Exercises : Duality

March 17, 2022

Exercise 1 (Dual formulation). Let $g: \mathbb{R}^{n} \rightarrow$ Exercise 4 (Conic Programming). Let $K \subset$ \mathbb{R}^{m}. Show that

1. $\mathbb{I}_{g(x)=0}=\sup _{\lambda \in \mathbb{R}^{m}} \lambda^{\top} g(x)$ \mathbb{R}^{n} be a closed convex pointed cone, and denote $x \preceq_{K} y$ iff $y \in x+K$. Consider the following program, with $A \in M_{m, n}$ and $b \in \mathbb{R}^{m}$.

$$
\begin{aligned}
\operatorname{Min}_{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \preceq_{K} 0
\end{aligned}
$$

1. Show that (P) is a convex optimization problem.
Exercise 2 (Linear Programming). Consider the following linear problem (LP)

$$
\begin{array}{rll}
\text { (P) } & \operatorname{Min}_{x \geq 0} & c^{\top} x \\
& \text { s.t. } & A x=b
\end{array}
$$

1. Show that the dual of (P) is an $L P$.
2. Show that the dual of the dual of (P) is equivalent to (P).

Exercise 3 (Quadratically Constrained Quadratic Programming). Consider the problem
2. Denote $\mathcal{L}(x, \lambda, \mu)=c^{\top} x+\lambda^{\top}(A x-$ b) $+\mu^{\top} x$. Show that $\operatorname{val}(P)=$ $\operatorname{Min}_{x \in \mathbb{R}^{n}} \sup _{\lambda \in \mathbb{R}^{m}, \mu \in K^{+}} \mathcal{L}(x, \lambda, \mu)$.
3. Give a dual problem to (P).

Exercise 5 (Duality gap). Consider the following problem

$$
\begin{aligned}
\operatorname{Min}_{x \in \mathbb{R}, y \in \mathbb{R}_{*}^{+}} & e^{-x} \\
\text { s.t. } & x^{2} / y \leq 0
\end{aligned}
$$

1. Find the optimal solution of this problem.
2. Write and solve the (Lagrangian) dual problem. Is there a duality gap?
$(Q C Q P) \quad \operatorname{Min}_{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} P_{0} x+q_{0}^{\top} x+r_{0}$
Exercise 6 (Two-way partitionning). Let $W \in$ $\frac{1}{2} x^{\top} P_{i} x+q_{i}^{\top} x+r_{i} \leq 0 \quad \forall i \in \begin{gathered}S_{n}, \text { be a symmetric matrix, consider the follow- }\end{gathered}$
where $P_{0} \in S_{++}^{n}$ and $P_{i} \in S_{+}^{n}$.
3. Show by duality that there exists, for $\mu \in \mathbb{R}_{+}^{m}, P_{\mu}, q_{\mu}$ and r_{μ}, we have $g(\mu)=$ $-\frac{1}{2} q_{\mu} P_{\mu}^{-1}+r_{\mu}$ such that $\operatorname{val}(P) \geq g(\mu)$.
4. Give an easy condition under which $\operatorname{val}(P)=\sup _{\mu \geq 0} g(\mu)$.

$$
\begin{aligned}
(P) \quad \operatorname{Min}_{x \in \mathbb{R}^{n}} & x^{\top} W x \\
\text { s.t. } & x_{i}^{2}=1 \quad \forall i \in[n]
\end{aligned}
$$

1. Consider a set of n element that you want to partition in 2 subsets, with a cost $c_{i, j}$ if i and j are in the same set, and a cost $-c_{i, j}$ if they are in a different set. Justify that it can be solved by solving (P).
2. Is (P) a convex problem?
3. Show that, for any $\lambda \in \mathbb{R}^{n}$ such that $W+$ $\operatorname{diag}(\lambda) \succeq 0$, we have $\operatorname{val}(P) \geq-\sum \lambda_{i}$. Deduce a lower bound on $\operatorname{val}(P)$.

Exercise 7 (Linear SVM : duality). Consider the following problem (see : https:// www. youtube.com/watch? $v=10$ etFPgsMUc for background)

$$
\begin{array}{rll}
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|w\|^{2} & \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 & \forall i \in[n] \\
& \eta_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

1. In which case can we guarantee strong duality?
2. Write the dual of this optimization problem and express the optimal primal solution $\left(w^{\sharp}, b^{\sharp}\right)$ in terms of the optimal dual solution.
