

Physique statistique numérique

Gabriel STOLTZ

gabriel.stoltz@enpc.fr

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

"Décision dans l'incertain", mars 2023

Gabriel Stoltz (ENPC/INRIA)

General references (1)

- Computational Statistical Physics
 - D. Frenkel and B. Smit, Understanding Molecular Simulation, From Algorithms to Applications (Academic Press, 2002)
 - M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford, 2010)
 - M. P. Allen and D. J. Tildesley, *Computer simulation of liquids* (Oxford University Press, 1987)
 - T. Schlick, *Molecular Modeling and Simulation* (Springer, 2002)
- Computational Statistics [my personal references... many more out there!]
 - J. Liu, Monte Carlo strategies in scientific computing, Springer, 2008
 - W. R. Gilks, S. Richardson and D. J. Spiegelhalter (eds), *Markov chain Monte Carlo in practice* (Chapman & Hall, 1996)
 - C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer, 2004)
- Convergence of Markov chains
 - S. Meyn and R. Tweedie, *Markov Chains and Stochastic Stability* (Cambridge University Press, 2009)
 - R. Douc, E. Moulines, P. Priouret and P. Soulier, Markov chains (Springer, 2018)

General references (2)

- Sampling the Boltzmann-Gibbs measure
 - L. Rey-Bellet, Ergodic properties of Markov processes, *Lecture Notes in Mathematics*, **1881** 1–39 (2006)
 - E. Cancès, F. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods, *Math. Model. Numer. Anal.* **41**(2) (2007) 351-390
 - T. Lelièvre, M. Rousset and G. Stoltz, *Free Energy Computations: A Mathematical Perspective* (Imperial College Press, 2010)
 - B. Leimkuhler and C. Matthews, *Molecular Dynamics: With Deterministic and Stochastic Numerical Methods* (Springer, 2015).
 - T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, *Acta Numerica* **25**, 681-880 (2016)
- Machine learning and sampling
 - C. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)
 - D. Barber, *Bayesian Reasoning and Machine Learning* (Cambridge University Press, 2012)
 - K. P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2023)

Sampling high-dimensional probability measures

Statistical physics (1)

- Aims of computational statistical physics
 - numerical microscope
 - computation of average properties, static or dynamic
- Orders of magnitude
 - distances $\sim 1~{\mathring{A}} = 10^{-10}~{\rm m}$
 - \bullet energy per particle $\sim k_{\rm B}T \sim 4 \times 10^{-21}~{\rm J}$ at room temperature
 - \bullet atomic masses $\sim 10^{-26}~{\rm kg}$
 - time $\sim 10^{-15}~{\rm s}$
 - number of particles $\sim \mathcal{N}_A = 6.02 imes 10^{23}$

• "Standard" simulations

- 10^6 particles ["world records": around 10^9 particles]
- \bullet integration time: (fraction of) ns ["world records": (fraction of) $\mu s]$

Statistical physics (2)

What is the melting temperature of argon?

Gabriel Stoltz (ENPC/INRIA)

Statistical physics (3)

"Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?"

Equation of state (pressure/density diagram) for argon at T = 300 K

Statistical physics (4)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?

Statistical physics (5)

• Microstate of a classical system of ${\cal N}$ particles:

$$(q,p) = (q_1,\ldots,q_N, p_1,\ldots,p_N) \in \mathcal{E}$$

Positions q (configuration), momenta p (to be thought of as $M\dot{q}$)

• In the simplest cases, $\mathcal{E} = \mathcal{D} imes \mathbb{R}^{3N}$ with $\mathcal{D} = \mathbb{R}^{3N}$ or \mathbb{T}^{3N}

• More complicated situations can be considered: molecular constraints defining submanifolds of the phase space

• Hamiltonian $H(q,p) = E_{kin}(p) + V(q)$, where the kinetic energy is

$$E_{\rm kin}(p) = \frac{1}{2} p^T M^{-1} p, \qquad M = \begin{pmatrix} m_1 \, {\rm Id}_3 & 0 \\ & \ddots & \\ 0 & & m_N \, {\rm Id}_3 \end{pmatrix}$$

Statistical physics (6)

- \bullet All the physics is contained in V
 - ideally derived from quantum mechanical computations
 - in practice, empirical potentials for large scale calculations
- An example: Lennard-Jones pair interactions to describe noble gases

$$V(q_1, \dots, q_N) = \sum_{1 \leq i < j \leq N} v(|q_j - q_i|)$$

$$v(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

$$V(r$$

Statistical physics (7)

• Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,...)

$$\mathbb{E}_{\mu}(\varphi) = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp)$$

- Choice of thermodynamic ensemble
 - least biased measure compatible with the observed macroscopic data
 - Volume, energy, number of particles, ... fixed exactly or in average
 - Equivalence of ensembles (as $N \to +\infty$)
- Canonical ensemble = measure on (q, p), average energy fixed H

$$\mu_{\rm NVT}(dq\,dp) = Z_{\rm NVT}^{-1}\,{\rm e}^{-\beta H(q,p)}\,dq\,dp$$

with $\beta = \frac{1}{k_{\rm B}T}$ the Lagrange multiplier of the constraint $\int_{\mathcal{E}} H \rho \, dq \, dp = E_0$ Gabriel Stoltz (ENPC/INRIA) ENPC, mars 2023 11/31

Standard techniques to sample probability measures (1)

- \bullet The basis is the generation of numbers uniformly distributed in $\left[0,1\right]$
- Deterministic sequences which look like they are random...
 - Early methods: linear congruential generators ("chaotic" sequences)

$$x_{n+1} = ax_n + b \mod c, \qquad u_n = \frac{x_n}{c-1}$$

- Known defects: short periods, point alignments, etc, which can be (partially) patched by cleverly combining several generators
- More recent algorithms: shift registers, such as Mersenne-Twister \rightarrow defaut choice in *e.g.* Python, available in the GNU Scientific Library
- Randomness tests: various flavors

Standard techniques to sample probability measures (2)

- Classical distributions are obtained from the uniform distribution by...
 - inversion of the cumulative function $F(x) = \int_{-\infty}^{x} f(y) \, dy$ (which is an increasing function from \mathbb{R} to [0, 1])

$$X = F^{-1}(U) \sim f(x) \, dx$$

Proof: $\mathbb{P}\{a < X \leq b\} = \mathbb{P}\{a < F^{-1}(X) \leq b\} = \mathbb{P}\{F(a) < U \leq F(b)\} = F(b) - F(a) = \int_{a}^{b} f(x) dx$ Example: exponential law of density $\lambda e^{-\lambda x} \mathbf{1}_{\{x \geq 0\}}$, $F(x) = \mathbf{1}_{\{x \geq 0\}} (1 - e^{-\lambda x})$, so that $X = -\frac{1}{\lambda} \ln U$

• change of variables: standard Gaussian $G = \sqrt{-2\ln U_1}\cos(2\pi U_2)$ Proof: $\mathbb{E}(f(X,Y)) = \frac{1}{2\pi} \int_{\mathbb{R}^2} f(x,y) e^{-(x^2+y^2)/2} dx dy = \int_0^{+\infty} f\left(\sqrt{r}\cos\theta, \sqrt{r}\sin\theta\right) \frac{1}{2} e^{-r/2} dr \frac{d\theta}{2\pi}$

using the rejection method

Find a probability density g and a constant $c \ge 1$ such that $0 \le f(x) \le cg(x)$. Generate i.i.d. variables $(X^n, U^n) \sim g(x) \, dx \otimes \mathcal{U}[0, 1]$, compute $r^n = \frac{f(X^n)}{cg(X^n)}$, and accept X^n if $r^n \ge U^n$

Standard techniques to sample probability measures (3)

- The previous methods work only
 - for low-dimensional probability measures
 - when the normalization constants of the probability density are known (or at least bounds, as for rejection sampling)
- In more complex cases, one needs to resort to trajectory averages

Ergodic methods
$$\frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \varphi(x^n) \xrightarrow[N_{\text{iter}} \to +\infty]{} \int \varphi \, d\mu$$

• Find methods for which

- the convergence is guaranteed? (and in which sense?)
- error estimates are available? (typically with Central Limit Theorem)

Standard techniques to sample probability measures (4)

• Assume that $x^n \sim \pi$ are idependently and identically distributed (i.i.d.)

Law of Large Numbers for $\varphi \in L^1(\pi)$

$$S_{N_{\text{iter}}} = \frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \varphi(x^n) \xrightarrow[N_{\text{iter}} \to +\infty]{} \mathbb{E}_{\pi}(\varphi) = \int_{\mathcal{X}} \varphi \, d\pi \quad \text{almost surely}$$

Central Limit Theorem for $\varphi \in L^2(\pi)$

$$\sqrt{N_{\mathrm{iter}}} \left(S_{N_{\mathrm{iter}}} - \int \varphi \, d\pi \right) \xrightarrow[N_{\mathrm{iter}} \to +\infty]{} \mathcal{N}(0, \sigma_{\varphi}^2), \ \sigma_{\varphi}^2 = \int_{\mathcal{X}} \left[\varphi - \mathbb{E}_{\pi}(\varphi) \right]^2 \, d\pi$$

• This should be thought of in practice as $S_{N_{\mathrm{iter}}} \simeq \mathbb{E}_{\pi}(\varphi) + \frac{\sigma_{\varphi}}{\sqrt{N_{\mathrm{iter}}}}\mathcal{G}$

Metropolis-Hastings algorithms

Metropolis-Hastings algorithm (1)

- Markov chain method^{1,2}, on position space
 - Given q^n , propose \tilde{q}^{n+1} according to transition probability $T(q^n, \tilde{q})$
 - Accept the proposition with probability $\min\left(1, r(q^n, \widetilde{q}^{n+1})\right)$ where

$$r(q,q') = \frac{T(q',q)\nu(q')}{T(q,q')\nu(q)}, \qquad \nu(dq) \propto e^{-\beta V(q)}$$

If acception, set $q^{n+1} = \tilde{q}^{n+1}$; otherwise, set $q^{n+1} = q^n$.

• Example of proposals

• Gaussian displacement $\tilde{q}^{n+1} = q^n + \sigma \, G^n$ with $G^n \sim \mathcal{N}(0, \mathrm{Id})$

• Biased random walk^{3,4}
$$\tilde{q}^{n+1} = q^n - \sigma^2 \nabla V(q^n) + \sqrt{\frac{2\sigma^2}{\beta}} G^n$$

¹Metropolis, Rosenbluth (×2), Teller (×2), *J. Chem. Phys.* (1953) ²W. K. Hastings, *Biometrika* (1970) ³G. Roberts and R.L. Tweedie, *Bernoulli* (1996) ⁴Gabriel Stoltz (ENPC/INRIA)

Metropolis-Hastings algorithm (2)

- The normalization constant in the canonical measure needs not be known
- Transition kernel: accepted moves + rejection

$$P(q, dq') = \min\left(1, r(q, q')\right) T(q, q') dq' + \left(1 - \alpha(q)\right) \delta_q(dq'),$$

where $\alpha(q) \in [0,1]$ is the probability to accept a move starting from q:

$$\alpha(q) = \int_{\mathcal{D}} \min\left(1, r(q, q')\right) T(q, q') \, dq'.$$

- Rejection rate $1-\alpha(q)\sim\sigma$ for RWMH, and σ^3 for MALA
- \bullet The canonical measure is reversible with respect to ν

$$P(q, dq')\nu(dq) = P(q', dq)\nu(dq')$$

This implies invariance: $\int_{\mathcal{D}} \int_{\mathcal{D}} \varphi(q') P(q, dq') \, \nu(dq) = \int_{\mathcal{D}} \varphi(q) \, \nu(dq)$

Gabriel Stoltz (ENPC/INRIA)

Metropolis-Hastings algorithm (3)

• Proof: Detailed balance on the absolutely continuous parts

$$\min(1, r(q, q')) T(q, dq')\nu(dq) = \min(1, r(q', q)) r(q, q')T(q, dq')\nu(dq)$$

= min (1, r(q', q)) T(q', dq)\nu(dq')

using successively $\min(1,r)=r\min\left(1,\frac{1}{r}\right)$ and $r(q,q')=\frac{1}{r(q',q)}$

• Equality on the singular parts $(1 - \alpha(q)) \delta_q(dq')\nu(dq) = (1 - \alpha(q'))\delta_{q'}(dq)\nu(dq')$

$$\begin{split} \int_{\mathcal{D}} \int_{\mathcal{D}} \phi(q,q') \left(1 - \alpha(q)\right) \delta_q(dq') \nu(dq) &= \int_{\mathcal{D}} \phi(q,q) (1 - \alpha(q)) \nu(dq) \\ &= \int_{\mathcal{D}} \int_{\mathcal{D}} \phi(q,q') (1 - \alpha(q')) \delta_{q'}(dq) \nu(dq') \end{split}$$

• Note: other acceptance ratios R(r) possible as long as R(r) = rR(1/r), but the Metropolis ratio $R(r) = \min(1, r)$ is optimal in terms of asymptotic variance⁵

⁵P. Peskun, *Biometrika* (1973)

Metropolis-Hastings algorithm (4)

 \bullet Irreducibility: for almost all q_0 and any set ${\mathcal S}$ of positive measure, there exists n such that

$$P^{n}(q_{0},\mathcal{S}) = \int_{x\in\mathcal{D}} P(q_{0},dx) P^{n-1}(x,\mathcal{S}) > 0$$

• Assume also aperiodicity (comes from rejections)

• Pathwise ergodicity⁶
$$\lim_{N_{\text{iter}} \to +\infty} \frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \varphi(q^n) = \int_{\mathcal{D}} \varphi(q) \nu(dq)$$

• Central limit theorem for Markov chains under additional assumptions:

$$\sqrt{N_{\text{iter}}} \left| \frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \varphi(q^n) - \int_{\mathcal{D}} \varphi(q) \,\nu(dq) \right| \xrightarrow[N_{\text{iter}} \to +\infty]{} \mathcal{N}(0, \sigma_{\varphi}^2)$$

20/31

⁶S. Meyn and R. Tweedie, *Markov Chains and Stochastic Stability* (1993) Gabriel Stoltz (ENPC/INRIA) ENPC, mars 2023

Metropolis-Hastings algorithm (5)

• The asymptotic variance σ_{φ}^2 takes into account the correlations:

$$\sigma_{\varphi}^{2} = \operatorname{Var}_{\nu}(\varphi) + 2\sum_{n=1}^{+\infty} \mathbb{E}_{\nu} \Big[\big(\varphi(q^{0}) - \mathbb{E}_{\nu}(\varphi)\big) \big(\varphi(q^{n}) - \mathbb{E}_{\nu}(\varphi)\big) \Big]$$

Proof: Consider
$$\widetilde{\varphi} = \varphi - \mathbb{E}_{\nu}(\varphi)$$
 and the average $\widetilde{\Phi}_{N_{\text{iter}}} = \frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \widetilde{\varphi}(q^n)$

Compute
$$N_{\text{iter}} \mathbb{E}_{\nu} \left(\widetilde{\Phi}_{N_{\text{iter}}}^2 \right) = \frac{1}{N_{\text{iter}}} \sum_{n,m=0} \mathbb{E}_{\nu} \left(\widetilde{\varphi}(q^n) \widetilde{\varphi}(q^m) \right)$$

Stationarity $\mathbb{E}_{\nu} \left(\widetilde{\varphi}(q^n) \widetilde{\varphi}(q^m) \right) = \mathbb{E}_{\nu} \left(\widetilde{\varphi}(q^{n-m}) \widetilde{\varphi}(q^0) \right)$ for $n \ge m$, implies

$$N_{\text{iter}} \mathbb{E}_{\nu} \left(\widetilde{\Phi}_{N_{\text{iter}}}^2 \right) = \mathbb{E}_{\nu} \left(\widetilde{\varphi} \left(q^0 \right)^2 \right) + 2 \sum_{n=1}^{N_{\text{iter}}} \left(1 - \frac{n}{N_{\text{iter}}} \right) \mathbb{E}_{\nu} \left(\widetilde{\varphi}(q^n) \widetilde{\varphi}(q^0) \right)$$

ΔT

Metropolis-Hastings algorithm (6)

• Estimation of σ_{φ}^2 by block averaging (batch means)

$$\sigma_{\varphi}^{2} = \lim_{N,M \to +\infty} \frac{N}{M} \sum_{k=1}^{M} \left(\Phi_{N}^{k} - \Phi_{NM}^{1} \right)^{2}, \quad \Phi_{N}^{k} = \frac{1}{N} \sum_{\substack{n=(k-1)N+1}}^{kN} \varphi(q^{n})$$
Expected $\Phi_{N}^{k} \sim \int_{\mathcal{X}} \varphi \, d\nu + \frac{\sigma_{\varphi}}{\sqrt{N}} \mathscr{G}^{k}$, with \mathscr{G}^{k} i.i.d.
$$\int_{\mathbb{R}^{n}} \frac{\varphi^{0}(q^{n})}{\varphi^{0}} \int_{\mathbb{R}^{n}} \frac{\varphi^{0}$$

Gabriel Stoltz (ENPC/INRIA)

Metropolis-Hastings algorithm (7)

- Useful rewriting: number of correlated steps $\sigma_{\varphi}^2 = N_{corr} Var_{\nu}(\varphi)$
- Numerical efficiency: trade-off between acceptance and sufficiently large moves in space to reduce autocorrelation (rejection rate around 0.5)⁷
- Refined Monte Carlo moves such as
 - "non physical" moves
 - parallel tempering
 - replica exchanges
 - Hybrid Monte-Carlo
- A way to stabilize discretization schemes for SDEs

⁷Roberts/Gelman/Gilks (1997), ..., Jourdain/Lelièvre/Miasojedow (2012)

Gabriel Stoltz (ENPC/INRIA)

ENPC, mars 2023 23 / 31

Hybrid Monte–Carlo

The Hamiltonian dynamics (1)

Hamiltonian dynamics

$$\frac{dq(t)}{dt} = \nabla_p H(q(t), p(t)) = M^{-1} p(t)$$
$$\frac{dp(t)}{dt} = -\nabla_q H(q(t), p(t)) = -\nabla V(q(t))$$

Assumed to be well-posed (e.g. when the energy is a Lyapunov function)

- Flow: $\phi_t(q_0, p_0)$ solution at time t starting from initial condition (q_0, p_0)
- Why Hamiltonian formalism? (instead of working with velocities?)
 Note that the vector field is divergence-free

$$\operatorname{div}_q\Big(\nabla_p H(q(t), p(t))\Big) + \operatorname{div}_p\Big(-\nabla_q H(q(t), p(t))\Big) = 0$$

• Volume preservation $\int_{\phi_t(B)}\,dq\,dp = \int_B\,dq\,dp$

The Hamiltonian dynamics (2)

- Other properties
 - Preservation of energy $H \circ \phi_t = H$

$$\frac{d}{dt}\Big[H\big(q(t),p(t)\big)\Big] = \nabla_q H(q(t),p(t)) \cdot \frac{dq(t)}{dt} + \nabla_p H(q(t),p(t)) \cdot \frac{dp(t)}{dt} = 0$$

• Time-reversibility $\phi_{-t} = S \circ \phi_t \circ S$ where S(q, p) = (q, -p)

Proof: use $S^2 = Id$ and note that

$$S \circ \phi_{-t}(q_0, p_0) = (q(-t), -p(-t))$$

is a solution of the Hamiltonian dynamics starting from $(q_0, -p_0)$, as is $\phi_t \circ S(q_0, p_0)$. Conclude by uniqueness of solution.

• Symmetry
$$\phi_{-t} = \phi_t^{-1}$$
 (in general, $\phi_{t+s} = \phi_t \circ \phi_s$)

The Hamiltonian dynamics (3)

• Numerical integration: usually Verlet scheme⁸ (Strang splitting)

Störmer-Verlet scheme

$$\begin{cases} p^{n+1/2} = p^n - \frac{\Delta t}{2} \nabla V(q^n) \\ q^{n+1} = q^n + \Delta t \ M^{-1} p^{n+1/2} \\ p^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}) \end{cases}$$

• Properties:

- Symplectic, symmetric, time-reversible
- One force evaluation per time-step, linear stability condition $\omega \Delta t < 2$

• In fact,
$$M\frac{q^{n+1}-2q^n+q^{n-1}}{\Delta t^2}=-\nabla V(q^n)$$

⁸L. Verlet, *Phys. Rev.* **159**(1) (1967) 98-105

Hybrid Monte Carlo (1)

- Measure $\mu(dq \, dp) = e^{-\beta H(q,p)} \, dq \, dp$ with marginal $\nu(dq) = e^{-\beta V(q)} \, dq$
- Markov chain in the configuration space $^{9,10}:$ parameters τ and Δt
 - generate momenta p^n according to $Z_p^{-1} \ \mathrm{e}^{-\beta p^T M^{-1} p/2} \, dp$
 - compute an approximation of the flow $\Phi_{\tau}(q^n, p^n) = (\tilde{q}^{n+1}, \tilde{p}^{n+1})$ of the Hamiltonian dynamics (i.e. Verlet scheme with $\tau/\Delta t$ timesteps)

• set $q^{n+1} = \tilde{q}^{n+1}$ with probability $\min\left(1, e^{-\beta(H(\tilde{q}^{n+1}, \tilde{p}^{n+1}) - H(q^n, p^n))}\right)$; otherwise set $q^{n+1} = q^n$.

- Rejection rate of order Δt^2 when $\tau={\rm O}(1),$ and Δt^3 for $\tau=\Delta t$
- Various extensions, including correlated momenta, random times $\tau,$ constraints, ...
- Ergodicity is an issue (quadratic potential with $\tau = period$)

⁹S. Duane, A. Kennedy, B. Pendleton and D. Roweth, *Phys. Lett. B* (1987)
¹⁰Ch. Schütte, *Habilitation Thesis* (1999)

Gabriel Stoltz (ENPC/INRIA)

(Generalized) Hybrid Monte Carlo (1)

- Transformation $S=S^{-1}$ leaving $\mu(dx)$ invariant, e.g. S(q,p)=(q,-p)
- Assume that $r(x,x') = \frac{T(S(x'),S(dx))\,\pi(dx')}{T(x,dx')\,\pi(dx)}$ is defined and positive

Generalized Hybrid Monte Carlo

- given xⁿ, propose a new state x̃ⁿ⁺¹ from xⁿ according to T(xⁿ, ·);
 accept the move with probability min (1, r(xⁿ, x̃ⁿ⁺¹)), and set in this case xⁿ⁺¹ = x̃ⁿ⁺¹; otherwise, set xⁿ⁺¹ = S(xⁿ).
- Reversibility up to S, i.e. $P(x,dx')\,\mu(dx)=P(S(x'),S(dx))\,\mu(dx')$
- Standard HMC: $T(q, dq') = \delta_{\Phi_{\tau}(q)}(dq')$, momentum reversal upon rejection (not important since momenta are resampled, but is important when momenta are partially resampled)

(Generalized) Hybrid Monte Carlo (2)

Complete algorithm $(M = \text{Id}, \beta = 1)$: starting from (q^n, p^n) ,

- \bullet Partially resample momenta as $p^{n+1/2} = \alpha p^n + \sqrt{1-\alpha^2}\,G^n$
- Perform one Verlet step as $(\widetilde{q}^{n+1},\widetilde{p}^{n+1})=\Phi_{\Delta t}(q^n,p^n)$
- \bullet Compute the acceptance probability $a^n=\mathrm{e}^{H(q^n,p^n)-H(\widetilde{q}^{n+1},\widetilde{p}^{n+1})}$
- Sample $U^n \sim \mathcal{U}[0,1]$
- If $U^n \leqslant a^n$, set $(q^{n+1}, p^{n+1}) = (\tilde{q}^{n+1}, \tilde{p}^{n+1})$ otherwise set $(q^{n+1}, p^{n+1}) = (q^n, -p^{n+1/2})$
- Ergodicity no longer is an issue (irreducibility much easier to prove than for standard HMC)

Metastability: large variances...

Need for variance reduction! A lot remains to be done for actual systems...

Gabriel Stoltz (ENPC/INRIA)