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Outline

Hybrid high-order (HHO) methods ...

in a nutshell

for wave propagation

on unfitted meshes (curved interfaces/boundary)
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HHO in a nutshell
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Basic ideas

Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]

Degrees of freedom (dofs) located on mesh cells and faces
Let us start with polynomials of the same degree k ≥ 0 on cells and
faces
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In each cell, one devises a local gradient reconstruction operator
One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs
The global problem is assembled cellwise as in FEM
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Gradient reconstruction and stabilization

Mesh cell T ∈ T , cell dofs uT ∈ P
k(T), face dofs u∂T ∈ P

k(F∂T )

ûT = (uT, u∂T ) ∈ ÛT := Pk(T) × Pk(F∂T )

Local potential reconstruction RT : ÛT → P
k+1(T) s.t.

(∇RT (ûT ),∇q)T = −(uT,∆q)T + (u∂T,∇q·nT )∂T, ∀q ∈ Pk+1(T)/R

together with (RT (ûT ), 1)T = (uT, 1)T

Local gradient reconstruction GT (ûT ) := ∇RT (ûT ) ∈ ∇P
k+1(T)

Local stabilization operator acting on δ := uT |∂T − u∂T

S∂T (ûT ) := Πk
∂T

(
δ −

(
(I − Πk

T )RT (0, δ)
)
|∂T︸                     ︷︷                     ︸

high-order correction

)
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k+1(T) s.t.
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Local bilinear form

Local bilinear form for Poisson model problem

aT (ûT, ŵT ) := (GT (ûT ),GT (ŵT ))T + h−1T (S∂T (ûT ), S∂T (ŵT ))∂T

Stability and boundedness

α‖ûT ‖
2
ÛT
≤ aT (ûT, ûT ) ≤ ω‖ûT ‖

2
ÛT
, ∀ûT ∈ ÛT

with ‖ûT ‖
2
ÛT

:= ‖∇uT ‖
2
T + h−1T ‖uT |∂T − u∂T ‖

2
∂T

Reduction operator ÎT (v) := (Πk
T (v),Π

k
∂T (v|∂T )) ∈ ÛT , ∀v ∈ H1(T)

Main consistency properties
h−1T ‖v − RT (ÎT (v))‖T + ‖∇(v − RT (ÎT (v)))‖T . hk+1

T |v|Hk+2(T)

h−
1
2

T ‖S∂T (ÎT (v))‖∂T . hk+1
T |v|Hk+2(T)
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Assembly and static condensation

Cell unknowns Face unknowns

Assembly Static condensation

Global dofs ûh = (uT, uF) (T := {mesh cells}, F := {mesh faces})

Ûh := Pk(T ) × Pk(F ), Pk(T ) :=
?
T∈T
Pk(T), Pk(F ) :=

?
F∈F
Pk(F)

Global assembly:
∑

T∈T aT (ûT, ŵT ) =
∑

T∈T(f ,wT )T

Dirichlet conditions can be directly enforced on the face boundary dofs

Cell dofs are eliminated locally by static condensation
global problem couples only face dofs
cell dofs recovered by local post-processing

7/50



Main characteristics

General meshes: polytopal cells, hanging nodes

Optimal error estimates (smooth solutions)
O(hk+1) H1-error estimate (face dofs of order k ≥ 0)
O(hk+2) L2-error estimate (with full elliptic regularity)

more generally, O(ht) H1-error estimate if u ∈ H1+t(Ω), t ∈ ( 12, k + 1]
for t ∈ (0, 12 ), see [AE, Guermond 21 (FoCM)]

Local conservation
optimally convergent and algebraically balanced fluxes on faces
as any face-based method, balance at cell level

Attractive computational costs
only face dofs are globally coupled
compact stencil
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Variants

Variant on gradient reconstruction GT : ÛT → P
k(T;Rd) s.t.

(GT (ûT ), q)T = −(uT, div q)T + (u∂T, q·nT )∂T, ∀q ∈ Pk(T;Rd)

same scalar mass matrix for each component of GT (ûT )
useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

Variants on cell dofs and stabilization
mixed-order setting: k ≥ 0 for face dofs and (k + 1) for cell dofs
this variant allows for the simpler Lehrenfeld–Schöberl HDG stabilization

S∂T (ûT ) := Πk
∂T (δ)

another variant is k ≥ 1 for face dofs and (k − 1) for cell dofs
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Link to other methods

HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
equal-order HHO uses reconstruction in the stabilization
HHO allows for a simpler analysis based on L2-projections: avoids
invoking the special HDG projection

Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
weak gradient↔ HHO grad. rec.
WG often uses plain LS stabilization (can be suboptimal)

HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
HHO dof space ÛT isomorphic to virtual spaceVT

Pk+1(T) ( VT := {v ∈ H1(T) | ∆v ∈ Pk(T), n·∇v|∂T ∈ P
k(F∂T )}

HHO grad. rec. ↔ computable gradient projection
stabilization controls energy-norm of noncomputable remainder
see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]

Different devising viewpoints should be mutually enriching
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Applications, libraries, textbooks

Broad area of applications (non-exhaustive list...)
solid mechanics: nonlinear elasticity, hyperlasticity and plasticity,
contact, Tresca friction, obstacle pb
fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
Leray-Lions, spectral pb, H−1-loads, magnetostatics, de Rham complexes

Libraries
industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)

Textbooks
Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and
applications (Springer, 2020)
Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics
(Springer Briefs, 2021)
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HHO for wave propagation

Second-order formulation in time: Newmark schemes
First-order formulation in time: RK schemes
[Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
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Second-order formulation in time

Domain Ω ⊂ Rd, time interval J := (0, Tf), Tf > 0

Acoustic wave equation with wave speed c :=
√
κ/ρ

1
κ ∂ttp − div

( 1
ρ∇p

)
= f in J ×Ω

Everything can be extended to elastodynamics

Weak form: Under mild regularity assumptions on the data,

(∂ttp(t),w) 1
κ ;Ω + (∇p(t),∇w) 1

ρ ;Ω = (f (t),w)Ω, ∀w ∈ H1
0(Ω)∀t ∈ J

Energy balance: E(t) = E(0) +
∫ t
0 (f (s), ∂tp(s))Ωds with

E(t) := 1
2 ‖∂tp(t)‖21

κ ;Ω +
1
2 ‖∇p(t)‖21

ρ ;Ω
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HHO space semi-discretization (1/3)

Local cell dofs in Pk′(T), k′ ∈ {k, k + 1}, and local face dofs in Pk(F∂T )

ûT = (uT, u∂T ) ∈ ÛT := Pk′(T) × Pk(F∂T )

Local gradient reconstruction GT (ûT ) ∈ P
k(T;Rd) (or in ∇Pk+1(T))

Local stabilization acting on δ := uT |∂T − u∂T

S∂T (ûT ) :=

{
Πk
∂T

(
δ −

(
(I − Πk

T )RT (0, δ)
)
|∂T

)
if k′ = k

Πk
∂T (δ) if k′ = k + 1

Local bilinear form

aT (ûT, ŵT ) := (GT (ûT ),GT (ŵT )) 1
ρ ;T + τ∂T (S∂T (ûT ), S∂T (ŵT ))∂T

with τ∂T := (ρ |ThT )
−1
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HHO space semi-discretization (2/3)

Global dofs ûh = (uT, uF) ∈ Ûh := Pk′(T ) × Pk(F )

Global assembly leading to

ah(ûh, ŵh) :=
∑
T∈T

aT (ûT, ŵT ) := (GT(ûh),GT(ŵh)) 1
ρ ;Ω + sh(ûh, ŵh)

Dirichlet conditions can be directly enforced on the face boundary dofs

Ûh0 := Pk′(T ) × Pk(F ◦)

with F ◦ := {mesh interfaces}
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HHO space semi-discretization (3/3)

Wave equation in space semi-discrete form: p̂h ∈ C2(J; Ûh0) s.t.

(∂ttpT(t),wT) 1
κ ;Ω + ah(p̂h(t), ŵh) = (f (t),wT)Ω, ∀ŵh ∈ Ûh0 ∀t ∈ J

Energy balance: Eh(t) = Eh(0) +
∫ t
0 (f (s), ∂tpT(s))Ωds with

Eh(t) := 1
2 ‖∂tpT(t)‖21

κ ;Ω +
1
2 ‖GT(p̂h(t))‖21

ρ ;Ω +
1
2 sh(p̂h(t), p̂h(t))

Stabilization is taken into account in the energy definition

HDG methods for wave equation in second-order form [Cockburn, Fu,
Hungria, Ji, Sanchez, Sayas 18]
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Algebraic realization

Bases for Pk′(T ) and Pk(F ), component vector (PT(t),PF(t)) ∈ RNT×NF[
MTT∂ttPT(t)

0

]
+

[
KTT KTF
KFT KFF

] [
PT(t)
PF(t)

]
=

[
FT(t)
0

]
Mass matrix MTT and stiffness submatrix KTT are block-diagonal

Stiffness submatrix KFF is only sparse: face dofs from the same cell are
coupled together owing to reconstruction

17/50



Error analysis

Assuming a smooth solution,
‖∂tp− ∂tpT ‖L∞(J;L2( 1κ ;Ω)) + ‖∇p−GT (p̂h)‖L2(J;L2( 1ρ ;Ω)) decays as O(hk+1)

‖Πk′
T
(p) − pT ‖L∞(J;L2( 1ρ ;Ω)) decays as O(hk+2) under (full) elliptic reg.

Some comments on proofs
adapt ideas for FEM analysis from [Dupont 73; Wheeler 73; Baker 76]
simpler than for HDG (avoids HDG projection which needs a special
initialization in HDG scheme)
could be re-used in DG setting using discrete gradients (revisiting [Grote,
Schneebeli, Schötzau 06])
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Newmark scheme

Newmark scheme with parameters (β, γ) = ( 14,
1
2 )

implicit, second-order, unconditionally stable
p, ∂tp, ∂ttp are approximated by hybrid pairs p̂n

h, v̂
n
h, â

n
h ∈ Ûh0, ∀n ≥ 0

Each time-step implemented as usual

Discrete energy is exactly conserved

Central FD scheme is not efficient: inversion of stiffness submatrix KFF
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n
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First-order formulation in time

Introduce velocity v := ∂tp and dual variable σ := 1
ρ∇p{

ρ∂tσ − ∇v = 0
1
κ ∂tv − div σ = f

in J ×Ω

Weak form: ∀(τ,w) ∈ L2(Ω;Rd) × H1
0(Ω), ∀t ∈ J,{

(∂tσ(t), τ)ρ;Ω − (∇v(t), τ)Ω = 0
(∂tv(t),w) 1

κ ;Ω + (σ(t),∇w)Ω = (f (t),w)Ω

Energy balance: E(t) = E(0) +
∫ t
0 (f (s), v(s))Ωds with

E(t) := 1
2 ‖v(t)‖

2
1
κ ;Ω +

1
2 ‖σ(t)‖

2
ρ;Ω
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HHO space semi-discretization

v̂h ∈ C1(J; Ûh0) and σT ∈ C1(J;ST) with ST := Pk(T ;Rd)

Space semi-discrete form:{
(∂tσT(t), τT)ρ;Ω − (GT(v̂h(t)), τT)Ω = 0
(∂tvT(t),wT) 1

κ ;Ω + (σT(t),GT(ŵh))Ω + s̃h(v̂h(t), ŵh) = (f (t),wT)Ω

Stabilization s̃h(·, ·) with weight τ̃∂T = (ρc)−1|T , i.e., τ̃∂T = O(1)

Energy balance: Eh(t)+
∫ t
0 s̃h(v̂h(s), v̂h(s))ds = Eh(0)+

∫ t
0 (f (s), vT(s))Ωds

Eh(t) := 1
2 ‖vT(t)‖

2
1
κ ;Ω +

1
2 ‖σT(t)‖

2
ρ;Ω

Stabilization acts as a dissipative mechanism

HDG methods for wave equation in first-order form [Nguyen, Peraire,
Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]
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Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]
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Algebraic realization

Component vectors ZT(t) ∈ RMT and (VT(t),VF(t)) ∈ RNT×NF


Mσ
TT
∂tZT(t)

MTT∂tVT(t)
0

 +

0 −GT −GF
G†
T

STT STF
G†
F

SFT SFF



ZT(t)
VT(t)
VF(t)

 =


0
FT(t)
0


Mass matrices Mσ

TT
and MTT are block-diagonal

Key point: stab. submatrix SFF block-diagonal only if k′ = k + 1
for k′ = k, high-order HHO correction in stabilization destroys this
property (couples all faces of the same cell!)
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Runge–Kutta (RK) schemes

Natural choice for first-order formulation in time
single diagonally implicit RK: SDIRK(s, s + 1) (s stages, order (s + 1))
explicit RK: ERK(s) (s stages, order s)

ERK schemes subject to CFL stability condition c∆t
h ≤ β(s)µ(k)

β(s) slightly increases with s ∈ {2, 3, 4}
µ(k) essentially behaves as (k + 1)−1 w.r.t. polynomial degree
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Numerical results: homogeneous media (1/2)

Smooth solution
Newmark scheme (equal-order, quadrilateral mesh)

cv. in space cv. in time energy cons.
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Numerical results: homogeneous media (2/2)

SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)
recall that τ̃∂T = O(1)
we also consider over-penalty with τ̃∂T = O(h−1T )

τ̃∂T = O(1), ERK(4), poly mesh τ̃∂T = O(h−1T ), ERK(4), poly mesh energy, SDIRK(3,4), quad mesh

Energy dissipation strongly tempered by increasing polynomial degree

Discussion on τ̃∂T
energy-error decays optimally as O(hk+1) for both τ̃∂T
⇒ proof for (HHO, O(h−1T )) and HDG, but using different tools
L2-error decays optimally as O(hk+2) only for τ̃∂T = O(h−1T )
⇒ HDG, τ̃∂T = O(1), special post-proc. [Cockburn, Quenneville-Bélair 12]
τ̃∂T = O(h−1T ) worsens CFL condition for ERK schemes
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Numerical results: heterogeneous media (1/3)

1D test case, Ω1 = (0, 0.5), Ω2 = (0.5, 1), c1/c2 = 10
initial Gaussian profile in Ω1
analytical solution available (series)

Benefits of increasing polynomial degree
Newmark scheme, equal-order, k ∈ {1, 2, 3}, h = 0.1× 2−8, ∆t = 0.1× 2−9
HHO-Newmark solution at t = 1

2 (after reflection/transmission at x = 1
2 )

k = 1 k = 2 k = 3
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Numerical results: heterogeneous media (2/3)

2D test case, Ricker (Mexican hat) wavelet
Ω1 = (0, 1) × (0, 12 ), Ω2 = (0, 1) × ( 12, 1), c1/c2 = 5

p0 = 0, v0 = − 4
10

√
10
3

(
1600 r2 − 1

)
π−

1
4 exp

(
−800r2

)
,

r2 = (x − xc)2 + (y − yc)2, (xc, yc) = (
1
2,

1
4 ) ∈ Ω1

semi-analytical solution (infinite media): gar6more2d software (INRIA)

HHO-SDIRK(3,4) velocity profiles
mixed-order, k = 5, polygonal meshes
∆t = 0.025 × 2−6 (four times larger than Newmark for similar accuracy)

t = 0.015 t = 0.031 t = 0.25

27/50



Numerical results: heterogeneous media (3/3)

Comparison of computational efficiency
all schemes tuned to comparable max. rel. error on a sensor at ( 12,

2
3 )

very preliminary results! (on-the-shelf solvers)
if no direct solvers allowed, ERK(4) wins despite CFL restriction
with direct solvers, SDIRK(3,4) wins
RK schemes more efficient than Newmark scheme
for SDIRK(3,4), τ̃∂T = O(h−1) more accurate/expensive than τ̃∂T = O(1)

scheme (k′, k) stab solver t/step steps time err
ERK(4) (6, 5) O(1) n/a 0.410 5,120 2,099 2.23
Newmark (7, 6) O(h−1) iter 56.74 2,560 58,265 2.15
SDIRK(3, 4) (6, 5) O(h−1) iter 31.24 640 5,639 2.21
SDIRK(3, 4) (6, 5) O(1) iter 22.52 640 2,200 4.45
Newmark (7, 6) O(h−1) direct 0.515 2,560 1,318 2.15
SDIRK(3, 4) (6, 5) O(h−1) direct 1.579 640 1,010 2.21
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Unfitted meshes
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Elliptic interface problem

Γ

Ω1

Ω2

nΓ

Polytopal domain Ω ⊂ Rd, d ∈ {2, 3}
Subdomains Ω1, Ω2 ⊂ Ω with different (contrasted) material properties
Curved interface Γ, jump JaKΓ = a |Ω1 − a |Ω2

Model problem

− div (κ∇u) = f in Ω1 ∪Ω2

JuKΓ = gD, Jκ∇uKΓ·nΓ = gN on Γ
u = 0 on ∂Ω

Everything can be adapted to a single domain with curved boundary
30/50



Motivation for unfitted meshes

Use of unfitted meshes for interface problems
curved interface can cut arbitrarily through mesh cells
numerical method must deal with badly cut cells

Classical FEM on unfitted meshes
double unknowns in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across
faces near curved boundary/interface)

An alternative to ghost penalty: local cell agglomeration
natural for polytopal methods as dG [Sollie, Bokhove, van der Vegt 11;
Johansson, Larson 13]
cG agglomeration procedure in [Badia, Verdugo, Martín 18]
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Unfitted HHO

Main ideas [Burman, AE 18 (SINUM)]
double cell and face dofs in cut cells, no dofs on curved boundary/interface
local cell agglomeration to counter bad cuts
mixed-order setting: k ≥ 0 for face dofs and (k + 1) for cell dofs

Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]
novel gradient reconstruction, avoiding that the penalty parameter in
Nitsche’s method is large enough
robust cell agglomeration procedure (guaranteeing locality)

Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]

Wave propagation [Burman, Duran, AE 21] hal-03086432
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Local dofs

cut cell

k = 0

Γ•
•

•

•

•

•

•

•

• •
• •
•
•

uncut cell

k = 0

•

•

•

•

•

•
• •
•

Mesh still composed of polytopal cells (with planar faces)

Decomposition of cut cells: T = T1 ∪ T2, TΓ = T ∩ Γ

Decomposition of cut faces: ∂(Ti) = (∂T)i ∪ TΓ, i ∈ {1, 2}

Local dofs (no dofs on TΓ!)

ûT = (uT1, uT2, u(∂T)1, u(∂T)2 ) ∈ P
k+1(T1)×P

k+1(T2)×P
k(F(∂T)1 )×P

k(F(∂T)2 )
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Gradient reconstruction in cut cells

Γ•
•

•

•

•

•

•

•

• •
• •
•
•

Gradient reconstruction GTi (ûT ) ∈ P
k(Ti;Rd) in each subcell

(Option 1) Independent reconstruction in each subcell

(GTi (ûT ), q)Ti = −(uTi, div q)Ti + (u(∂T)i, q·nT )(∂T)i + (uTi, q·nTi )TΓ

(Option 2) Reconstruction mixing data from both subcells

(GTi (ûT ), q)Ti = −(uTi, div q)Ti + (u(∂T)i, q·nT )(∂T)i + (uT3−i, q·nTi )TΓ

Both options avoid Nitsche’s consistency terms
no penalty parameter needs to be taken large enough!
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Local bilinear form in cut cells

Local bilinear form

aT (ûT, ŵT ) :=
∑

i∈{1,2}

{
κi(GTi (ûT ),GTi (ŵT ))Ti + sTi (ûT, ŵT )

}
+ sΓT (uT,wT )

LS stabilization inside each subdomain

sTi (ûT, ŵT ) := κih−1Ti
(Πk
(∂T)i (uTi |(∂T)i − u(∂T)i ),wTi |(∂T)i − w(∂T)i )(∂T)i

Interface bilinear form

sΓT (uT,wT ) := ηκ1h−1T (JuTKΓ, JwTKΓ)TΓ with η = O(1)

The use of two gradient reconstructions allows for robustness
w.r.t. contrast (κ1 � κ2)

use option 1 in Ω1 and option 2 in Ω2
aT is symmetric, but Ω1/Ω2 do not play symmetric roles

35/50



Global dofs
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• • • • • •
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ûh

ûT

The global dofs are in

ûh ∈ Ûh :=
?
T∈T1

Pk+1(T1) ×
?
T∈T2

Pk+1(T2) ×
?
F∈F1

Pk(F1) ×
?
F∈F2

Pk(F2)

We set to zero all the face components attached to ∂Ω
We collect in ûT all the global unknowns related to a mesh cell T
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Global dofs

Global problem: Find ûh ∈ Ûh such that

ah(ûh, ŵh) = `h(ŵh), ∀ŵh ∈ Ûh

with ah(ûh, ŵh) =
∑

T∈T aT (ûT, ŵT ) and `h(ŵh) =
∑

T∈T `T (ŵT ) with the
consistent rhs

`T (ŵT ) := (f ,wT1 )T1 + (f ,wT2 )T2 + (gN,wT2 )TΓ

− κ1(gD,GT1 (ŵT )·nΓ + ηh−1T JwTK)TΓ

All the cell dofs are eliminated locally by static condensation

Only the face dofs are globally coupled
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Error analysis

Multiplicative and discrete trace inequalities [Burman, AE 18]
for any cut cell T , there is a ball T† of size O(hT ) containing T and a finite
number of its neighbors, and s.t. all T ∩ Γ is visible from a point in T†
small ball with diameter O(hT ) present on both sides of interface
achievable using local cell agglomeration if mesh fine enough

Error estimate

Assuming that u|Ωi ∈ H1+t(Ωi) with t ∈ ( 12, k + 1],∑
T

∑
i∈{1,2}

κi‖∇(u − uTi )‖
2
Ti
≤ Ch2t

∑
i∈{1,2}

κi |u|2Ht+1(Ωi)

Convergence order O(hk+1) if u|Ωi ∈ Hk+2(Ωi)

38/50



Agglomeration procedure (1/3)
Three-stage procedure with proven locality in the agglomeration

1 for any cell KO in Ω1, find matching partner OK in Ω2
2 for any cell KO in Ω2 not matched, find matching partner OK in Ω1
3 rearrange locally partnerships to avoid propagation

initial mesh stage 1

stage 2 stage 3
39/50



Agglomeration procedure (2/3)

A 16x16 mesh with circular interface
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Agglomeration procedure (3/3)

A 16x16 mesh with flower-like interface
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Test case with contrast

κ1 = 1, κ2 = 104, gD = gN = 0, η = 1

Circular interface (r2 = (x1 − 0.5)2 + (x2 − 0.5)2)

Exact solution: u1 := r6
κ1
, u2 := r6

κ2
+ R6( 1κ1 −

1
κ2
)
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Test case with jump

Flower-like interface, κ1 = κ2 = 1
Exact solution with jump

u(x1, x2) :=

{
sin(πx1) sin(πx2) in Ω1

sin(πx1) sin(πx2) + 2 + x3y3 in Ω2

10-8

10-7
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Wave propagation

Subdomains Ω1, Ω2 ⊂ Ω, interface Γ, jump JaKΓ = a |Ω1 − a |Ω2

Acoustic wave propagation across interface{ 1
κ ∂ttp − div

( 1
ρ∇p

)
= f in J × (Ω1 ∪Ω2)

JpKΓ = 0, J 1
ρ∇pKΓ·nΓ = 0 on J × Γ

Main ideas as for elliptic interface problems
mixed-order setting k′ = k + 1
distinct gradient reconstructions GTi in Pk(Ti;Rd), i ∈ {1, 2}
LS stabilization on (∂T)i, i ∈ {1, 2} =⇒ sTi (·, ·)
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Unfitted HHO discretization

Second-order formulation
(∂ttpT (t), wT ) 1

κ ;Ω+(GT (p̂h(t)),GT (ŵh)) 1
ρ ;Ω+s1,2h (p̂h(t), ŵh)+sΓh (pT (t), wT ) = (f (t), wT )Ω

sΓh (pT (t),wT ) := (ρ1hT )
−1(JpTKΓ, JwTKΓ)TΓ

Algebraic realization and Newmark time-stepping as in fitted case

First-order formulation (v := ∂tp,σ := 1
ρ ∇p)

(∂tσT (t), τT )ρ;Ω − (GT (v̂h(t)), τT )Ω = 0

(∂tvT (t), wT ) 1
κ ;Ω + (σT (t),GT (ŵh))Ω + s̃1,2h (v̂h(t), ŵh) + s̃Γh (vT (t), wT ) = (f (t), wT )Ω

s̃Γh (vT (t),wT ) :=
∑

T∈Th τ̃
Γ
∂T (JvTKΓ, JwTKΓ)TΓ

τ̃Γ
∂T = (ρ1c1)−1 = O(1) for ERK, and τ̃Γ

∂T = O(h−1T ) for SDIRK
Algebraic realization and RK time-stepping as in fitted case
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Fitted-unfitted comparison
2D heterogeneous test case with flat interface

Ω1 := (− 3
2,

3
2 ) × (−

3
2, 0), Ω2 := (− 3

2,
3
2 ) × (0,

3
2 )

Ricker wavelet centered at (0, 23 ) ∈ Ω2, sensor S1 = ( 34,−
1
3 ) ∈ Ω1

fitted and unfitted HHO behave similarly, both benefit from increasing k

HHO-Newmark, σx signals
comparison of semi-analytical and HHO (fitted or unfitted) solutions
k = 1 (top) and k = 3 (bottom)
c2/c1 =

√
3 (low contrast, left) or c2/c1 = 8

√
3 (high contrast, right)
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CFL condition for ERK (1/2)

Homogeneous test case, flat interface

CFL condition for ERK(s): c∆t
h ≤ β(s)µ(k)

β(s) mildly depends on the number of stages
µ(k) behaves as (k + 1)−1 and is quantified by solving a generalized
eigenvalue problem with the mass and stiffness matrices

Additional jump penalties in unfitted HHO only mildly impact µ(k)

k 0 1 2 3
Fitted-HHO 0.118 0.0522 0.0338 0.0229
Unfitted-HHO 0.0765 0.0373 0.0232 0.0159

Ratio 1.5 1.4 1.5 1.4
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CFL condition for ERK (2/2)

Homogeneous test case, circular interface
study of impact of agglomeration parameter θagg on µ(k)
“badly cut” cell flagged if relative area of any subcell falls below θagg

Agglomerated cells for θagg = 0.3 on a sequence of refined quad meshes

Behavior of hµ(k) and impact of θagg on µ(k)
tolerating badly cut cells deteriorates the CFL condition

k 0 1 2 3
θagg = 0.5 0.042 0.022 0.014 0.0099
θagg = 0.3 0.030 0.015 0.0094 0.0065

Ratio 1.4 1.5 1.5 1.5
θagg = 0.1 0.017 0.0087 0.0055 0.0039

Ratio 2.5 2.6 2.6 2.5
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Flower-like interface

Agglomerated cells for a flower-like interface (quad mesh, h = 2−5),
HHO-SDIRK(3,4) signal for σx at two sensors, k ∈ {1, 2, 3}, c2/c1 =

√
3

Pressure isovalues, SDIRK(3,4), k = 3, h = 0.1 × 2−8, ∆t = 2−6
t = 0.25 t = 0.5 t = 1
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Some references

HHO
seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]

HHO for wave propagation
[Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

Unfitted HHO
[Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]

New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Thank you for your attention!
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New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Thank you for your attention!
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