February 14, 2022

=

Convex sets

Exercise 1 (Perspective function). Let P: $\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the perspective function defined as P(x,t) = x/t, with dom $(P) = \mathbb{R}^n \times \mathbb{R}^*_+$.

- 1. Show that P([(x,s),(y,t)])[P((x,s)), P((y,t))].
- 2. Show that, if $C \subset \mathbb{R}^n \times \mathbb{R}^*_+$ is convex, then P(C) is convex.
- 3. Show that, if $C \subset \mathbb{R}^n$, then $P^{-1}(C)$ is convex.

Exercise 2 (Dual cones). Recall that, for any set $K \subset \mathbb{R}^n$, $K^* := \{y \in \mathbb{R}^n \mid \forall x \in K, \langle y, x \rangle \geq 0\}$. We say that K is self dual if $K^* = K$.

- 1. Show that $K = \mathbb{R}^n_+$ is self dual.
- 2. We consider the set of symmetric matrices S_n with the scalar product $\langle A, B \rangle = \operatorname{tr}(AB)$. Show that $K = S_n^+(\mathbb{R})$ is self dual.
- 3. Show that $K = \{(x,t) \mid ||x|| \leq t\}$ has for dual $K^* = \{(z,\lambda) \mid ||z||_* \leq z\}$, where $||z||_* := \sup_{x:||x|| \leq 1} z^\top x.$

Convex functions

Exercise 3 (Moving average). Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function.

- 1. Show that, $s \mapsto \int_0^1 f(st) dt$ is convex.
- 2. Show that, $T \mapsto 1/T \int_0^T f(t) dt$ is convex.

Exercise 4 (Partial infimum). Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ be a convex function and $C \subset \mathbb{R}^m$ a convex set. Show that the function

$$g: x \mapsto \inf_{y \in C} f(x, y)$$

is convex.

Exercise 5 (log determinant). Let, for any $X \in S_n$, $f(X) = \ln(\det(X))$. Consider, for $Z \succ 0$, and $V \in S_n$, the function $g : t \mapsto f(Z + tV)$.

- 1. Show that $g(t) = \sum_{i=1}^{n} \ln(1 + t\lambda_i) + f(Z)$, where the λ_i are the eigenvalues of $Z^{-1/2}VZ^{-1/2}$.
- 2. Show that g is concave. Conclude that f is concave.

Exercise 6 (Perspective function). Let ϕ : $E \to \mathbb{R} \cup \{+\infty\}$. The perspective of ϕ is defined as $\tilde{\phi} : \mathbb{R}^*_+ \times E \to \mathbb{R}$ by

$$\tilde{\phi}(\eta, y) := \eta \phi(y/\eta)$$

Show that ϕ is convex iff $\tilde{\phi}$ is convex.

Fenchel transform and subdifferential

Exercise 7 (Norm). Let $\|\cdot\|$ be a norm on \mathbb{R}^n and $\|y\|_{\star} := \sup_{x:\|x\| \leq 1} y \top x$ its dual norm. Let $f: x \mapsto \|x\|$. Compute f^{\star} and $\partial f(0)$.

Exercise 8 (Log sum exp). We consider $f(x) := \ln(\sum_{i=1}^{n} e^{x_i}).$

- 1. Show that f is convex. Hint : recall Holder's inequality $x^{\top}y \leq ||x||_p ||y||_q$ for 1/p + 1/q = 1.
- 2. Show that $f^{\star}(y) = \sum_{i=1}^{n} y_i \ln(y_i)$ if $y \ge 0$ and $\sum_i y_i = 1, +\infty$ otherwise.