Decomposition-coordination methods for optimization under risk

Henri GERARD Michel DE LARA - Jean-Christophe PESQUET

CERMICS École des Ponts ParisTech ROADEF

Mercredi 10 février 2016

Henri GERARD (CERMICS)

10/02/2016

1 / 27

ROADEF - 10 février 2016

Why are we studying decomposition methods

- Multistage stochastic optimization problems (SOP) are large scale due to
 - the number of scenarios
 - the number of time steps
 - the number of agents, units
- Decomposition methods can make such problems more tractable
- Having in mind possible applications to the management of electricity networks under risk (black-out, failures, reliability...), what happens when the traditional mathematical expectation is replaced by a risk measure?

・ 同 ト ・ ヨ ト ・ ヨ ト

The path we are going to follow

In the talk, we develop two resolution methods

- by time decomposition (nested formulation)
- by scenario decomposition (duality)

1 Working out the example of a risk averse newsvendor problem

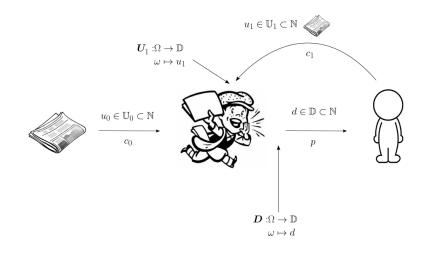
2 Resolution by time decomposition

Resolution by dualization of the non-anticipativity constraints

Outline of the section

Working out the example of a risk averse newsvendor problem

Presentation of the two stage newsvendor



ROADEF - 10 février 2016

10/02/2016 6 / 27

Cost function

We consider the following cost function:

$$j(u_0, u_1, d) = c_0 \underbrace{u_0}_{\text{order } t=0} -p \min\{u_0, d\}$$
$$+ c_1 \underbrace{u_1}_{\text{order } t=1} -p \min\{u_1, \underbrace{d - \min\{u_0, d\}}_{\text{unsatisfied demand}}\}$$

ROADEF - 10 février 2016

イロト イポト イヨト イヨト

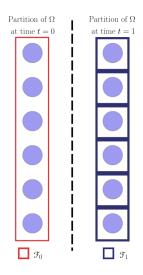
3

7 / 27

10/02/2016

Henri GERARD (CERMICS)

Probability space and demand



- We consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with Ω finite
- The demand D is a random variable on Ω
- The demand **D** is revealed after the initial order

How we express the non-anticipativity constraints

 We consider a first control u₀ ∈ U to express that it does not depend on D; we denote that by

 $\pmb{U}_{\!\!\!0} \preceq \sigma\bigl(\{\varnothing, \Omega\}\bigr)$

• We consider a recourse control $U_1 \in \mathbb{U}^{\Omega}$ because it is allowed to depend on D; we denote that by

$$U_1 \preceq \sigma(D)$$

Introduction of a risk measure

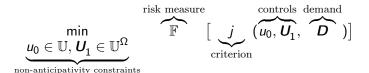
We denote by $\ensuremath{\mathbb{F}}$ a risk measure

- $\mathbb{F}[X] = \mathbb{E}_{\mathbb{P}}[X]$: risk neutral case
- $\mathbb{F}[\boldsymbol{X}] = \max_{\omega \in \Omega} \boldsymbol{X}(\omega)$: worst case
- Conditional Value-at-risk definition

$$\mathsf{CVAR}_{\beta}[\boldsymbol{X}] = \inf_{s \in \mathbb{R}} \left\{ \frac{\mathbb{E}_{\mathbb{P}}[(\boldsymbol{X} - s)^+]}{1 - \beta} + s \right\} \ , \ \beta \in [0, 1[$$

э

Risk averse formulation with non-anticipativity constraints



10/02/2016 11 / 27

∃ ⊳

< 47 > <

What will follow

Henri GERARD (CERMICS)

- On a toy problem, we have presented
 - how we formulate a risk averse problem
 - the CVAR risk measure for numerical applications
- Now we develop methods to solve more general stochastic optimization problems under risk
 - by time decomposition
 - by scenario decomposition

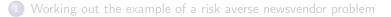
Assumptions for the two decompositions methods

We consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where

- The set Ω is finite
- The probability $\mathbb P$ charges every point of Ω

< A > < > > <

Outline of the section



- 2 Resolution by time decomposition
- 3 Resolution by dualization of the non-anticipativity constraints

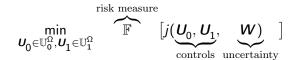
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Temporal structure and statement of the problem

Temporal structure of information We consider two σ -fields

 $\mathfrak{F}_0\subset \mathfrak{F}_1\;,\;\; \mathfrak{F}_0\neq \mathfrak{F}_1$

We write a two stage optimization problem



subject to non-anticipativity constraints

s.t.
$$\left\{ \begin{array}{l} \boldsymbol{U}_{0} \preceq \boldsymbol{\mathcal{F}}_{0} \\ \boldsymbol{U}_{1} \preceq \boldsymbol{\mathcal{F}}_{1} \end{array} \right.$$

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

10/02/2016 15 / 27

Time consistency is an extension of tower property

Remark

With $\mathfrak{F}_0\subset\mathfrak{F}_1\;,\;\;$ we have the following tower property

$$\mathbb{E}_{\mathbb{P}}[oldsymbol{U}] = \mathbb{E}_{\mathbb{P}}\Big[\mathbb{E}_{\mathbb{P}}ig[\mathbb{E}_{\mathbb{P}}[oldsymbol{U} \mid \mathcal{F}_1] \mid \mathcal{F}_0\Big]^{-1}$$

Definition

A dynamic risk measure $(\mathbb{F},\mathbb{F}_0,\mathbb{F}_1)$ has the time consistency property if

$$\mathbb{F}[\boldsymbol{U}] = \mathbb{F}\big[\underbrace{\mathbb{F}_0[\boldsymbol{U}]}_{\mathcal{F}_0 - \text{measurable}}\big] = \mathbb{F}\Big[\mathbb{F}_0\big[\underbrace{\mathbb{F}_1[\boldsymbol{U}]}_{\mathcal{F}_1 - \text{measurable}}\big]\Big], \ \forall \boldsymbol{U} \in \mathbb{U}^{\Omega}$$

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

10/02/2016 16 / 27

Time decomposition in the risk neutral case

Proposition (Time decomposition) When $\mathfrak{F}_0 \subset \mathfrak{F}_1$, the problem

$$\min_{\boldsymbol{U}_0 \in \mathbb{U}_0^{\Omega}, \boldsymbol{U}_1 \in \mathbb{U}_1^{\Omega}} \mathbb{E}_{\mathbb{P}} \big[j(\boldsymbol{U}_0, \boldsymbol{U}_1, \boldsymbol{W}) \big]$$

$$s.t. \left\{ \begin{array}{l} \boldsymbol{U}_0 \preceq \boldsymbol{\mathcal{F}}_0 \\ \boldsymbol{U}_1 \preceq \boldsymbol{\mathcal{F}}_1 \end{array} \right.$$

is equivalent to

$$\mathbb{E}_{\mathbb{P}}\bigg[\min_{u_{0}\in\mathbb{U}_{0}}\mathbb{E}_{\mathbb{P}}\bigg[\min_{u_{1}\in\mathbb{U}_{1}}\mathbb{E}_{\mathbb{P}}\big[j(u_{0},u_{1},\boldsymbol{W})\mid\mathcal{F}_{1}\big]\mid\mathcal{F}_{0}\bigg]\bigg]$$

Algorithm: Backward resolution and dynamic programming

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

10/02/2016 17 / 27

• • • • • • • • • • • • •

Extension of time decomposition to the risk averse case

Proposition

- if $\mathcal{F}_0 \subset \mathcal{F}_1$
- if there exists a dynamic risk measure ($\mathbb{F}, \mathbb{F}_0, \mathbb{F}_1$) which is time consistent
- if $(\mathbb{F}, \mathbb{F}_0)$ are monotonous

$$\begin{split} \min_{\boldsymbol{U}_0 \in \mathbb{U}_0^{\Omega}, \boldsymbol{U}_1 \in \mathbb{U}_1^{\Omega}} \mathbb{F} \big[\boldsymbol{j}(\boldsymbol{U}_0, \boldsymbol{U}_1, \boldsymbol{W}) \big] \\ s.t. \left\{ \begin{array}{l} \boldsymbol{U}_0 \preceq \mathcal{F}_0 \\ \boldsymbol{U}_1 \preceq \mathcal{F}_1 \end{array} \right. \end{split}$$

is equivalent to

$$\mathbb{F}\left[\min_{u_0\in\mathbb{U}_0}\mathbb{F}_0\left[\min_{u_1\in\mathbb{U}_1}\mathbb{F}_1[j(u_0,u_1,\boldsymbol{W})]\right]\right]$$

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

Comment on time decomposition

Conclusion

We have extended the time decomposition method from the risk neutral to the risk averse case

Perspectives

- It can be difficult to exhibit time consistent dynamic risk measures
- We look for weaker assumptions that however make possible a dynamic programming equation

Outline of the section

- Working out the example of a risk averse newsvendor problem
- 2 Resolution by time decomposition
- 3 Resolution by dualization of the non-anticipativity constraints

A (10) A (10) A (10)

From non-anticipativity to measurability constraints

- $\bullet\,$ Time decomposition requires $\mathfrak{F}_0\subset\mathfrak{F}_1$ to arrive to a nested formulation
- We no longer require this assumption for scenario decomposition
- The constraints

$$egin{array}{l} egin{array}{l} egin{array} egin{array}{l} egin{array}{l} egin{array}{l}$$

are now called measurability constraints

10/02/2016 21 / 27

Statement of the SOP

• In the risk-neutral case, we rewrite the measurability constraints as

$$\min_{\boldsymbol{U}_0 \in \mathbb{U}_0^{\Omega}, \boldsymbol{U}_1 \in \mathbb{U}_1^{\Omega}} \mathbb{E}_{\mathbb{P}}[j(\boldsymbol{U}_0, \boldsymbol{U}_1, \boldsymbol{W})]$$

s.t.
$$\left\{ \begin{array}{l} \mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_0 \mid \mathcal{F}_0] = \boldsymbol{U}_0 \\ \mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_1 \mid \mathcal{F}_1] = \boldsymbol{U}_1 \end{array} \right.$$

• Primal problem

$$\min_{\boldsymbol{U}_0,\boldsymbol{U}_1} \max_{\pi_0,\pi_1} \mathbb{E}_{\mathbb{P}}\big[j(\boldsymbol{U}_0,\boldsymbol{U}_1,\boldsymbol{W})\big] + \sum_{i \in \{0,1\}} \pi_i \big(\mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_i \mid \mathcal{F}_i] - \boldsymbol{U}_i\big)$$

• Dual problem

$$\max_{\pi_0,\pi_1} \min_{\boldsymbol{U}_0,\boldsymbol{U}_1} \mathbb{E}_{\mathbb{P}}[j(\boldsymbol{U}_0,\boldsymbol{U}_1,\boldsymbol{W})] + \sum_{i \in \{0,1\}} \pi_i (\mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_i \mid \mathcal{F}_i] - \boldsymbol{U}_i)$$

Henri GERARD (CERMICS)

三 🕨 10/02/2016

3

22 / 27

Resolution by dualization in the risk-neutral case

Proposition

Under technical assumptions, primal and dual problems are equivalent. They are also equivalent to

$$\max_{\boldsymbol{\pi}_{0} \in (\mathbb{R}^{n_{0}})^{\Omega}, \boldsymbol{\pi}_{1} \in (\mathbb{R}^{n_{1}})^{\Omega}} \mathbb{E}_{\mathbb{P}} \Big[\min_{\boldsymbol{u}_{0} \in \mathbb{U}_{0}, \boldsymbol{u}_{1} \in \mathbb{U}_{1}} j(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \boldsymbol{W}) \\ + \left(\mathbb{E}_{\mathbb{P}} [\boldsymbol{\pi}_{0} \mid \mathcal{F}_{0}] - \boldsymbol{\pi}_{0} \right) \boldsymbol{u}_{0} \\ + \left(\mathbb{E}_{\mathbb{P}} [\boldsymbol{\pi}_{1} \mid \mathcal{F}_{1}] - \boldsymbol{\pi}_{1} \right) \boldsymbol{u}_{1} \Big]$$

Scheme of the algorithm (Progressive hedging)

- For fixed multiplier π , the problem is solved scenario by scenario
- Update of the multiplier π

Henri GERARD (CERMICS)

10/02/2016 23 / 27

Statement of the problem in the risk averse case

$$\min_{\boldsymbol{U}_{0} \in \mathbb{U}_{0}^{\Omega}, \boldsymbol{U}_{1} \in \mathbb{U}_{1}^{\Omega}} \mathbb{F}[j(\boldsymbol{U}_{0}, \boldsymbol{U}_{1}, \boldsymbol{W})$$

s.t.
$$\begin{cases} \mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_{0} \mid \mathcal{F}_{0}] = \boldsymbol{U}_{0} \\ \mathbb{E}_{\mathbb{P}}[\boldsymbol{U}_{1} \mid \mathcal{F}_{1}] = \boldsymbol{U}_{1} \end{cases}$$

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

10/02/2016 24 / 27

3

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Dualization in the risk averse case

Proposition

If the risk measure \mathbb{F} has the following form (coherent risk measure)

 $\mathbb{F}[\boldsymbol{U}] = \max_{\mathbb{Q} \in \mathfrak{Q}_{\mathbb{F}}} \mathbb{E}_{\mathbb{Q}}[\boldsymbol{U}]$

with $\Omega_{\mathbb{F}}$ a closed convex set of probability laws and under technical assumptions, primal and dual problems are equivalent to

$$\max_{\boldsymbol{\pi}_{0} \in (\mathbb{R}^{n_{0}})^{\Omega}, \boldsymbol{\pi}_{1} \in (\mathbb{R}^{n_{1}})^{\Omega}} \max_{\mathbb{Q} \in \Omega_{\mathbb{F}}} \mathbb{E}_{\mathbb{P}} \Big[\min_{\boldsymbol{u}_{0} \in \mathbb{U}_{0}, \boldsymbol{u}_{1} \in \mathbb{U}_{1}} j(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \boldsymbol{W}) \frac{d\mathbb{Q}}{d\mathbb{P}} \\ + \big(\mathbb{E}_{\mathbb{P}}[\boldsymbol{\pi}_{0} \mid \mathcal{F}_{0}] - \boldsymbol{\pi}_{0}\big) \boldsymbol{u}_{0} \\ + \big(\mathbb{E}_{\mathbb{P}}[\boldsymbol{\pi}_{1} \mid \mathcal{F}_{1}] - \boldsymbol{\pi}_{1}\big) \boldsymbol{u}_{1} \Big]$$

Henri GERARD (CERMICS)

ROADEF - 10 février 2016

10/02/2016 25 / 27

э

- ∢ ≣ →

A (1) > A (1) > A

Comment on scenario decomposition

Conclusion

We have extended the scenario decomposition method from the risk neutral to the risk averse case

Perspectives

We want to use scenario decomposition to solve multi-agents problems

Conclusion and perspectives

Conclusion

- We studied stochastic optimization problems with risk and time
- We presented two results of decomposition in the risk averse case

Perspectives

- We are currently working on time consistent risk measures and their extensions to arrive at nested formulations
- We are trying to extend time and scenario decompositions to solve multi-agent problems