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Introduction

Motivation

VIX options started trading in 2006

How to build a model for the SPX that jointly calibrates to SPX options,
VIX futures, and VIX options?

In 2008, Gatheral was one of the first to investigate this question, and
showed that a diffusive model (the double mean-reverting model) could
approximately match both markets.

Later, others have argued that jumps in SPX are needed to fit both
markets.

In this talk, | revisit this problem, trying to answer the following questions:

Does there exist a continuous model on the SPX that jointly calibrates to
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SPX options, VIX futures, and VIX options?

If so, how to build one such model? If not, why?
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Gatheral (2008)

Consistent Modeling of SPX and VIX options

Consistent Modeling of SPX and VIX options J

Jim Gatheral

gg Merrill Lynch

The Fifth World Congress of the Bachelier Finance Society
London, July 18, 2008
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Consistent Modeling of SPX and VIX options
Variance curve models
Double CEV dynamics and consistency

Double CEV dynamics

@ Buehler's affine variance curve functional is consistent with
double mean reverting dynamics of the form:

L~ waw
dv = —r(v—V)dt+mv*dz
d = —c(V —z)dt+mpv'?dZ (2)

for any choice of o, 5 € [1/2,1].
o We will call the case &« = 3 = 1/2 Double Heston,
o the case a = 3 =1 Double Lognormal,
o and the general case Double CEV.
@ All such models involve a short term variance level v that
reverts to a moving level v/ at rate x. v’ reverts to the
long-term level z3 at the slower rate ¢ < k.
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Consistent Modeling of SPX and VIX options.
The Double CEV model
Calibration of £, &> to VIX option prices

Double CEV fit to VIX options as of 03-Apr-2007

Setting the correlation p between volatility factors z; and z» to its historical average (see later) and iterating on
the volatility of volatility parameters £; and £, to minimize the differences between model and market VIX option
prices, we obtain the following fits (orange lines)
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Consistent Modeling of SPX and VIX options
The Double CEV model
Calibration of p; and p2 to SPX option prices

Double CEV fit to SPX options as of 03-Apr-2007

Minimizing the differences between model and market SPX option prices, we find py = —0.9, py = —0.7 and
obtain the following fits to SPX option prices (orange lines)
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Fit to VIX options
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Fit to VIX options
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Fit to VIX options
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Fit to SPX options
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Fit to SPX options
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Fit to SPX options
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m Joint calibration not so good for short maturities (up to 6 months)

m Unfortunate as these are the most liquid maturities for VIX futures and
options

m Vol-of-vol is either too large for VIX market, or too small for SPX market
(or both)
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Trying with jumps in SPX
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Sepp (2012)

Part 1. Joint calibration of SPX and VIX skews using jumps

I consider several volatility models to reproduce the volatility skew
observed in equity options on the S&P500 index:

Local volatility model (LV)

Jump-diffusion model (JD)

Stochastic volatility model (SV)

Local stochastic volatility model (LSV) with jumps

For each model, I analyze its implied skew for options on the VIX

Ishow that LV, JD and SV without jumps are not consistent with the
implied volatility skew observed in option on the VIX

I show that:
Only the SV model with appropriately chosen jumps can fit the im-
plied VIX skew

Importantly, that only the LSV model with jumps can fit both Equity
and VIX option skews
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Baldeaux-Badran (2014)

Consistent Modelling of VIX and Equity
Derivatives Using a 3/2 plus Jumps Model

Jan Baldeaux and Alexander Badran

Abstract

The paper demonstrates that a pure-diffusion 3/2 model is able to capture the observed
upward-sloping implied volatility skew in VIX options. This observation contradicts
a common perception in the literature that jumps are required for the consistent
modelling of equity and VIX derivatives. The pure-diffusion model, however, struggles
to reproduce the smile in the implied volatilities of short-term index options. One
remedy to this problem is to augment the model by introducing jumps in the index.
The resulting 3/2 plus jumps model turns out to be as tractable as its pure-diffusion
counterpart when it comes to pricing equity, realized variance and VIX derivatives,
but accurately captures the smile in implied volatilities of short-term index options.

Keywords: Stochastic volatility plus jumps model, 3/2 model, VIX derivatives
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Baldeaux-Badran (2014)

dSy = Si— ((r — AD)dt + p\/VidWE + /1 = p2\/VidW? + (ef — 1)(1Nt) , (3)
AV = kV;i(0 — Vy)dt + e(V,/*)dw} (4)
where we denote by N a Poisson process at constant rate A, by e¢ the relative
Jjump size of the stock and NV is adapted to a filtration (F);¢(q 7). The distribu-

tion of ¢ is assumed to be normal with mean y and variance o2. The parameters
i, fi, and o satisfy the following relationship

1
w=1log(1+ ) — 502 .
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Kokholm-Stisen (2015)

as, s
?’ =(r — q — @Ndt + VVaw, + (° — 1)aNn, o)
t
dV, = k(6 — Vydt + 2WV.dZ, + JVdN, ®)

where, W, and Z, are Wiener processes correlated with coefficient p € [—1,1] and
0,k,m = 0. The price and volatility processes have simultaneous jumps with constant
arrival intensity A = 0. The jumps in volatility are independent and identically
exponentially distributed with mean u, = 0. Conditionally, on the jump in volatility, the
jump in the price process is normally distributed with:

JV ~exp(w,), J5|JV =y~ Np, + py, 07 (3)
where o = 0, p; €[ —1,1], n, € R. The martingale condition on the discounted price

process imposes that:

nw=————1 @
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Kokholm-Stisen (201

4
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Joint pricing
of VIX and
SPX options

43

Figure 6.
Fit to the SPX option
smiles on May 16,
2012, of the SV, SV].
and SV)] models
calibrated to SPX
options and VIX
derivatives without
the Feler condition
imposed
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Kokholm-Stisen (2015)

JRF

Figure 7.
Fit to the VIX option
16,

smiles on
2012, of the SV,
and SVIJ models
calibraed to SPX
options and VIX
derivatives without
the Feller condition
imposed
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Kokholm-Stisen (2015)
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Bardgett-Gourier-Leippold (2015)

dY, = [= 2\ (v,,my=)(02(1,0,0) = 1) — %@t_]df + o dWY +adgY,
dvy = Ey(my— — v )dt 4 oy fUi—dW) + dJ),

dmy = Fp (O — M= )dt + T /M= dW™ 4+ dJJ",
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Bardgett-Gourier-Leippold (2015)
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Figure 2 Market and model Vs on May 5, 2010, obtained by a joint calibration on the S&P 500
and VIX option market. Circles represent the market IV for T = 0.05 (S&P 500) and T = 0.04
(VIX). Crosses represent the market IV for T = 0.3 (S&P 500) and T = 0.36 (VIX). The dashed
line: corresponds o the model fit for 7 = 0.05 (S&P 500) and T = 0.04 (VIX) while the solid line
corresponds to the model fit for T = 0.3 (S&P 500) and T = 0.36 (VIX). Panels A (S&P 500) and
B (VIX) plot the model IVs hased on the Heston model. Pancls C and D display the corresponding
results for the SV model, while Panels E and F3b so for the SVJ2 model
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Papanicolaou-Sircar (2014)

m Use a regime-switching stochastic volatility model

m Hidden regime 0: continuous time Markov chain

X, = (7’ - %f2(0L)YL - 5u(e,,_)> dt + f(0,)\/ Y, dW, — X(0,).J, AN, |
dY; = k(Y —Yy)dt +~v/YidB, ,
ANy = Lig,z0, ),
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Papanicolaou-Sircar (2014)
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Cont-Kokholm (2013)

m Framework a /a Bergomi:

Model dynamics of forward variances Vt[Ti’THI]
Given V411 model dynamics of SPX

m Simultaneous (Lévy) jumps on forward variances and SPX

m First time a model seems to be able to jointly fit SPX skew and VIX level
even for short maturities

Julien Guyon Bloombe P., Columbia University, and NYU

On the Joint Calibration of SPX and VIX Options



Past attempts

Cont-Kokholm (2013)
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Figure 6: S&P 500 implied volatility smiles on August 20th 2008 for the
model with normally distributed jump sizes plotted against moneyness m =
K/S, on the horizontal axis.
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Cont-Kokholm (2013)
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Figure 4: VIX implied volatility smiles on August 20th 2008 for the
model with normally distribuf

:d jump sizes plotted against moneyness
m = K/VIX, on the horizontal axis.
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Pacati-Pompa-Reno (2015)

1 '
dx; [r —q - Aji— 3 (a{[ + ¢ + o%,,)] dt + | /o-f_t + ¢ dWIS,[ + (rz,,dWi, + cxdN;

d(ri, =a1(B) - O'i,)dl + Alo'l,,de, + ¢gdN; + ¢, dN;

dU’%yt =m(B - o'%y,)dz + A0 W3,
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Pacati-Pompa-Reno (2015)
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Pacati-Pompa-Reno (2015)
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Figure 2: This figur: reports market and model implied volailiies for S&PSO0 (plot at the t0p) and VIX (plot at the bottom)
options, together with the term trctue of VIX futues (plo in the middle) on August 11, 2010 obained calirting jonty on
the thee markets the 2-SVCVJ (blue dashed lne) and 2:SVCVU+ (rd line). Maturites and tenors are expressed n days and
voltlesar in % points and VIX futues el pricesae n USS,
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Trying again with no jumps in SPX
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Goutte-Ismail-Pham (2017)

m Also use a regime-switching stochastic volatility model

m Hidden regime Z: continuous time Markov chain

{dSt = Si(rdt + Vi dW}), Sp=s
dVy = K(Z)(0(Zs) — Va)dt + E(Ze)VVedWE, Vo = vo.
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Goutte-Ismail-Pham (2017)
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Figure 8: Implied volatilities of February 13, 2015, for VIX call options and the calibrated smile.
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Goutte-Ismail-Pham (2017)
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Figure 9: Implied volatilities of February 13, 2015, for S&P 500 call options and the calibrated smile.
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Goutte-Ismail-Pham (2017)

...but problem with SPX market data
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que-Saporito (2017)

m Based on Heston model with stochastic vol of vol

= No jumps

m Good fit to both SPX and VIX options... but only for maturities > 4
months

o SPX Implied Vol - Calibration ’ir" zil: om0 VIX Implied Vol - Calibration "”" 3'““)

2 2
(a) S&P 500 (b) VIX
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So does there exist a continuous model on the SPX that jointly
calibrates to SPX options, VIX futures, and VIX options?

No answer yet...
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Continuous model on SPX

Continuous model on SPX calibrated to SPX options

m For simplicity, let us assume zero interest rates, repos, and dividends.
m Let F; denote the market information available up to time ¢.
m We consider continuous models on the SPX index:

5 = o dWy, So=z (3.1)
St

m W denotes a standard one-dimensional (F;)-Brownian motion, (o) is an
(Ft)-adapted process such that for all ¢ > 0, fot 02ds < oo as., and >0
is the initial SPX price.

m The local volatility function corresponding to Model (3.1) is the function
Oloc defined by

Oie(t, St) := E[o7]S). (3.2)
m The corresponding local volatility model is defined by:

ds;o

Sloc = Uloc(t7 SiOC) th7 S(I)OC =
t

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Continuous model on SPX

Continuous model on SPX calibrated to SPX options

m From Gydngy (1986), the marginal distributions of the processes
(Si,t > 0) and (Si°°,t > 0) agree:

OC@

Vi >0, S S,. (3.3)

m Using Dupire (1994), we conclude that Model (3.1) is calibrated to the full
SPX smile if and only if

Oloc = Olv (34)

where o, is the local volatility function derived from market prices of
vanilla options on the SPX using Dupire's formula.

m We denote by S" the market local volatility model is defined by:

sy

L = o (t,S)Y) dWr, Sy =z
Slv

Bloomberg L.P., Columbia University, and NYU
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Continuous model on SPX

m Let T > 0. By definition, the (idealized) VIX at time T is the implied
volatility of a 30 day log-contract on the SPX index starting at T". For
continuous models (3.1), this translates into

) 1 TH+T 5 1 T+ 2
VIX} =E [;/ o dt fT} = ;/ E [o{|Fr] dt (3.5)
T T

where 7 = 2% (30 days).

m Since E[o? (¢, Si°°)|Fr] = E[o2.(t, 51°°)|5%°], VIXjoc 1 satisfies

VIX2 _ 1 T E Sloc Sloc —F 1 T Sloc d
loc, T — ; [Uloc(t )| ] ; UIOC(t ) 1

SITV} .

Bloomberg L.P., Columbia University, and NYU

SIOC:| )

T T

m Similarly,

2 I 2 Iv 1T, Iv
VIXZ, o = ;/ E[o?, (¢, S| SY] dt = T/ o2 (t, SV dt

T T
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Continuous model on SPX

m The prices at time 0 of the VIX future and the VIX call options with
common maturity 7" in Model (3.1) are respectively given by

del 1 TH+T
VIXPU(T) = E|4/E [f / o2 dt
TJr

T+T
/ o2 dt‘]—'T} -K| |.37)
+

T

| —

CVRiN (T, K)

Il
=
Q
=
A=

m We observe market prices for those instruments, for a list of liquid monthly
VIX future maturities T}, denoted by VIXZ**(T;) and C (T, K), with
the most liquid maturities lying below 6 months.

m Can we find a model satisfying (3.1)-(3.4) and such that for all 7; and
K, VIX§™©(T}) = VIX§*(T}) and CHE (T, K) = O (T, K)?
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The case of instantaneous VIX

The case of instantaneous VIX

m 7 — 0: The realized variance over 30 days is then simply replaced by the
instantaneous variance, and (3.6)-(3.7) boil down to

instVIX§(T) = Elor], (4.1)
Cinsgﬂx(Ta K) = E [(UT - K)+] . (4.2)

m Reminder: (The distributions of) two random variables X and Y are said
to be in convex order if and only if, for any convex function f,
E[f(X)] <E[f(Y)]. Denoted by X <. Y. Both distributions have same
mean, but distribution of Y is more “spread” than that of X.

m Assume oo = 01y. By conditional Jensen, since E[o7|S:] = of (, St),

VE>0,  on(t,Si) <e o
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The case of instantaneous VIX

X := o (t,5) and Y, := o}

m Conversely, if X; <. Y, then there exists a joint distribution 7; of (St, o¢)
such that E[07|S;] = o5 (¢, S¢) for all t.

m Indeed, from Strassen's theorem (1965), there exists a joint distribution m;
of (X, Y:) such that E[Y;| X:] = X;. One then defines 7, as follows: S;
follows the risk-neutral distribution of the SPX for maturity ¢ and, given
Si, Xi = 02,(t, St) is known and o7 is chosen to follow the conditional
distribution of Y; given X; under ;.
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The case of instantaneous VIX

B If instVIXP¥(¢) and C2Y 1 (¢, K) were accessible, we could imply from
the market the distribution of o2, and compare it to the risk-neutral
distribution of o2 (¢, S¢).

m A necessary and sufficient condition for a jointly calibrating continuous
model on the SPX to exist would then simply be that for each ¢ those two
market-implied distributions be in the right convex order:

UIQV(t7 St) Sc U?

m Any process defined by % = oy dW; where for each ¢, given S, the
distribution of o is specified by 7, is a solution.

m This general construction does not address the issue of the dynamics of
(0t): o+ and oy could be very loosely related for arbitrarily close ¢ and ¢'.
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The case of instantaneous VIX

m In practice, to build a calibrating process, one would discretize time and
recursively solve martingale transport problems:

L (a?v(tk,Stk)) and L (afk) given, E[a?k|012\,(tk,5tk)] = va(tk,Stk). (4.3)

m Solutions wgk to those martingale transport problems include left- and
right-curtains (Beiglbdck-Juillet, Henry-Labordeére), forward-starting
solutions to the Skorokhod embedding problems (Dupire), and the local
variance gamma model of Carr and Nadtochiy.

m (4.3) is a new type of application of martingale transport to finance:

m Usually, the martingality constraint applies to the underlying at two
different dates (Henry-Labordere, Beiglbdck, Penkner, Nutz, Touzi, Martini,
De Marco, Dolinsky, Soner, Obléj, Stebegg, JG...)

m Here it applies to two types of instantaneous variances at a single date,
ensuring that the SPX smile is matched.

m |t can already be seen in this limiting case that it might be impossible to
build a continuous model on the SPX that jointly calibrates to SPX
and VIX options. This happens if (and only if) for some ¢ the
market-implied distribution of of, (£, S;) is “more spread” than that of the
instantaneous VIX squared.
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The real case

The real case

m In reality, squared VIX are not instantaneous variances but the fair strikes
of 30-day realized variances.

m Let us look at market data (Sep 21, 2017). We compare the market
distributions of

VIX2 . = E |1 R t, S dt
Iv,T ‘= ; - le(? t)

sﬂ

and

2 Y
VIXZ o1 <<—>]E[;/ o dt’}'T])

T

Bloomberg L.P., Columbia University, and NYU
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The real case

T = 2 months

Distribution VIX_loc™2 vs VIX_market™2

/S Model

/MVIX Market Shifted
4 *VIX Square Price

Strike (vVariance scale)
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Introduction Past attempts Continuous model ¢ The case of instantaneous VIX The real case Forward variance models

T = 2 months

Comparison of convex order of VIX_market**2 and VIX_loc**2

Acallon Lv VIX=2

/> Call on Market VIX**2 Shifted
7 *VIX Square Price

7 *VIX Future LV

/ *VIX Future Market Shifted

0.040
Strike (Variance scale)

Julien Guyon Bloomberg L.P., Columbia University, and NYU
On the Joint Calibration of SPX and VIX Options



T = 2 months

Implied Volatility of VIX

ALV VIX

/N Market VIX Shifted
/7 *VIX Square Price
7 *VIX Future LV

# *VIX Future Market Shifted
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The real case

T = 3 months

Distribution VIX_loc**2 vs VIX_market**2

LV Model

/S VIX Market Shifted
7 *VIX Square Price

0.05
Strike (Variance scale)
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Introduction Past attempts Continuous model ¢ The case of instantaneous VIX The real case Forward variance models

Comparison of convex order of VIX_market™2 and VIX_loc™2

/Mcallon Lv VIX=2

/> Call on Market VIX="2 Shifled
/7 *VIX Square Price

7 *VIX Fulure LV

# *VIX Future Market Shifled

1
0010 0.050
Sirike (Variance scale)
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The real case

T = 3 months

Implied Volatility of VIX

ISV VIX

/> Market VIX Shifted

7 *VIX Square Price

7 *VIX Future LV

7 *VIX Future Market Shifted

25.00

Strike
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The real case

T = 3 months

VIX and Local Volatility in LV Model

/Nsig_loc(S,T)
/Nsig_loc(S.T+au)

90.0% 100.0%

Strike (Moneyness)
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The real case

The real case

2 Y I 1
VIXjy,r = E{—/ oty (t,Sy) dt Sr}’}
TJr
1 TH+T
VXS = E[f / afdt’]—'T]
T Jr

m In typical market conditions:

1—2months:  VIXpy 1 <c VIX{, 1 (5.1)
3 — 4 months : VIX?, 7 %o VX, VX r Ze VIXiy 1
5+ months : VIX?, 7 <c VIXpr

The local volatility model yields a VIX distribution that is “more
spread” than the VIX distribution implied from VIX futures and

options.
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The real case

The real case

2 1 i 2 1v Iv
VIXIV,T = E|-— alv(t,St )dt ST
TJr

2 L[,
VIX2 = E {f / P dt‘]—'T]
TJr

m One may be tempted to believe that there exists a model of the form (3.1)
calibrated to the SPX smile and to all VIX options if and only if for all T;,
VIX?, 7, <c VIXZ, 7, — and then conclude that such a model does not

exist.
= However:
1 [T+ 1 fT+r
ot (t,S;) <.of #= E {;/ afv(t,St)dt‘}'T] <.E [;/ ol dt ]-‘T]
T T

m Sum and Fr conditioning may undo convex ordering.

Bloomberg L.P., Columbia University, and NYU
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The real case

Convex order is not preserved under sum

m A trivial almost counterexample:

Yo =Xo + Z, Yi=X1 -7
with E[Z|Xo] = E[Z|X1] = 0 (e.g., Z has zero mean and is independent
from (Xo, X1)).
® Yy can be much larger than Xj in the convex order and Y7 can be much
larger than X3 in the convex order, if Z has large variance.
m However, Yy + Y7 = Xo + X;.

® Xo=Wi,, X1 =-Wy,, Yo =W, and Y1 = —W,,, with
0 <t <t2 <ts.

| | E[YQ'XO] = Xo, E[Yi‘Xll = Xl, hence Xo Sc Yo and X1 §c )/1, yet
0=Yo+ Y1 <c Xo+ X1.

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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The real case

Convex order is not preserved under sum

m We generalize the previous example: G = (Xo, Yo, X1, Y1) Gaussian
vector.

m We assume that E[Y5|Xo] = Xo and E[Y1|X1] = X1, and look for
necessary and sufficient conditions under which X, + X7 <. Yy + Yi.!

m mx := E[X], ox std dev of X, pxy the correlation between X and Y.
m Since G is Gaussian, E[Y;| X;] = my, + pxiyi:—;i_(Xi —mx;) SO
mx, =my; and ox,; = px,v;0Y;- (5.2)

In particular, px;v; > 0. As a consequence, mx,+x,; = Myy+v;, and
since Xo + X1 and Yp + Y7 are Gaussian,

Xo+ X1 <c Yo+ Y1 <= Var(Xo =+ Xl) < VaI‘(Yo - Yl).

1We ignore trivial cases by assuming that all components of G have positive variance.

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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The real case

Convex order is not preserved under sum

m Now, using the second equation in (5.2), we have

Var(Xo + X1) = 0%, + 0%, + 20X0X:10x00%;

2 2 2 2 Lo
PXovoTYy T PX1v10y; + 2PX0 X1 PX0YoOYoPX1Y10Y,

so Xo + X1 <. Yo + Y if and only if

U%/O(l - p2X0Y0) + 0'%’1(1 - p§(1Y1) + 20v,0v; (pYOYI - pXoxleOYopX1Y1) > 0.

In particular, if oy, = ov;, px;v; # 1 for i € {0,1}, and
. PYoYs — PXoX1PXoYoPX1 Vs

\/1 - ngoyo \/1 - Pg(lyl

then Xo + X1 £c Yo + Yi.

< -1
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The real case

Convex order is not preserved under conditioning

m The conditioning with respect to Fr may undo convex ordering too.

m Simple counterexample: if X <. Y with X F-measurable and not
constant, and Y independent of F, then E[Y] = E[Y|F] <. E[X|F] = X.

m Intuition: Fast mean reversion in (o) may undo convex ordering since

(010c(t, 51°°)) does not mean revert. However, the larger the mean
reversion, the flatter S — oioc(t, St).

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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The real case

Inversion of convex ordering

m For Model (3.1) to fit both SPX and VIX option prices, it must satisfy

1 T+ 9
E {f/ o, du
TJr

for T up to a few months, despite the fact that for all u > 0,

Ulzoc(ua Svlioc) SC Uft'
m Note that E[o2|Fr] and E[of(u, S12°)|S%°] have the same mean E[o2].
m One natural way to achieve (5.3) is to require that

Elos | Fr] <c Elojoc(u, 57°)[SF°] (5.4)

1 T+T

}—T:| <:E |:* / 0'1200(”7 SLOC) du

TJr

S&ﬂ (5.3)

for many u € (T, T + 7] and hope that this convex ordering of forward
instantaneous variances will be preserved when we sum over w.

m When u =T, E[0|Fr] = 0F >c 0io(T, ST°) = Eloic(u, $,7°)|SF] =
We will require that (5.4) holds for all T < T and u € [T +¢,T + 7).

m When (5.4) holds, the convex ordering o .(u, Si°°) <. o2 is actually
reversed after conditioning on Fr:

E[Uﬁ|fT] <. E[afoc(u, SLOC)|.7:T] <. Ufoc(u, S,lfc) <.02. (5.5)

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Forward variance models

One-factor lognormal forward instantaneous variance models

m E[o2|Fr] is a forward instantaneous variance. We denote it by
% = Eloa|Fr].

m It is well known (Dupire, Bergomi, Buehler) that forward instantaneous
variances are driftless.

m Second generation stochastic volatility models directly model the dynamics
of (&',t € [0,u]) under a risk-neutral measure. The only requirement is
that these processes, indexed by u, be nonnegative and driftless.

m For simplicity, let us assume for now that forward instantaneous variances
are lognormal and all driven by a single standard one-dimensional
(F:)-Brownian motion Z, correlated with W:

& _ K(t,u)dz. 6.1)
&

m K is called the kernel.

= The SPX dynamics simply reads as (3.1) with o7 := &L

% =ordWi,  of =&, AW, Z); = pdt.
t
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Forward variance models

One-factor lognormal forward instantaneous variance models

m The solution to (6.1) is simply

§t—£0exp(/Ksu /Ksu ) (6.2)

which yields
§Oexp</Ksu /Ksu ) (6.3)

m For simplicity, let us choose a time-homogeneous kernel
K(s,u) = K(u — s).

m Financially, we expect the kernel K : R — R4 to be decreasing: The
further the instantaneous forward variance maturity u, the less volatile the
instantaneous forward variance.

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Forward variance models

Ingredients needed for inversion of convex order

m Can we choose a kernel K such that
Elos|Fr] <c Elope(u, S5°)SE]

holds for all T < T and w € [T +¢,T + 7]?

m K should make the distribution of E[o2|Fr] “more narrow” than that of
E[od (u, Si°°)|S5%¢] for those T' and u. Two ingredients are needed:

m 11: The knowledge of Fr := o(Ws, Zs,0 < s < T') should give little
information on o2, so that distribution of E[o2|Fr] is narrow.

m 12: The knowledge of Sy, should give enough information on &2, so that
S ol (u,S) =E[02|Sy = 5] varies enough with S and the distribution
of E[o}, . (u, S10¢)|SIe¢] is not as narrow as that of E[o2|Fr].

m Loosely speaking, S, should give more information than Fr on o2,

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Forward variance models

Ingredients needed for inversion of convex order

2 _ su " _ _1 “ _ 2
au—foexp</0 K(u—s)dZs 2/0 K(u—s) ds).

m Ingredients 11 and 12 are antagonistic.

m For given T and uw € (T, T + 7], 11 requires that K (u — s) be small for all
s €0,T7.

m Conversely, 12 requires that K (u — s) be large for at least some s € [0, u].
Indeed, the knowledge of S, gives partial information on (W5,0 < s < u),
which is passed to (Z,,0 < s < u) through the correlation p; this
information can impact o2 only if K (u — s) is large for at least some
s €[0,u].2

m For I1 and 12 to hold jointly, it is then required that K (u — s) be small for
s € [0,T] and large for s € [T, u], i.e., that K(0) be small for
0 € [u—T,u] and large for 6 € [0,u — T].

2The knowledge of S, may also give partial direct information on (05,0 < s < u). Indeed, if
S is extremely large, then many o5, 0 < s < w, must have been very large, and o, is likely to
be large. This explains why the smile has a positive slope at large strikes in stochastic volatility
models even if p < 0. However, for values of S,, close to Sg, the knowledge of S,, is transferred
to o2 mostly through the paths of W and Z up to u.

u
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Forward variance models

Ingredients needed for inversion of convex order

m Since this should hold for enough u € (T, T + 7], K(6) should be very
large for 0 € [0,¢] and very small for 8 > ¢, with e < 7:

e<T (6.4)

K(0) = {very large i.f 0<e,
very small if § > ¢
m Then I1 holds for all w € [T+ ¢,T + 7]. 12 will hold only if K(8) is large
enough for 6 € [0, ]; this is needed for the limited information that S,
gives on (dZs,u — e < s < u) to be amplified enough by the kernel K so
that it impacts E[02|S,]. Such an extremely fast decreasing kernel K is
reminiscent of extremely fast mean-reversion, with characteristic time
e < 7 = 30 days.
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Forward variance models

Two remarks

m The fact that S — of.(u, S) varies a lot with S does not necessarily
mean that the distribution of E[o2,. (u, S1°°)|S%°] is spread. Precisely, the
above procedure describes a model where E[o2|Fr] <. 02, and one may
wonder how much smaller in convex order E[of . (u, S1€)|S%°] is,
compared to o (u, Si°°). Since o1oc(t, Si°¢) does not mean revert,
contrary to o¢, we expect E[o . (u, Si°°)|SR] to be only slightly smaller

than o, (u, S2°°) in convex order.

m The smaller T, the less antagonistic 11 and 12 are. Indeed, the smaller T,
the most information S, gives on (dW,,u —e < s < u), hence on
(dZs,u — e < 5 < u), and finally on o2, for u € [T, T + 7]. This is
because the smaller T', the smaller u, and the larger the portion of time £
covered by [u —¢,u]. As a consequence, E[o2|Fr] <. E[of,.(u, Si°)|S%°]
is more likely to hold for small T'. This is precisely in line with market
data: the inversion of convex ordering only holds for short maturities T;.
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Forward variance models

Exponential kernel

K(0) = wexp(—kb), w>0,k>0

m One-factor Bergomi model (Dupire 1993, Bergomi 2005)
m In this case, £ admits a one-dimensional Markov representation:

! = € (8, X.) where

w

2 1 _ o2kt
7672 ““”Var(Xt)) , Var(Xy) = ———

u _ —k(u—t) _
fh(t,x) = exp (we X: 5%

and the Ornstein-Uhlenbeck process X; = Je’k(t’”dZs follows the
Markov dynamics:

dX, = —kX,dt +dZ,, Xo=0. (6.5)

m The Markov property is very convenient: the time ¢ price of SPX (resp.
VIX) options are simply functions of (¢, S¢, X;) (resp. of (¢, X:)) that are
solutions to second order parabolic linear PDEs; moreover, the numerical
simulation of the model is easy as it is enough to simulate the
two-dimensional Markov process (S, X¢).
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Forward variance models

Exponential kernel

K(0) = wexp(—k0), w>0,k>0

k = mean-reversion.

w = vol of variance: it is the instantaneous (lognormal) volatility of the
instantaneous variance o2 := £;. Has the dimension of a volatility.

= For (6.4) to hold, we must impose k > £ and pick w large. Fast
mean-reversion regime: % <L T.

o . 0 w?
m The limiting regime where k£ and w tend to +oo while “~ is kept constant

corresponds to an ergodic limit where (X;) quickly reaches its stationary
distribution N(0, ;—Z) Cf Fouque, Papanicolaou and Sircar (2000).

® In this limit K () ~ vkexp(—kf) — 0 for all § > 0, while
K(0) — +00. The same holds in any limiting regime where w ~ k<.
However w ~ vk corresponds to the only regime where the variance o2
has a finite limit, which is the natural regime in finance.
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Forward variance models

Power-law kernel

K@) =v0""2, uv>0 He <0, %) (6.6)

m Rough Bergomi model (Bayer, Friz, Gatheral, 2014). Studied by many at
Imperial (Jacquier, Pakkanen, Horvath, Muguruza,... and coauthors...)

m H = Hurst exponent. In this case, lim,_, o+ K(0) = +o0, and
& = &o exp (VXt - ?Var(Xt ))
where
u2H _ (u _ t)2H

t
X;‘:/ (u—s)""2dz,,  Var(X}) =
0

m H > 0 ensures that Var(X,;) is finite.

Bloomberg L.P., Columbia University, and NYU
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Forward variance models

Power-law kernel

m No Markov representation for £*. The instantaneous variance o2 := &f is
not a function of Markov processes, nor is it a semimartingale. One
cannot write Ité6 dynamics déf = -+ dt + - - - dZ; for the instantaneous
variance, and there is no notion of a dynamic volatility of instantaneous
spot variance.

u
m However we can compare the values of Var (In g—i in the power-law
0

kernel model, and in the exponential kernel model:

2H __ _ 4\2H _—2kt
L2 2(1;1 t) w22kt 1 2€k (6.7)
B . L 121 o1 — e 2kt o

-1
so I/% can be interpreted as a short term volatility of instantaneous
spot variance.

. . de NS B 1
m v does not have the dimension of a volatility, i.e., time™2; it is v~ 2

that has the dimension of a volatility, so v has dimension time™, and
_1

¢ HE has indeed the dimension of a volatility.

v

V2
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Forward variance models

Power-law kernel

m ATM skew in SV models ~ p times short term volatility of instantaneous
spot variance. Explains why the ATM skew in such rough volatility models
behaves like 7"~ 2 for short maturities T' (Alés, Fukasawa...), which is
one of the reasons why this model has been introduced (Gatheral, Jaisson,
Rosenbaum, Friz, Bayer).

m For (6.4) to hold, we must impose that H be very small. In the limit
where H tends to zero, for fixed v, 12 tends to +oo for any ¢ > 0.

m In order for Var(o7) to tend to a finite limit, we must impose that 3%
tend to a finite limit. As a consequence, a natural limiting regime,
analogous to the ergodic regime described above in the case of the
exponential kernel, consists of letting H and v tend to zero, with 53 kept
constant. In this limit K(0) ~ VHO" =2 — 0 for all 0 > 0, Whl|e
limg_, g+ K(0) = +oo for any H > 0.
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Forward variance models

One-factor Bergomi model, T;

Calls on instantaneous variance: t = 0.12, k=30.00, w=7.50, and p= —1.00

—— Bergomi
—— local vol of Bergomi

0.040

0.035

0.030 1

0.025 1

call price

0.020 1

0.015 4

0.010 1

0.005 1

0.000 - L 1 1 L
0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on realized variance over [Ty, Tyx + 30d]: Ty = 0.04, k= 30.00, w=7.50, and p= — 1.00

—— Bergomi
—— local vol of Bergomi

0.040

0.035 1

0.030

0.025 4

call price

0.020 1

0.015 1

0.010 1

0.005 4

0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on forward inst. variance: Ty = 0.04, t=0.12, k=30.00, w =7.50, and p= — 1.00

—— Bergomi
—— local vol of Bergomi

0.040

0.035 4

0.030 1

0.025 4

0.020

call price

0.015 1

0.010 4

0.005 4

0.000

0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on VIX%: Tyx = 0.04, k = 30.00, w = 7.50, and p=-1.00

— Bergomi
= local vol of Bergomi

0.040 4

0.035 4

0.030

0.025

0.020 1

call price

0.015 4

0.010 4

0.005 4

0.000

strike
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Forward variance models

One-factor Bergomi model

VIX implied volatilities: Ty;x = 0.04, k =30.00, w =7.50, and p= - 1.00

1.6 { — Bergomi
—— local vol of Bergomi

144

1.2+

1.0+

0.81

implied vol

0.6 1

0.4+

0.24

0.01

0.15 0.20 0.25 0.30 0.35 0.40 0.45
strike
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Forward variance models

One-factor Bergomi model

Implied volatilities on S: T=0.04, k= 30.00, w =7.50, and p = — 1.00
0300

—— Bergomi
—— local vol of Bergomi

0.275 1

0.250 1

0.225 1

0.200

implied vol

0.175 4

0.150 1

0.125 4

0.100 T T T T T
0.96 0.98 100 102 104
strike
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Forward variance models

One-factor Bergomi model, T; = 0.12

Calls on instantaneous variance: t = 0.20, k= 30.00, w=7.50, and p= —1.00

—— Bergomi
—— local vol of Bergomi

0.040

0.035 1

0.030

0.025

0.020

call price

0.015 4

0.010 4

0.005

0.000

0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on realized variance over [Ty, Tyx + 30d]: Ty =0.12, k=30.00, w=7.50, and p= — 1.00

—— Bergomi

0.040 4
—— local vol of Bergomi

0.035 4

0.030 1

0.025 4

0.020 4

call price

0.015

0.010 4

0.005

0.000 1

0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on forward inst. variance: Ty = 0.12, t=0.20, k=30.00, w =7.50, and p= — 1.00

—— Bergomi
—— local vol of Bergomi

0.040

0.035 4

0.030 1

0.025 4

0.020

call price

0.015 1

0.010 4

0.005 4

0.000

0.00 0.02 0.04 0.06 0.08 0.10
strike
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Forward variance models

One-factor Bergomi model

Calls on VIX%: Tyx = 0.12, k= 30.00, w = 7.50, and p=-1.00
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Forward variance models

One-factor Bergomi model
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Forward variance models

One-factor Bergomi model

Implied volatilities on S: T=0.12, k= 30.00, w =7.50, and p = — 1.00
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Forward variance models

One-factor Bergomi model, T; = 0.20

Calls on instantaneous variance: t = 0.29, k= 30.00, w =7.50, and p= —1.00
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Forward variance models

One-factor Bergomi model

Calls on realized variance over [Ty, Tyx + 30d]: Ty = 0.20, k= 30.00, w=7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on forward inst. variance: Ty = 0.20, t=0.29, k=30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on VIX%: Tyx = 0.20, k = 30.00, w = 7.50, and p=-1.00
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Forward variance models

One-factor Bergomi model

VIX implied volatilities: Tyy = 0.20, k =30.00, w = 7.50, and p = — 1.00
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Forward variance models

One-factor Bergomi model

Implied volatilities on S: T=0.20, k= 30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model, T; = 0.29

Calls on instantaneous variance: t = 0.37, k=30.00, w=7.50, and p= —1.00
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Forward variance models

One-factor Bergomi model

Calls on realized variance over [Ty, Tyx + 30d]: Ty =0.29, k= 30.00, w=7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on forward inst. variance: Ty = 0.29, t=0.37, k=30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on VIX%: Tyx = 0.29, k = 30.00, w = 7.50, and p=-1.00
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Forward variance models

One-factor Bergomi model

VIX implied volatilities: Ty;x=0.29, k=30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Implied volatilities on S: T=0.29, k= 30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model, T; = 0

Calls on instantaneous variance: t = 0.45, k= 30.00, w=7.50, and p= —1.00
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Forward variance models

One-factor Bergomi model

Calls on realized variance over [Ty, Tyx + 30d]: Ty = 0.37, k=30.00, w=7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on forward inst. variance: Tyx= 0.37, t=0.45, k=30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Calls on VIX%: Tyx = 0.37, k= 30.00, w = 7.50, and p=-1.00
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Forward variance models

One-factor Bergomi model

VIX implied volatilities: Ty;x = 0.37, k=30.00, w =7.50, and p= — 1.00
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Forward variance models

One-factor Bergomi model

Implied volatilities on S: T=0.37, k= 30.00, w =7.50, and p = — 1.00
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m Similar behavior in the rough Bergomi model
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Forward variance models

Skewing the models on &}

m Following Bergomi (2008), we use a linear combination of two lognormal
random variables to model the instantaneous variance o? so as to generate
positive VIX skew:

t t
o7 =& <(1 —\E (wO/ e*k“*”dzs) +AE (wl/ e*’““*s)dzs))
0 0

o? = ¢ ((1 —NE (uo /Ot(t - s)H—%dZs) TAE (1/1 /Ot(t - s)H_l/QdZs>>
with X € [0, 1].

m £(X) is simply a shorthand notation for exp (X — 3 Var(X)).

m Similar idea recently used and developed by De Marco.

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Forward variance models

Calls on instantaneous variance: t=0.17, H=0.10, y= 050, v=1.00, n=2.00 and p= —0.90
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Forward variance models

Calls on forward realized variance: Ty =0.08, H=0.10, y=0.50, v=1.00, n=2.00 and p= — 0.90
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Forward variance models

Calls on forward inst. variance: Ty =0.08, t=0.17, H=0.10, y=0.50, v=1.00,n=2.00 and p= — 0.90
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Forward variance models

Calls on forward inst. variance: Ty =0.33, t=042, H=0.10, y=0.50, v=1.00,n=2.00 and p= — 0.90

—— wrBergomi
— loc_wrBergomi

0.040

0035

0030

0025

call price

0.020

0.015

0.010

0.005

strike

Columbia University, and N

On the Joint Calibration of SPX and VIX Options



Forward variance models

Calls on forward inst. variance: Ty =0.08, t=0.17, H=0.50, y =0.50, v=1.00,n=2.00 and p= — 0.90
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Forward variance models

Calls on VIX® Tyyx=0.08, H=0.10, y=0.50, v=1.00, p=2.00 and p= —0.90
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Forward variance models

Calls on VIX% Tyyx=0.33, H=0.10, y= 0.50, v=1.00, p=2.00 and p= —0.90
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Forward variance models

Calls on VIX® Tyyx=0.08, H=0.50, y=0.50, v=1.00, n=2.00 and p= —0.90
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Forward variance models

VIX implied volatilities: Ty =0.08, H=0.10, y=0.50, v=1.00, n=2.00 and p= —0.90
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Forward variance models

VIX implied volatilities: Tyx =0.33, H=0.10, y=0.50, v=1.00, n=2.00 and p= —0.90
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Forward variance models

VIX implied volatilities: Ty =0.08, H=0.50, y=0.50, v=1.00, n=2.00 and p= —0.90
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Forward variance models

gh Bergomi

VIX implied volatilities: Ty =0.08, H=0.10, y=1.00, v=1.00, n=2.00 and p= —0.90
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Forward variance models

Skewed rough Bergomi: Calibration to VIX future and VIX options (March
21, 2018

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.08
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Forward variance models

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.15
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Forward variance models

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.25
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implied vol

Forward variance models

ugh Bergomi: Calibration to VIX future and VIX options

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.33
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Forward variance models

ugh Bergomi calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.08
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Forward variance models

calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.16
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Forward variance models

ugh Bergomi calibrated to VIX: SPX smile

SPX implied volatilities, Tspx = 0.24
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Forward variance models

ugh Bergomi calibrated to VIX: SPX smile

030 SPX implied volatilities, Tspx = 0.33
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Forward variance models

Parameters [1 — A, vp, v1] at the first five VIX maturities:
[ 0.68, 0.79, 5.64],

[ 0.57, 0.80, 5.03],

[0.51,0.79, 4.34],

[ 0.46, 0.70, 3.71],

[ 0.56, 1.31, 6.27]

Julien Guyon Bloomberg L.P., Columbia University, and NYU
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Forward variance models

Current work

m Absence of arbitrage between SPX options at T" and 7"+ 30 days, VIX
future and VIX options at T using an LP solver (cf De Marco and
Henry-Labordeére, 2015).

m Application of Bergomi-G. expansion (2012) to rough vol models and
extension to the smile of VIX options.

m Consider only continuous models on the SPX that are calibrated to the
SPX smile:
dSt at

Dt M (L, Se) dW,
s = VEms] W

and optimise on (a:) so as to match VIX options — or compute the
infimum of VIX implied vols within those models (use of neural networks
for VIX computation).

Julien Guyon Bloomberg L.P., Columbia University, and NYU

On the Joint Calibration of SPX and VIX Options



Forward variance models

Why jumps can help

m For a continuous model to calibrate jointly to SPX and VIX options, the
distribution of E [% fTT+T ol dt‘]—'T] should be as narrow as possible, but
without killing the SPX skew. The problem of ergodic/stationary (o) is
that they produce flat SPX skew.

m Jump-Lévy processes are precisely examples of processes that can generate
deterministic realized variance together with a smile on the underlying.

m This explains why jumps have proved useful in this problem.

Bloomberg L.P., Columbia University, and NYU
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