayrr ey e iy
"_o:o_"o 3 o:o"o:o oo o"o:o" ¢
0.:.0.:. KN oo oo X .E.o.;.u ()
u.f.o.f.o.:. .:. .:. .:.0.:. & ¢ o0 ¢
@

@ The global dofs are in

i€ Uy = >< PHL(T!) x >< PE(FY) x X PR(T7) X >< P*(F?)
T'eT! Flef! T2e7? F2ef?
@ Set to zero all the face components attached to 9Q (Dirichlet BCs)
@ All the cell dofs locally eliminated by static condensation

@ Only face dofs globally coupled
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@ General ideas

e a gradient is reconstructed in each sub-cell
o the two gradient reconstructions are independent
e jump across interface is accounted for in gradient reconstruction
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Local

@ General ideas

e a gradient is reconstructed in each sub-cell
o the two gradient reconstructions are independent
e jump across interface is accounted for in gradient reconstruction

o G¥, i Uy — PH(T!;RY) s.t., forall g € PX(T';RY) and i € {1,2},

(GS,(itr), @)pi == (Vuge, @)+ o7y —uri, g07) o7y —0n ([ur]r, gnr)r
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@ General ideas
e a gradient is reconstructed in each sub-cell

o the two gradient reconstructions are independent
e jump across interface is accounted for in gradient reconstruction
o G¥, i Uy — PH(T!;RY) s.t., forall g € PX(T';RY) and i € {1,2},
k oA
(G (i), @)pi = (Vugi, @i+ (uor)i—uri, g07) o7y —0n ([ur]r, g-nr)zr

@ Numbering of sub-domains so that x; < k2

e non-symmetric inclusion of [ur]r allows for robustness when k| < k3
e inclusion of [uz]r in both gradient reconstructions possible when x| ~
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@ Usual HHO stabilization on sub-faces in each sub-domain (LS in
mixed-order setting)

o oY A K.
8y (Vs Wop,) 1= Z Z ﬁ(nlfani(vri)—v(ar)hH’EaT)i(WTi)—W(aT)i)(aT)i
TeT ic(1,2)
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@ Usual HHO stabilization on sub-faces in each sub-domain (LS in
mixed-order setting)

o oY A K.
8y (Vs Wop,) 1= Z Z ﬁ(nlzaT)i(vT")_v(aT)i’HIEaT)i(WTi)_W(ﬁT)i)(BT)i
TeT ie{l1,2}

@ Nitsche-like penalty at interface (using smallest !)

sp (D ) = Z 2—;([[\7]]1“, Iwrlr)r

TeTeu
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Sta

@ Usual HHO stabilization on sub-faces in each sub-domain (LS in
mixed-order setting)

o oY A K.
8y (Vs Wop,) 1= Z Z ﬁ(nlzaT)i(VT")_v(ﬂT)i’HIEaT)i(WTi)_W(ﬁT)i)(BT)i
TeT ie{l1,2}

@ Nitsche-like penalty at interface (using smallest !)

sp (D ) = Z 2—;([[\7]]1", Iwrlr)r

TeTeu

@ Total stabilization

Sh(Phs Wi) 1= (Vs W) + 53, (D, W)
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@ Discrete bilinear form

an (s 0n) = ) > Ki(Gh (91, G () )y + s (91 0)

TeT ie{l,2}
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_ Global assembly

@ Discrete bilinear form

() = Y D k(G (0), Gy () + s (T, 1)

TeT ie{l,2}

@ Right-hand side devised to ensure consistency

b (p) = Z Z (fs wripi + Z (gn> wr2)pr

TeT ie{l,2} Tegeut
+ Z «1(gp. by [wrlr — Gk, (or)-np)pr
TeTeu

Notice that both jump conditions are enforced weakly
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@ Discrete problem

i€ U : ap(ity, Wi) = G,00) Yy, € Upo

@ Stability and consistency properties can be established
@ see [Burman, AE 18 (SINUM)] for details
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@ Discrete problem

i€ U : ap(ity, Wi) = G,00) Yy, € Upo

@ Stability and consistency properties can be established
@ see [Burman, AE 18 (SINUM)] for details

@ Main error estimate: Assume u € H*(Q U Q;) with s € (%, k+2].
Then,

1
2
1
{Z > Kinwui—uw)u;} <kt T Kl

TeT ie{l,2} ie{1,2}

reaching O (/**!)-convergence rates in H'
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o Flower-like interface, exact solution with jump

sin(7x) sin(7x;) in Q

u(xy,xy) =
(x1%2) sin(7mxp) sin(7xy) +2 + X%y in Q

@ Optimal O(K**!) convergence rates in H'

8 L L
0.0078125 0.015625 0.03125 0.062¢
h
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@ [Burman, AE, Mottier 25 (arXiv)]

28/43



@ Cell agglomeration deemed too intrusive in industrial codes

@ Preferable to keep original unfitted mesh with bad cuts and modify
algebraic structure of bulk unknowns

o still requires nontrivial code developments for assembly phase
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Motvations

@ Cell agglomeration deemed too intrusive in industrial codes

@ Preferable to keep original unfitted mesh with bad cuts and modify
algebraic structure of bulk unknowns

o still requires nontrivial code developments for assembly phase

@ Main idea: stabilization by polynomial extension

e use HHO dofs of ill-cut cells in gradient reconstruction of some
neighboring well-cut cell
o stabilize HHO dofs of ill-cut cells
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@ Cell agglomeration deemed too intrusive in industrial codes

@ Preferable to keep original unfitted mesh with bad cuts and modify
algebraic structure of bulk unknowns

o still requires nontrivial code developments for assembly phase

@ Main idea: stabilization by polynomial extension
e use HHO dofs of ill-cut cells in gradient reconstruction of some

neighboring well-cut cell
e stabilize HHO dofs of ill-cut cells

@ Stabilization by polynomial extension used in other contexts, e.g.,
o Lagrange multipliers with FEM [Haslinger, Renard 09]
o shifted boundary [Main, Scovazzi 18] and boundary correction [Burman,
Hansbo, Larson 18] methods with FEM
e isogeometric methods on trimmed geometries [Buffa, Puppi, Vazquez 20]
o unfitted VEM [Bertoluzza, Pennacchio, Prada 22; Hou, Liu, Wang 24]
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@ Partition of cut cells of the original unfitted mesh

7~cut — 7—OK U TKO

@ Fix parameter ¢ € (0, 1), then T € 79K if 77 contains a ball of radius
Shy forall i € {1,2}
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Well-cut

@ Partition of cut cells of the original unfitted mesh
7~cut — 7-OK U TKO
@ Fix parameter ¢ € (0, 1), then T € 79K if 77 contains a ball of radius
Shy forall i € {1,2}

@ [Burman, AE 18; Lemma 6.2] shows that, if

o h small enough w.r.t. interface curvature,
o ¢ small enough w.r.t. mesh regularity parameter,

the above ball condition can only fail on at most one sub-cell of T’

@ Partition of cut cells as

TCUt — TOK U TKO,] U TKO,Z
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@ For every ill-cut cell S € 75O, find a well-cut cell T in A(S)

N TR s s Te (T uTRuTRONY NAlS) Vie{l,2}
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@ For every ill-cut cell S € 75O, find a well-cut cell T in A(S)

N TR s s Te (T uTRuTRONY NAlS) Vie{l,2}

e existence granted if # small enough [Burman, AE 18; Lemma 6.3]
@ construction by adapting [Burman, Cicuttin, Delay, AE 21]
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@ For every ill-cutcell S € 7 KO find a well-cut cell T in A(S)

N TR 3§+ T e (TuTORuTR0N NAWlS) Vie{l,2}

o existence granted if /2 small enough [Burman, AE 18; Lemma 6.3]
e construction by adapting [Burman, Cicuttin, Delay, AE 21]

777777777777
100000000000
7072777777
100000050000
7 377 KO,1
28807177 TKO,
W2
20700000000 — 2N e
00000000000~ i

7—KO,2

22722772777

0K
I/

777277277777
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Polynomial extension vs. Cell agglomeration

I
=T
L]

\
[T TTT]
[T
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@ Enlarge stencil for local gradient reconstruction to

Y = (ir, (is)senrny) € Up = Urx X Us
SeN-I(T)
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@ Enlarge stencil for local gradient reconstruction to

ay = (i, (its)sen-1 (1)) € UN == Ur x >< Us
SeN-I(T)

@ If sub-cell 7" satisfies the ball condition, then for all g € P¥(T7; RY),

(GY, (). @)pe = (Vugi, @) + (uory = g g0r) a7y — St ([ur]r. g-mr)ee

+ Z {(“(65)"_“S"7q+’n5)(6S)"_6i1([[uS]]F’q+'nF)SF}
SeNI(T)

where ¢* denotes the extension of g to 7" U [ Jg_ -1 (T) s
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@ Enlarge stencil for local gradient reconstruction to

ay = (i, (its)sen-1 (1)) € UN == Ur x >< Us
SeN-I(T)

@ If sub-cell 7" satisfies the ball condition, then for all g € P¥(T7; RY),
(GY, (). @)pe = (Vugi, @) + (uory = g g0r) a7y — St ([ur]r. g-mr)ee

+ Z {(“(65)"_”S"7q+'n5)(6S)"_6i1([[u51]l"’q+'nl")sr}
SeNI(T)

where ¢* denotes the extension of g to 7" U [ Jg_ -1 (T) s
@ If the ball condition fails, then simply set

Gh, (1)) = Vup

123/43



Some examples
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@ Keep usual HHO stabilization inside sub-domains and Nitsche-like
penalty at interface

sy (Pns W)y sy (D 1)
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@ Keep usual HHO stabilization inside sub-domains and Nitsche-like
penalty at interface

sy (Pns W)y sy (D 1)

@ Add stabilization to connect cell dofs of well- and ill-cut cells in the
spirit of direct ghost penalty method [Preuss 18; Lehrenfeld, Olshanski 19]

s (D, ) 1= Z Z (VS’ — Vi» Wi = Wy )i

(T.i)ePPK SeN;! (T)

where (T, i) € PP iff T' satisfies the ball condition
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@ Keep usual HHO stabilization inside sub-domains and Nitsche-like
penalty at interface

sy (Pns W)y sy (D 1)

@ Add stabilization to connect cell dofs of well- and ill-cut cells in the
spirit of direct ghost penalty method [Preuss 18; Lehrenfeld, Olshanski 19]

s (D, ) 1= Z Z (VS’ — Vi» Wi = Wy )i

(T.i)ePPK SeN;! (T)

where (T, i) € PP iff T' satisfies the ball condition

@ Total stabilization

A PN Cin A
S (Pns Wi) = 55Oy Wi) + 85, (D, Wi) + 51 (9, W)
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@ Global assembly

an(Vp, W) = Z Z ki (GE, (), GE (W) + sw(Dp )
TeT ie{l1,2}
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@ Global assembly

an(Vp, W) = Z Z ki (GE, (), GE (W) + sw(Dp )
TeT ie{l1,2}

@ Discrete problem
in € Upo = an(itn, W) = €)Yy € Upo

with £}, defined so as to ensure consistency

26/43



@ Global assembly

an(Vp, W) = Z Z ki (GE, (), GE (W) + sw(Dp )
TeT ie{l1,2}

@ Discrete problem
ith € Upo = ap(lin, Wp) = (W) Yy, € Upo
with £, defined so as to ensure consistency

@ Main error estimate: Assume u € H*(Q; U Q) with s € (%, k+2].
Then,

1
2
1
{Z D K,~||V<ui—uff>||%,} <hT Y i il
TeT ie{l1,2} ie{1,2}

reaching O(/**!)-convergence rates in H'
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e Inverse inequalities: For all (T, i) € PPX and all ¢ € P/(T";R),

1
> {16t + kg Nasysr| < Nl

Se{TYUN;(T)
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e Inverse inequalities: For all (T, i) € PPX and all ¢ € P/(T";R),

1
> {1gtIs + hg Nasiosr| < Nl

Se{TYUN;(T)

@ Interpolation operator: For all (7,i) € P,?K and all v € H(Q; U Q,),
It (vi) = T (B ()l € PU(TY)

with stable extension operator E} : H*(€;) — H* (RY)
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Main anal

e Inverse inequalities: For all (T, i) € PPX and all ¢ € P/(T";R),

1
> {1gtIs + hg Nasiosr| < Nl

Se{TYUN;(T)
@ Interpolation operator: For all (7,i) € SD,?K and all v € H(Q; U Q,),
It (vi) = T (B ()l € PU(TY)
with stable extension operator E} : H*(€;) — H* (RY)

@ Under the mild assumption conv(7) ¢ A(T), I;j'l has optimal
approximation properties

1
Do I O s i ) oy - | < BELES () sy
Se{TYUN7!(T)

137/43



@ Nontrivial modifications of global assembly module
@ Modal (centered and scaled) bases attached to sub-cells

@ [ll-cut stab. bilinear form weighted with 7 = 20
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Nontrivial modifications of global assembly module

Modal (centered and scaled) bases attached to sub-cells

Ill-cut stab. bilinear form weighted with 7, = 20

2D implementation, square unfitted meshes

@ Pairing operator guarantees locality
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Nontrivial modifications of global assembly module

Modal (centered and scaled) bases attached to sub-cells

[1l-cut stab. bilinear form weighted with 7, = 20

2D implementation, square unfitted meshes

Pairing operator guarantees locality

Quadratures in cut cells based on sub-triangulation, using a pcw. linear
approximation of interface into 2" segments (to be improved!)
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Conve

@ u(x,y) =sin(zx)sin(ny), gp =gy =0,k =k =1

@ Comparison between polynomial extension (solid) and cell
agglomeration (dashed)

@ Circular (left) and flower-like (right) interface

1 1
107! 10-1
107° 10
g g
=4 =1
= . = R
2107 =100
e} Jes
—— POLYNOMIAL EXTENSION P —— POLYNOMIAL EXTENSION
10-7 - AGGLOMERATION 10-7 A ++ AGGLOMERATION
0 2
—— k=0~ 0(h') —— k=0~ 0O(K)
— k=1~0 — k=1~ 0|
é (I It Z S
1077 —— k=3~ 0(h") 107 —— k=3=~0(h')
1072 5%1072 107 1072 5x1072 107"
h h
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Comparison of matrix sparsity profiles

@ Polynomial extension (left) vs. cell agglomeration (right)

501

100+

150+

200+

250+

300+

350+
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@ Circular interface, gp = gy = 0, in polar coordinates (p, 6)

6 6
P P 11
ul(p): Z’ MZ(p):K_2+R6(K—1—K—2)

@ Left: Error vs. diffusivity contrast, k; = 10"k, m € {0:4}, finest mesh
@ Right: Error vs. A for sub-triangulation parameter r € {2, 4, 6, 8}

107!

—— k=0 —— k=2

e k=1 —— k=3

103 i
107

» \‘\—. =
Z 10 g
"
g -
- — T 107
1077
ol TT—— 107

1 10 107 10° 107
CONTRAST
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@ uj(x,y) =cos(y)e’, up(x,y) = sin(nx) sin(ny), k] =k = 1
@ Left: Error vs. h, k € {0,1,2,3}, r =10
@ Right: Error vs. h, k =3,r € {4,6,8,10,11}

. / " //\/

10-°

H'-ERROR

1077 —— POLYNOMIAL EXTENSION
. T k=0~0()

P kemop i

.~ k=2x0H) —— =10
109 —— k=3~O0(h") ) — -1
10~
1072 5% 1072 107! 1072 5% 1072 107!

h h
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@ Left: Circular interface with radius R = % + 3—i2, ie{-4,...,4}
@ Right: Square interface, distance to mesh 0.5 x 1077, p € {1,...,5}

10" 10°
—— k-0 PoLyNOMIAL EXTENSION —— POLYNOMIAL EXTENSION —— k=0
— k-1 = AGGLOMERATION -~ AGGLOMERATION —a— k=1
—— k-2 107 —— k=2
- 107 —— k-3 = —— k=3
= =
g =
= 2 100
=] =}
z =
z, Z
S S 1 =t
E = -
5 S |
2 g
IS} O 10* e e =
@) @]
3 ) - .
10 10 B
0.25 0.35 0.45 1077 10~ 107 1077
R J

@ Robust conditioning for severe ill-cuts
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@ Left: Circular interface with radius R = % + 3—i2, ie{-4,...,4}
@ Right: Square interface, distance to mesh 0.5 x 1077, p € {1,...,5}

10" 10°
—— k-0 —— POLYNOMIAL EXTENSION —— POLYNOMIAL EXTENSION —— k=0
e ko1 = AGGLOMERATION - AGGLOMERATION —a— k=1
—— k=2 107 —— k:'z
= 107 —— k-3 = —— k=3
= =
2 =
= 2 100
=] =}
z =
z, Z
S S w L Scun{
g = B!
5 S |
2 g
IS} O 10* e e =
@) @]
3 B "~ T 5
10 10 LR
0.25 0.35 0.45 1077 10~ 107 1077
R 5

@ Robust conditioning for severe ill-cuts

!! Thank you for your attention !!
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