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Hybrid high-order (HHO) methods ...

e in a nutshell
e for wave propagation

e on unfitted meshes (curved interfaces/boundary)
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Basicidess

@ Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ Degrees of freedom (dofs) located on mesh cells and faces
@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
i ® ... [ ] [ ] ..:.. [ ]
[ ° ° [ It oo oo ® :: oo o:o ::
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@ Introduced in [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ Degrees of freedom (dofs) located on mesh cells and faces

@ Let us start with polynomials of the same degree £ > 0 on cells and

faces
mesh k=0 k=1 k=2
[ele] Jafal il

@ In each cell, one devises a local gradient reconstruction operator

@ One adds a local stabilization to weakly enforce the matching of cell
dofs trace with face dofs

@ The global problem is assembled cellwise as in FEM
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@ Mesh cell T € T, cell dofs ur € PK(T), face dofs 157 € PX(7or)
i = (ur, uor) € U = BT) x 21 (T5r)
@ Local potential reconstruction Ry : [/ — P*1(T) s.t.
(VR(ii7), Va)r = —(ur, AQ)r + (a1, Vgnr)ar, Vg € PH(T)/R

together with (Ry(ii7), )7 = (uz, 1)
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@ Mesh cell T € T, cell dofs ur € PK(T), face dofs 157 € PX(7or)
ity = (ur, uor) € Ur := PXT) x PX(For)
@ Local potential reconstruction Ry : [/ — P*1(T) s.t.
(VR (itr), Vg)r = —(ur, Ag)r + (o1, Vgnr)ar,  ¥q € PI(T)/R
together with (Ry(iir), )7 = (ur, )7
@ Local gradient reconstruction Gr(iiy) := VRr(iiy) € VPI(T)

@ Local stabilization operator acting on &§ := ur|gy — iyr

Sar(iir) = Ty (6 = (1 = TEIR7(0.9))lor )

high-order correction
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@ Local bilinear form for Poisson model problem
ar(iir, Wr) = (Gr(iir), Gr(vr)r + by (Sar(iir), Sor(r))ar
@ Stability and boundedness

01||ﬁT||?]T < ar(ir, i) < w||ftT||%T, Vg € Ur

with ”ﬁT”%}T = Vurll7 + by lurlor = vor |5,
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Local bili

@ Local bilinear form for Poisson model problem
ar(iir, Wr) = (Gr(iir), Gr(vr)r + by (Sar(iir), Sor(r))ar
@ Stability and boundedness
a”ﬁT“?]T < ar(ir, iir) < w”ﬁT”%T’ Vir € Ur
with ”ﬁT”?]T = IVur |7 + b lurlor = wor |3,

e Reduction operator I7(v) := (IIk(v), 15 . (vlar)) € Ur, Vv € H'(T)

@ Main consistency properties
o it v = Re(Ir()lir + IV = Re(Trm)lir < B vlgeear,

-1 .
o hp 2 [Sar(r(llar < W Vi)
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Assembly Static condensation

X/ EX/ R LA LA

&% Cell unknowns » « Face unknowns

@ Global dofs i1, = (ug, 14) (7 := {mesh cells}, ¥ := {mesh faces})
Uy i=PHT) x P (F), PKT):= >< PAT), PNF) = X P(F)
TeT FefF
@ Global assembly: Y 7cqar(iir, Wr) = Yreq(f, wr)r
@ Dirichlet conditions can be directly enforced on the face boundary dofs

@ Cell dofs are eliminated locally by static condensation
o global problem couples only face dofs
o cell dofs recovered by local post-processing
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@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates (smooth solutions)

o O(K**1) H'-error estimate (face dofs of order k > 0)
o O(h**2) L2-error estimate (with full elliptic regularity)
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@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates (smooth solutions)

O(K**1y H'-error estimate (face dofs of order k > 0)

o O(h**2) [2-error estimate (with full elliptic regularity)

o more generally, O(h') H'-error estimate if u € H'*'(Q), 1 € (%, k+1]
e forre (0, %), see [AE, Guermond 21 (FoCM)]
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@ General meshes: polytopal cells, hanging nodes

@ Optimal error estimates (smooth solutions)

O(K**1y H'-error estimate (face dofs of order k > 0)
O(h**+2) L2-error estimate (with full elliptic regularity)
more generally, O(h') H'-error estimate if u € H'*/(Q), r € (%, k+1]

for ¢ € (0, %), see [AE, Guermond 21 (FoCM)]

@ Local conservation

e optimally convergent and algebraically balanced fluxes on faces
@ as any face-based method, balance at cell level

@ Attractive computational costs

o only face dofs are globally coupled
@ compact stencil
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@ Variant on gradient reconstruction Gz : /7 — P¥(T;RY) s.t.
(Gr(itr), @7 = —(ur, div @7 + (1o7, 7)oy, ¥q € PY(TIRY)

e same scalar mass matrix for each component of G7(ii)
o useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]
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varants

@ Variant on gradient reconstruction Gy : /7 — PX(T;R?) s.t.
(Gr(iir), @1 = —(ur, div @7 + (o7, qnr)ar,  Vq € PXT;RY)

e same scalar mass matrix for each component of Gr(iir)
e useful for nonlinear problems
[Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

@ Variants on cell dofs and stabilization

e mixed-order setting: k& > O for face dofs and (k + 1) for cell dofs
o this variant allows for the simpler Lehrenfeld—Schoberl HDG stabilization

Sor(ir) = T15,.(5)

e another variant is £ > | for face dofs and (k — 1) for cell dofs

9/50



@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]
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@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
e equal-order HHO uses reconstruction in the stabilization
o HHO allows for a simpler analysis based on Lz-projections: avoids
invoking the special HDG projection
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Link to other methods _

@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
o equal-order HHO uses reconstruction in the stabilization
o HHO allows for a simpler analysis based on L2-projections: avoids
invoking the special HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
o weak gradient «> HHO grad. rec.
o WG often uses plain LS stabilization (can be suboptimal)

@ HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
e HHO dof space (/7 isomorphic to virtual space Vy

PMUT) € Vp o= {v e HY(T) | Av € PK(T), n-Vv|gr € PK(Fyr)}

e HHO grad. rec. <> computable gradient projection
o stabilization controls energy-norm of noncomputable remainder
@ see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]
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Link to other methods _

@ HHO(k = 0) equivalent (up to stab.) to Hybrid FV and Hybrid Mimetic
Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

@ HHO fits into HDG setting [Cockburn, Di Pietro, AE 16]
o equal-order HHO uses reconstruction in the stabilization
o HHO allows for a simpler analysis based on L2-projections: avoids
invoking the special HDG projection

@ Similar devising of HHO and weak Galerkin methods [Wang, Ye 13]
o weak gradient «> HHO grad. rec.
o WG often uses plain LS stabilization (can be suboptimal)

@ HHO equivalent (up to stab.) to ncVEM [Ayuso, Manzini, Lipnikov 16]
e HHO dof space (/7 isomorphic to virtual space Vy

PMUT) € Vp o= {v e HY(T) | Av € PK(T), n-Vv|gr € PK(Fyr)}

e HHO grad. rec. <> computable gradient projection
o stabilization controls energy-norm of noncomputable remainder
@ see [Cockburn, Di Pietro, AE 16; Di Pietro, Droniou, Manzini 18; Lemaire 21]]

@ Different devising viewpoints should be mutually enriching
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Applications, libraries, textbooks _

@ Broad area of applications (non-exhaustive list...)
o solid mechanics: nonlinear elasticity, hyperlasticity and plasticity,
contact, Tresca friction, obstacle pb
o fluid mechanics/porous media: Stokes, NS, poroelasticity, fractures
o Leray-Lions, spectral pb, H~Lloads, magnetostatics, de Rham complexes

@ Libraries
o industry (code_aster, code_saturne, EDF R&D), ongoing
developments at CEA
o academia: diskpp (C++) (ENPC/INRIA github.com/wareHHOuse),
HArD::Core (Monash/Montpellier github.com/jdroniou/HArDCore)

@ Textbooks
@ Di Pietro, Droniou, The HHO method for polytopal meshes. Design, analysis and
applications (Springer, 2020)
@ Cicuttin, AE, Pignet, HHO methods. A primer with application to solid mechanics
(Springer Briefs, 2021)
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@ Second-order formulation in time: Newmark schemes
@ First-order formulation in time: RK schemes

@ [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]
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@ Domain Q c R4, time interval J := (0, Ty), Tf > 0
@ Acoustic wave equation with wave speed ¢ := /x/p
18,p - div (%Vp) =f inJxQ
Everything can be extended to elastodynamics

@ Weak form: Under mild regularity assumptions on the data,

@up(0), W1 + (TP, VW) 1o = (F(1) W, Vw € Hy(@)Vr €
e Energy balance: €(r) = €(0) + [) (f(s). dip(s))ads with

€(1) := 5191, + 31VPOIIE
K p>
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@ Local cell dofs in PX(T), k’ € {k, k + 1}, and local face dofs in PX(7 1)
it = (ur, uor) € Ur = PX(T) x P! (For)
@ Local gradient reconstruction G7(ii7) € P(T;RY) (or in VP**1(T))

@ Local stabilization acting on 8 := urlgr — ugr

5 (6 = (I = TIOR7(0,0))lor) if k" =k

Sor(itr) := {HgT(d) K =k 1

@ Local bilinear form

ar(iir, Wr) := (Gr(iir), GT("AVT))%;T + 7or(Sar(itr), Sor(vr))ar

with Ty := (prhr)™!
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HHO sp

@ Global dofs i1, = (ur, us) € Uy, := PK(T) x PX(7)

@ Global assembly leading to

an(ine ) 1= ) ar(irvr) = (Gor(n). Gr(n) g + (i, 1)
TeT

@ Dirichlet conditions can be directly enforced on the face boundary dofs
Uh() = Pk/((r) X Pk((f’vo)

with F° := {mesh interfaces}
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@ Wave equation in space semi-discrete form: pj, € C2(J; Uyo) s.t.

@up (1) W) 1.0y + an(Pr(0 1) = (F(0) wra, Vi € UV €J
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HHO spa

@ Wave equation in space semi-discrete form: pj, € C2(J; Uyo) s.t.

@up (1) W) 1.0y + an(Pr(0 1) = (F(0) wra, Vi € UV €J

@ Energy balance: €,(¢) = €,(0) + fot(f(s), Op7(s))ads with
€)= 310, + SIGTPI , + $51(Pn(2), pu2)
K> P

Stabilization is taken into account in the energy definition

@ HDG methods for wave equation in second-order form [Cockburn, Fu,
Hungria, Ji, Sanchez, Sayas 18]
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Algebr

@ Bases for P¥(77) and /" (7"), component vector (Po(t), P /(t)) € RN™>"»

[M¢7'3tzP¢(t)] + [K‘T‘T Kfrf] [PT(t) _ [FT(t)}
0 Ker Kese P (1) 0

@ Mass matrix Mg and stiffness submatrix K¢ are block-diagonal

@ Stiffness submatrix K¢ is only sparse: face dofs from the same cell are
coupled together owing to reconstruction
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Error an

@ Assuming a smooth solution,

”atp - 6tp7“”Loo(J;L2(£;Q)) + ||VP - GT(ﬁh)”LZ(J;Lz(/l);Q)) decays as O(hk+l)
||H';,.(p) - prll Lo (L) decays as O(h**2) under (full) elliptic reg.

@ Some comments on proofs

adapt ideas for FEM analysis from [Dupont 73; Wheeler 73; Baker 76]
simpler than for HDG (avoids HDG projection which needs a special
initialization in HDG scheme)

could be re-used in DG setting using discrete gradients (revisiting [Grote,
Schneebeli, Schétzau 06])
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@ Newmark scheme with parameters (8,y) = (+ T 2

e implicit, second-order, unconditionally stable

@ p, Op, Oyp are approximated by hybrid pairs p ph, AZ, at e Upy,¥n =0

@ Each time-step implemented as usual
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New

@ Newmark scheme with parameters (8,y) = (+ T 2

e implicit, second-order, unconditionally stable
@ p, Op, Oyp are approximated by hybrid pairs p ph, P A” € Uho, VYn >0

h’
@ Each time-step implemented as usual
@ Discrete energy is exactly conserved

@ Central FD scheme is not efficient: inversion of stiffness submatrix Kg¢
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@ Introduce velocity v := d,p and dual variable o := %Vp

0,0 —Vv=0
{pt inJ xQ

%&v —divo =f
o Weak form: ¥(r,w) € L*(Q;RY) x H)(Q), Vi € J,

(0,07 (1), T)ps2 = (VW(1), T)a = 0
((9;V(t), W)%;Q + (O-(t)’ VW)Q = (f(t)9 W)Q

@ Energy balance: €(f) = €(0) + /Ot(f(s), v(s))ads with

€(1) := IV, + 510Dl
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 HHO space semt discrete

@ i, € C1(J; Uy) and o4 € C'(J;S¢) with Sg- := PK(7;RY)

@ Space semi-discrete form:

G (1), T 7)p0 = (Gr(Dp(1), T7)a = 0
@7 (D) wr) 1o + (0 7(0), GT(va))a + 5a(Pu(2), Wa) = (F(2), wr)a

@ Stabilization 5,(-, -) with weight 757 = (pc)|—T1, ie., Tor = O(1)

21/50



Py € CY(J; Upo) and o € CH(J; S7) with S4 := PK(T; RY)

@ Space semi-discrete form:

G (1), T 7)p0 = (Gr(Dp(1), T7)a = 0
@7 (D) wr) 1o + (0 7(0), GT(va))a + 5a(Pu(2), Wa) = (F(2), wr)a

Stabilization 5y (-, -) with weight T57 = (pc)l—Tl, ie., Tar = O(1)

Energy balance: (1) + [} 559 (s). 9(s)ds = €4(0) + [ (F(s), vor(s))ads
€y(1) := %Ilvfr(t)llé;Q + %llo"f(t)”g;g

Stabilization acts as a dissipative mechanism

@ HDG methods for wave equation in first-order form [Nguyen, Peraire,
Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]
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@ Component vectors Z7(¢) € RM7 and (V- (1), V +(t)) € RN7*"7

M7 0,Z (1) 0 -Gy -G#] [z 0
M5OV 7(1)| + G} Srr Sy | |Vr(n)| = |Fr()
0 Gy Sgr Syl Vs 0

@ Mass matrices M7~ and M- are block-diagonal

@ Key point: stab. submatrix S¢#¢ block-diagonal only if k" = k + 1

o for k' = k, high-order HHO correction in stabilization destroys this
property (couples all faces of the same cell!)
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@ Natural choice for first-order formulation in time

e single diagonally implicit RK: SDIRK(s, s + 1) (s stages, order (s + 1))
o explicit RK: ERK(s) (s stages, order s)

@ ERK schemes subject to CFL stability condition CTA’ < B(s)u(k)
o B(s) slightly increases with s € {2, 3,4}
o u(k) essentially behaves as (k + 1)~! w.r.t. polynomial degree
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Num

@ Smooth solution

@ Newmark scheme (equal-order, quadrilateral mesh)

Cv. 1In Space cv. in time energy cons.
0010 Ll
e
0.001 s
1074 /,’ /’
B e
10| ~ a
Newmark-(3=025, 205): R
. ey R
i 1 07) T
w
% Koo e
07 e H' ka1 OF) o
H k200 107}
005 010 050 0001 0,005 0.010 0.050 0.4
h a
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@ SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)

e recall that 757 = O(1)
e we also consider over-penalty with 7oy = O(h}l)

g7 = O(1), ERK(4), poly mesh ToT = O(h;.1 ), ERK(4), poly mesh energy, SDIRK(3.4), quad mesh
1

loss
3 3
T
S

0.010)

0.001 1011 ) . |
SDIRK(3,)-HHO mixed-order:
—-k=0-0m

Zk=1-0m

107

-l
107755

time

@ Energy dissipation strongly tempered by increasing polynomial degree

25/50



@ SDIRK(3,4) and ERK(4) schemes (mixed-order, quad/poly meshes)

e recall that 757 = O(1)
e we also consider over-penalty with 7oy = O(h}l)
energy, SDIRK(3.4), quad mesh

#47 = O(1), ERK(@), poly mesh 77 = 00z 1), ERK(), poly mesh
|

3
==

N

0.001 ol ERK(4):
3 - Ly k=0 OF)
L ) 10

g

005 010 015 020 025 005 010 015 020 025
h h

@ Energy dissipation strongly tempered by increasing polynomial degree

@ Discussion on Ty7
e energy-error decays optimally as O(h%*1) for both 757
= proof for (HHO, O(h}l)) and HDG, but using different tools
o L2-error decays optimally as O(h**2) only for 757 = O(h;l)
= HDG, 757 = O(1), special post-proc. [Cockburn, Quenneville-Bélair 12]
o Tyr = O(h}l) worsens CFL condition for ERK schemes
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@ 1D test case, Q; = (0,0.5), Q, = (0.5,1), ¢;/cr = 10
o initial Gaussian profile in Q
o analytical solution available (series)

@ Benefits of increasing polynomial degree

o Newmark scheme, equal-order, k € {1,2,3}, h=0.1 X 278 Ar=0.1x2"
e HHO-Newmark solution at ¢ = % (after reflection/transmission at x = %)

Velocity
P
S
Velocity
Y
S
e
S
Velocity
o 4 n
| ———
——
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Numer

@ 2D test case, Ricker (Mexican hat) wavelet
e Q=0.Dx01).0%=01xE D c1/c2=5
o po=0,vp= —14—0\/133(1600 2o 1) 7T exp (—800r2),
== x)? + (=3 (e ye) = (5. 1) € Q)

e semi-analytical solution (infinite media): garémore2d software (INRIA)

@ HHO-SDIRK(3,4) velocity profiles

o mixed-order, k = 5, polygonal meshes
o Ar=0.025 x 279 (four times larger than Newmark for similar accuracy)

t=0.015 t=0.031 t=0.25
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Numerical results: heterogeneous media (3/3)

@ Comparison of computational efficiency

o all schemes tuned to comparable max. rel. error on a sensor at (%, %)

very preliminary results! (on-the-shelf solvers)

if no direct solvers allowed, ERK(4) wins despite CFL restriction
with direct solvers, SDIRK(3,4) wins
RK schemes more efficient than Newmark scheme
for SDIRK(3,4), 757 = O(h~!) more accurate/expensive than T57 = O(1)

’ scheme \ (K, k) stab solver \ t/step  steps time err ‘
] ERK(4) \ 6,5 01 n/a \ 0410 5,120 2,099 2.23 ‘
Newmark (7,6) O™y iter [ 56.74 2,560 58265 2.15
SDIRK(3,4) | (6,5) OM™") iter | 31.24 640 5,639 221
SDIRK(3,4) | (6,5) 0O(1) iter | 22.52 640 2,200 4.45
Newmark (7,6) O(h~") direct [ 0.515 2,560 1,318 2.15
SDIRK(3,4) | (6,5) O(h') direct | 1.579 640 1,010 221
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Elliptic interface problem

Q

nr

@ Polytopal domain Q c R?, d € {2,3}
@ Subdomains Qp, Q, c Q with different (contrasted) material properties
@ Curved interface I, jump [a]r = ajq, — aja,
@ Model problem
—div («Vu) = f inQ; UQ,
[ulr = gp, [kVu]rnr =gy onT
u=0 on 0Q
@ Everything can be adapted to a single domain with curved boundary
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@ Use of unfitted meshes for interface problems

e curved interface can cut arbitrarily through mesh cells
o numerical method must deal with badly cut cells

@ Classical FEM on unfitted meshes
o double unknowns in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
o ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across
faces near curved boundary/interface)
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@ Use of unfitted meshes for interface problems

o curved interface can cut arbitrarily through mesh cells
o numerical method must deal with badly cut cells

@ Classical FEM on unfitted meshes
o double unknowns in cut cells and use a consistent Nitsche’s penalty
technique to enforce jump conditions [Hansbo, Hansbo 02]
o ghost penalty [Burman 10] to counter bad cuts (gradient jump penalty across
faces near curved boundary/interface)

@ An alternative to ghost penalty: local cell agglomeration

e natural for polytopal methods as dG [Sollie, Bokhove, van der Vegt 11;
Johansson, Larson 13]
o ¢G agglomeration procedure in [Badia, Verdugo, Martin 18]
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@ Main ideas [Burman, AE 18 (SINUM)]

o double cell and face dofs in cut cells, no dofs on curved boundary/interface
o local cell agglomeration to counter bad cuts
o mixed-order setting: k£ > 0 for face dofs and (k + 1) for cell dofs
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@ Main ideas [Burman, AE 18 (SINUM)]

o double cell and face dofs in cut cells, no dofs on curved boundary/interface
o local cell agglomeration to counter bad cuts
o mixed-order setting: k£ > 0 for face dofs and (k + 1) for cell dofs

@ Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]

e novel gradient reconstruction, avoiding that the penalty parameter in
Nitsche’s method is large enough
e robust cell agglomeration procedure (guaranteeing locality)

@ Stokes interface problems [Burman, Delay, AE 20 IMANUM)]

@ Wave propagation [Burman, Duran, AE 211 hal-03086432
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cut cell uncut cell

@ Mesh still composed of polytopal cells (with planar faces)
@ Decomposition of cut cells: T= Tl U Tz, m=Tnr

@ Decomposition of cut faces: d(T;) = (0T UT', i € {1,2}
@ Local dofs (no dofs on 771)

ﬁT = (MTI, Ur,, M((')T)l 5 M((')T)Z) € Pk+1 (Tl)XPk+] (TZ)XPk(ﬁaT)I )XPk(ﬁaT)z)
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Gradient reco

r

@ Gradient reconstruction Gr,(ii7) € P*(T;; RY) in each subcell

e (Option 1) Independent reconstruction in each subcell

(Gr,(ii7), 1, = —(ur;, div Q)7; + (157 )5 AOT) 97y + (T, q0T;) 7T

e (Option 2) Reconstruction mixing data from both subcells

(Gr, (i), @1, = =(ur,, div @7, + (457, 40T )97y + (U734 @OT) T

@ Both options avoid Nitsche’s consistency terms
@ no penalty parameter needs to be taken large enough!
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@ Local bilinear form

ar(iip, Wr) = Z {Ki(GTi(ﬁT), Gr,(Wr))r, + st,(lir, VVT)} + s(ur, wr)
ie{1,2}

@ LS stabilization inside each subdomain
sty r) 1= i Ayl ory = wor s wrlary = wior ory
@ Interface bilinear form
sp(ur, wr) := nkihz! (Jur]r, [wrlr)pe with n = O(1)

@ The use of two gradient reconstructions allows for robustness
Ww.I.t. contrast (k] < kp)

e use option 1 in Q1 and option 2 in Qy
e ar is symmetric, but Q; /€, do not play symmetric roles
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5 o O AT
o.:.o o
.;.0.;.0 ()

o.E. S ¢ o0 ?
@

@ The global dofs are in
iy € Uy = >< P (T x >< P U(T,) x >< P*(F) x >< P*(Fy)
TeT! TeT? FeF! FeF?

@ We set to zero all the face components attached to 9Q
@ We collect in 77 all the global unknowns related to a mesh cell T
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@ Global problem: Find 1, € U}, such that
an(itp, Wp) = G0vy), Vi, € U,

with ah(ﬁh, Wh) = ZTG‘T aT(ﬁT, WT) and fh(ﬁ/h) = ZTGT fT(WT) with the
consistent rhs

tr(Ovr) = (f, wr, )Tl +(f, WTz)Tz +(gn WTz)Tr
— k1(gp, Gr, (vr)nr + nhy! fwr])pr
@ All the cell dofs are eliminated locally by static condensation

@ Only the face dofs are globally coupled
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Error analysis

@ Multiplicative and discrete trace inequalities [Burman, AE 18]

o for any cut cell 7', there is a ball T" of size O(h7) containing T and a finite
number of its neighbors, and s.t. all 7 N T is visible from a point in 77

o small ball with diameter O(hr) present on both sides of interface

e achievable using local cell agglomeration if mesh fine enough

Error estimate

Assuming that ulo, € H'*(Q;) with t € (%, k+1],

DD klV@—up)llf < CR Y Klul g

T ie{l,2} ie{l,2}

Convergence order O(h**1) if ulg, € H*"*(Q;)
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@ Three-stage procedure with proven locality in the agglomeration
@ for any cell KO in Qy, find matching partner OK in Q,
@ for any cell KO in Q, not matched, find matching partner OK in Q
@ rearrange locally partnerships to avoid propagation

initial mesh
|

stage 2 stage 3
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Agglomeration procedure (2/3)

@ A 16x16 mesh with circular interface
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Agglomeration procedure (3/3) _

@ A 16x16 mesh with flower-like interface
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exi=lLk=10"gp=gy=0,7=1
@ Circular interface (2 = (x; — 0.5)> + (x, — 0.5)?)

. 6 6
@ Exact solution: u; := ;—1, up := :—2 +R6(% - %)

102

A
e

wNRo

1081

error H! seminorm_
< < <
\
\

\

1081 _

0.0078125 0.015625 0.03125 0.0625 0.125
h
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Test case with jump

@ Flower-like interface, k; = ko = 1

@ Exact solution with jump

sin(7zrx) sin(7rx;) in Q
M(X1,xz) = . . 3.3 .
sin(zxy) sin(rxp) + 2 + X7y in
[T 11
wfio— T ]
Pk=2 ="
102 k=3 e
£10° T
.gw"’
?:,10'5
10
107
0%278125 0.01‘5625 0.0(;125 0.062¢
h
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Wav

@ Subdomains Q;, Q, c Q, interface I', jump [a]r = ajo, — ajq,
@ Acoustic wave propagation across interface
L8up — div (})Vp) =f inJ x(QUQ,)
[[p]]r =0, [[/l)vp]]r'nr =0 onJxT

@ Main ideas as for elliptic interface problems

e mixed-order setting k" =k + 1
o distinct gradient reconstructions Gr; in PK(T;RY), i € {1,2}
o LS stabilization on (0T, i € {1,2} = s7,(-,-)
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@ Second-order formulation

(Bupr (1), wr) 1 o FHGT(Pu(), Gr(Wn)) La +S,1,’2(13h (0, W)+, (pr(0), wr) = (F(8), wi)a

o s (pr(0), wy) := (p1hr) " (Iprlrs [wrlr)er
o Algebraic realization and Newmark time-stepping as in fitted case
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@ Second-order formulation
(Bupr (1), wr) 1 o FHGT(Pn(), Gfr(%))})@ +S,l,’2(f7h (0, W)+, (pr(0), wr) = (F(8), wi)a

o s (pr(0), wy) := (p1hr) " (Iprlrs [wrlr)er
o Algebraic realization and Newmark time-stepping as in fitted case

@ First-order formulation (v := 8,p, o := ll)Vp)
B0 7(1), T7)p:2 = (G (7)), T7)a =0
@7 (D wr) 1o + (@7 (@), G + 5 (40, ) + 5], (70 wr) = (F(0) wr)a

o 5 (v wr) = Sreq; Top([vrlrs [[WT]]r)Tr
o # .= (pic1)”! = O(1) for ERK, and . = O(h7!) for SDIRK
o Algebraic realization and RK time-stepping as in fitted case
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Fitt
@ 2D heterogeneous test case with flat interface
e O := (_%’ %) X (_%’0)’ Q) = (_%7 %) x (0, %)
e Ricker wavelet centered at (0, %) € Qy, sensor S| = (%, —%) €0
o fitted and unfitted HHO behave similarly, both benefit from increasing k
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@ 2D heterogeneous test case with flat interface
° Q:=(-3.3)%(-3.0.Q :=(-3.3)x (0. 3)
e Ricker wavelet centered at (0, %) € Qy, sensor S| = (%, —%) €0
o fitted and unfitted HHO behave similarly, both benefit from increasing &

@ HHO-Newmark, o, signals
e comparison of semi-analytical and HHO (fitted or unfitted) solutions
@ k=1 (top) and k = 3 (bottom)
e ¢yfcy = V3 (low contrast, left) or cyfcl = 8V3 (high contrast, right)

Newmark:
—— Garbmore2D — Fit-HHO k=1 — Cut-HHO k=1

Newmark:
— Garbmore2D — Fit-HHO k=1 — Cul-HHO k=1




@ Homogeneous test case, flat interface

@ CFL condition for ERK(s): CTAI < B(s)u(k)
e f(s) mildly depends on the number of stages
o u(k) behaves as (k + 1)~! and is quantified by solving a generalized
eigenvalue problem with the mass and stiffness matrices

@ Additional jump penalties in unfitted HHO only mildly impact u(k)

k 0 1 2 3
Fitted-HHO 0.118 0.0522 0.0338 0.0229
Unfitted-HHO | 0.0765 0.0373 0.0232 0.0159
Ratio 1.5 14 1.5 14
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@ Homogeneous test case, circular interface

e study of impact of agglomeration parameter 6,5, on (k)

e “badly cut” cell flagged if relative area of any subcell falls below fage

@ Agglomerated cells for 8,55 = 0.3 on a sequence of refined quad meshes

= A0 Op T, PN
== s G 1S
QD DEI lEthDZ!:!:.:I:F‘:’EFF_TI oy, m:n““f
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CFLcondiion for ERK (22)

@ Homogeneous test case, circular interface

e study of impact of agglomeration parameter 6,5, on (k)
o “badly cut” cell flagged if relative area of any subcell falls below Gag¢

@ Agglomerated cells for 8,5, = 0.3 on a sequence of refined quad meshes

g a0 I T, VN

= = f ‘%E,
S I
T || P 0% || Se? ||
@ Behavior of hu(k) and impact of 0,4 on pu(k)
o tolerating badly cut cells deteriorates the CFL condition
o [k [ o i 2 3]

Oage = 0.5 | 0.042 0022 0014  0.0099
Oae =03 | 0.030 0015  0.0094 0.0065
Ratio 14 1.5 1.5 1.5
e “0 | [Ougg =0.1 | 0017 0.0087 0.0055 0.0039
== Ratio 25 2.6 2.6 25

0001

5107
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Flo

@ Agglomerated cells for a flower-like interface (quad mesh, i = 275),
HHO-SDIRK(3,4) signal for o at two sensors, k € {1 2, 3} e /e =V3

\\\\\\
=

@ Pressure isovalues, SDIRK(3,4), k =3, h=0.1 x 278, Ar = 2‘6

t=10.25 t=0.5
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e HHO
e seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]

@ HHO for wave propagation
@ [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

@ Unfitted HHO
@ [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]
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e HHO
@ seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]

@ HHO for wave propagation
@ [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

@ Unfitted HHO
@ [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]

@ New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Finite Elements | Finite Elements || Finite Elements Il

Dy Dy Dy
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e HHO
@ seminal papers [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
@ textbooks [Di Pietro, Droniou, 20; Cicuttin, AE, Pignet, 21]

@ HHO for wave propagation
@ [Burman, Duran, AE 21 (CAMC)], [Burman, Duran, AE, Steins 21 (JSC)]

@ Unfitted HHO
@ [Burman, AE 18 (SINUM)], [Burman, Cicuttin, Delay, AE 21 (SISC)]

@ New Finite Element book(s) (Springer, TAM vols. 72-74, 2021)
with J.-L. Guermond, 83 chapters of 12/14 pages plus about 500 exercises

Finite Elements | Finite Elements || Finite Elements Il
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Thank you for your attention!
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