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Convention in these slides

Just a quick point about some unusual convention I am using :

♥ means that the results in the slides are really important

♦ means that the content is more advanced

♣ is a very simple exercise (can be done in class)

♠ is a somewhat more difficult exercise that you can use as training

[BV x.y] means that the content is covered in the Convex
Optimization book at chapter x, section y.
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Why should I bother to learn this stuff ?

Markov Chain and Markov Decision Programm are very powerful
modeling tool for a lot of practicle applications.

Dynamic programming is a flexible tool, easy to implement, that can
efficiently address these problems.

=⇒ useful for any futur ”manager”
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Introduction ♥

A Markov Chain (Xt)t∈N is a memoryless stochastic process.

A classical example is the random walk : let (ξt)t∈N be a sequence of
i.i.d. centered random variables and define

X0 = 0, Xt+1 = Xt + ξt+1.

A Markov chain can represent a large number of systems affected by
random noises.

A controled Controlled Markov Chain is a Markov Chain such that the
evolution is affected by an action.
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Markov chain : definition ♦
Let (Ω,F ,P) be a probability space. Let (Xt)t∈N be a sequence of
discrete random variable taking value in X . Let Ft = σ(X0, . . . ,Xt) be
the σ-algebra generated by all Xτ for τ ≤ t.

We say that (Xt)t∈N is a Markov Chain if

P(Xt ∈ A | Fs) = P(Xt ∈ A | Xs), ∀s ≤ t, ∀A measurable

or equivalently

E[f (Xt) | Fs ] = E[f (Xt) | Xs ], ∀s ≤ t, ∀f bounded and measurable

If all Xt are discrete, this reads

P(Xt = xt | X0 = x0, . . . ,Xs = xs) = P(Xt = xt | Xs = xs), ∀s ≤ t,∀x0, . . . , xt
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Exercises

♣ Exercise: Show that if (Xt)t∈N is a sequence of independent random
variables then it is a Markov Chain.
♠ Exercise: Let (ξt)t∈N be i.i.d. Assume that, for all t ∈ N,

Xt+k =
k−1∑

κ=0

ακXt+κ + ξt .

Show that Xt can easily be deduced from a Markov chain.
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Discrete Markov chains ♥

Let (Xt)t∈N be a Markov chain s.t. supp(Xt) ⊂ X where X is finite1.

We call Pt : X 2 → [0, 1] the matrix such that,

Pt(x , y) = P(Xt+1 = y |Xt = x)

the t-transition kernel of the Markov Chain (Xt)t∈N.

A time-homogeneous Markov chain is such that Pt = P for all t.

1extension to countable case are straightforward.
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Chapman Kolmogorov equation ♦

Let µt : X → [0, 1] be a row vector such that representing the law of
Xt (i.e P(Xt = x) = µ(x)), then we have (Chapman-Kolmogorov)2

µt+k = µtP
k .

In particular, we have

P(Xt+k = y | Xt = x) = Pk(x , y).

Let h : X → R, be represented as a column vector, then

Pkh(x) :=
∑

y∈X
Pk(x , y)h(y) = E[h(Xt+k)|Xt = x ].

2For simplicity the last three items are given under time-homogeneity.
V. Leclère Dynamic Programming February 11, 2022 8 / 40



Time homogeneous Markov chain graph representation

A simple way to represent a discrete Markov chain is through a directed
graph:

each node represent a state,

we add an arc between node x and y iff P(x , y) > 0,

when positive, we add the value P(x , y) on the arc between x and y .

A time homogenous Markov chain is irreduccible if, starting from any
point you can eventually reach any other points. More precisely, if for all
x , y ∈ X there exists t ∈ N such that P(Xt = y |X0 = x) > 0. Or
equivalently if its graph is strongly connected.
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Absorbing state

An absorbing state of a Markov chain, is a state x such that there is
no positive transition from x to another state y 6= x , that is such that
P(x , x) = 1.

If, from any state x there is a path to an absorbing state, then a the
Markov chain will almost surely end in an absorbing state.
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Controlled Markov chains ♥
A controlled Markov chain is a Markov Chain whose transition kernel at
time t is decided by an action at ∈ A:

P(Xt+1 = y |Xt = x) = Pat
t (x , y).

We consider a set of actions (or control) A, assumed finite for
simplicity.

For all t ∈ N and a ∈ A, let Pa
t be a transition kernel.

We call a function π mapping the states X in to the action A a
policy, and a collection π = (πt)t∈N a strategy.

For any strategy π we define (Xπ
t )t∈N such that (Xt , at)t∈N is a

Markov chain with

P(Xπ
t+1 = y , at+1 = b|Xπ

t = x , at = a) = Pa
t (x , y)1πt(y)=b.
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Example and representation of Controlled Markov Chain

We consider a maintenance problem. A unit U can be either working or
broken. When it is in a working state there is a 20% chance of being
broken at the next time step. When it is broken it must be replaced and
will be working at the next step.

♣ Exercise: Model this as a Markov Chain.

♣ Exercise: We now assume that at each time step, if the unit is working,
we can decide to maintain it (keeping it in a working state) or not. And if
broken we can repair it, or not. Model this modified version as a controlled
Markov Chain.
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Stochastic Dynamic System

A (discrete time) stochastic dynamic system is a stochastic process
(X t)t∈N such that

Xt+1 = ft(Xt , at , ξt), ∀t

where ft is a deterministic function, at takes values in A, and ξt is an
exogeneous random variable (i.e. its law is not affected by Xt and at).

All controlled Markov chain can be written as a stochastic dynamic
system.

If (ξt)t∈N is an independent sequence of random variables, then
(Xt)t∈N is a controlled Markov chain.
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Markov Decision Problem ♥

Let (Xt)t∈N be a controlled Markov chain, with action in A. We
denote Π the set of associated policy.

Let, for all t, ct : X 2 → R ∪+∞ be a transition cost.3

A Markov Decision Problem is

Min
π∈Π

E
[∑

t∈N
ρtct(Xπ

t ,X
π
t+1)

]
,

where ρ ∈ [0, 1] is a discount factor.

3the transition cost can also be dependent of action a.
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Another point of view

We can also write the MDP problem in the following way

Min
(πt)t∈N

E
[
E
[ ∞∑

t=1

ρtct(Xt ,Xt+1) | at = πt(Xt)
]]

s.t. at = πt(Xt) ∀t

Equivalently, with a stochastic dynamic system point of view, we have

Min
(πt)t∈N

E
[ ∞∑

t=1

ρtct(Xt ,Xt+1)
]

s.t. at = πt(Xt) ∀t
Xt+1 = ft(Xt , at , ξt) ∀t
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Finite horizon problem

We now assume that for t > T , ct ≡ 0, ρ = 1 and cT (x , y) = K (x). Thus
the problem reads

Min
(πt)t∈N

E
[ T−1∑

t=1

ct(Xt ,Xt+1) + K (XT )
]

s.t. at = πt(Xt) ∀t
Xt+1 = ft(Xt , at , ξt) ∀t

Further, we often assume that the initial state X0 = x0 is known.

This will be known as the Finite Horizon Problem.
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the prop-
erty that whatever the initial
state and initial decision are, the
remaining decisions must con-
stitute an optimal policy with
regard to the state resulting
from the first decision (Richard
Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy, sup-
pose that the fastest route from
Los Angeles to Boston passes
through Chicago.
The principle of optimality
translates to obvious fact that
the Chicago to Boston portion
of the route is also the fastest
route for a trip that starts from
Chicago and ends in Boston.
(Dimitri P. Bertsekas)

V. Leclère Dynamic Programming February 11, 2022 18 / 40

Idea Behind Dynamic Programming
Suppose that we have two states A and B and 4 timesteps.
For all t, we pay a cost to move from a node to one-another. We start
from final position xT , and computes cost to move from A3 or B3 to final
position at time t = 3 We do the same at time t = 2, considering the cost
to go to A3 or B3.

x0

B1

25

B2

18

B3

7

A1

23

A2

12

A3

11

xT

t0 t1 t2 t3 T

9

13

14

13

6

11

11

8

5

13

7

11
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Idea behind dynamic programming

If we are in a Markovian setting, that is such that noises are time
independent, then

1 The cost-to-go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position, starting
from the terminal state and computing optimal trajectories backward.
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Bellman’s function : finite horizon ♥

In the finite horizon setting, the Bellman function reads

Vt(x) := Min
π∈Π

E
[ T−1∑

τ=t

cτ (Xπ
τ ,X

π
τ+1) + K (Xπ

T ) | Xt = x
]

and in particular VT = K .
Or, in the stochastic dynamic system point of view

Vt(x) = Min
(πτ )τ∈Jt,T−1K

E
[ T−1∑

τ=t

cτ (X τ ,Xt+1) + K (XT ) | Xt = x
]

s.t. aτ = πτ (X τ ) ∀τ
Xt+1 = fτ (X τ , aτ , ξτ ) ∀τ
X t = x
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Bellman’s recursion : finite horizon ♥

In the finite horizon setting we have





VT (x) = K (x)

Vt(x) = min
a∈A

E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

= min
a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + Vt+1(y)

)

An optimal policy is given by

πt(x) ∈ arg min
a∈A

∑

y∈X
Pa(x , y)

(
ct(x , y) + Vt+1(y)

)
.
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Dynamic Programming Algorithm - Discrete Case
Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ X do

Vt(x) = mina∈A E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

Vt(x) =∞
for a ∈ A do

Q(x , a) = E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

if Q(x , a) < Vt(x) then
Vt(x) = Q(x , a)
πt(x) = a

Vt(x) =∞
for a ∈ A do

Q(x , a) = 0
for y ∈ X do

Q(x , a) = Q(x , a) + Pa(x , y)[ct(x , y) + Vt+1(y)]

if Q(x , a) < Vt(x) then
Vt(x) = Q(x , a)
πt(x) = a

Algorithm 1: Classical stochastic dynamic programming algorithm
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3 curses of dimensionality ♥

Complexity = O(T × |X |2 × |A|)
Linear in the number of time steps, but we have 3 curses of dimensionality
:

1 State. Complexity is exponential in the dimension of X
e.g. 3 independent states each taking 10 values leads to a loop over
103 points.

2 Decision. Complexity is exponential in the dimension of Xt .
 due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of Ξt .
 due to expectation computation. Can be accelerated through
Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.
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Some remarks ♦

The loop on the next state y does not need to be on all state, but
only on all reachable next state from state x .

In some cases you do not need to compute the Vt(x) for all x ∈ X ,
indeed you might be able to show that some part of the state space X
are not reachable (or not reachable under an optimal policy) at time t.

To represent that, at some time t, some state x ∈ X are forbidden,
you can simply encode Vt(x) = +∞.

To represent that, at some time t, the transition x → y is forbidden,
you can simply encode ct(x , y) = +∞.
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Exercise

Let X = {0, 1, 2, 3}, A = {0, 1}.
Let (Xt)t∈J1,5K be a controlled Markov chain, such that, if a = 0, it
stays in its state, and if a = 1 it has a probability 0.5 of going 1 up (if
possible, otherwise stay in place), and 0.5 of going 1 down (if
possible, otherwise stay in place).

Solve by Dynamic Programming the following optimization problem.

Max E
[ 4∑

t=0

Xt
2 | X0 = 0

]
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Bellman’s value function ♦

The Bellman’s value function, a.k.a cost-to-go function, is defined as
(when the expectation make sense)

Vt(x) := Min
π∈Π

E
[ +∞∑

τ=t

ρτ−tcτ (Xπ
τ ,X

π
τ+1) | Xt = x

]

It is the value of the problem starting from time t in state x .

The expectation is well defined for example if we consider finite controlled Markov chain
and one of the following holds:

we are in the finite horizon framework,

ct = c and ρ < 1,

ct = c and there is a cemetery state (that is an aborbing state with null transition
cost) that is almost surely reached.
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Bellman’s recursion ♦

Vt(x) = Min
π∈Π

E
[ +∞∑

τ=t

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t = x

]

= Min
π∈Π

E
[
cτ (Xπ

t ,X
π
t+1) +

+∞∑

τ=t+1

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t = x

]

= Min
a∈A

∑

y∈X
Pa(x , y)

(
ct(x , y) + Min

π∈Π
E
[ +∞∑

τ=t+1

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t+1 = y

])

= Min
a∈A

∑

y∈X
Pa(x , y)(ct(x , y) + ρVt+1(y))

= Min
a∈A

E
[
ct(Xt ,Xt+1) + ρVt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

This equation should be understood as the cost-to-go from state x and time t is

equal to the minimum expected current cost plus futur cost.
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Stationary problem ♦

From now on we make the following assumption:

the set of possible values X is finite,

the transition cost is not time dependent, i.e., ct = c,

the transition kernel is not time dependent, i.e. Pa
t = Pa.

Then the MDP problem is said to be stationary.

A strategy s = (πt)t∈N is said to be stationary iff it is not time dependent,
i.e. πt = π.

A stationary MDP admits an optimal stationary policy.
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Stochastic Shortest Path problem ♦

We consider a stationary MDP, with a cemetery state.

Stopping assumption

We assume that, for every state x , there exists T such that, under any
(stationary) strategy π there is a positive probability of reaching the
cemetery state.

♣ Exercise: Show that the finite horizon problem satisfy this stopping
assumption.

♠ Exercise: Show that, if ρ < 1, even without an absorbing state, we can
construct an equivalent MDP satisfying the stopping assumption.
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Dynamic Programming equation ♥

Under this stopping assumption, the value function

V ](x) := Min
π∈Π

E
[ +∞∑

τ=0

ρτc(Xπ
τ ,X

π
τ+1)

]

Is the only function V satisfying the Dynamic Programming equation





V (x) = min
a∈A

E
[
c(x ,Xt+1) + ρV (Xt+1)

∣∣∣ Xt = x , at = a
]

= min
a∈A

∑
y∈X

Pa(x , y)
(
c(x , y) + ρV (y)

)
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Value iteration ♥

Define the following sequence of function through the so-called Value
Iteration procedure




V0 : x 7→ 0

Vt+1 : x 7→ min
a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + ρVt(y)

)

Then we have Vt → V ].

♠ Exercise: Recognize the Dynamic Programming algorithm of the finite
horizon case. Interpret this result in terms of finite horizon approximation.
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Optimal policy ♦

Naturally, a stationary policy π is optimal iff the minimum is attained in
the DP equation, i.e.

V ](x) =
∑

y∈X
Pπ(x)(x , y)

(
ct(x , y) + ρV ](y)

)
, ∀x ∈ X
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Law of large number and Central Limit Theorem ♥
Let

{
X i

}
i∈N be a sequence of independent and identically distributed, real

valued random variables. We denote the empirical mean MN = 1
N

∑N
i=1 Xi .

Theorem (LLN)

If X1 admits first order moment, then the empirical mean MN converge
almost surely toward the expectation E[X1].

Theorem (CLT)

If X1 admits second order moment, then we have

√
n
(
MN − E

[
X
])
→ N (0, σ)

where the convergence is in law and σ is the standard deviation of X1.

In particular, the CLT means that, for G ∼ N (0, σ) and any [a, b],

P
(√

n(MN − E
[
X
]
∈ [a, b]

)
→N P

(
G ∈ [a, b]

)
.
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Monte-Carlo method ♥

Let
{
Xi
}
i∈N be a sequence of rv iid with finite variance.

We have P
(
MN ∈

[
E
[
X
]
± Φ−1(1−p/2)std(X )√

N

])
≈ p

In order to estimate the expectation E
[
X
]
, we can

I sample N independent realizations of X ,
{
Xi

}
i∈J1,NK

I compute the empirical mean MN =
∑N

i=1 Xi

N , and standard-deviation sN
I choose an error level p (e.g. 5%) and compute Φ−1(1− p/2) (1.96)
I and we know that, asymptotically, the expectation E

[
X
]

is in[
MN ± Φ−1(p)sN√

N

]
with probability (on the sample) 1− p
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Good practice in optimization under uncertainty ♥

Optimization under uncertainty is hard.

You should first decide on a simulator for your problem, as precise as
possible.

Then, you should decide which problem you are going to solve. Most
of the time it will be an approximation of the true problem.

You can now solve, exactly or approximately this problem. Once you
have a solution you should simulate it on your simulator (expected
cost can be estimated by Monte Carlo).

It is good practice to come up with reasonable heuristic to test your
solution.
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What you have to know

What is a Markov Chain, a Markov Controlled Chain.

What is a Markov Decision Problem, a state, a policy

What is the Bellman’s value function a.k.a cost-to-go

Estimate the value of a policy through Monte Carlo
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What you really should know

the complexity of Dynamic Programming

how to model forbidden state in DP

How to guarantee that an MDP in infinite horizon admits an optimal
stationary policy
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What you have to be able to do

Recognize an MDP

Write a Dynamic Programming equation

Solve a simple, finite horizon, MDP problem through Dynamic
Programming
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What you should be able to do

Know if a problem can numerically be tackled through Dynamic
Programming

Reframe a non-Markovian problem as a Markovian problem through
extending the state

Implement a value iteration algorithm in infinite horizon setting
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Why should I bother to learn this stuff ?

Convex vocabulary and results are needed throughout the course,
especially to obtain optimality conditions and duality relations.

Convex analysis tools like Fenchel transform appears in modern
machine learning theory

=⇒ fundamental for M2 in continuous optimization

=⇒ usefull for M2 in operation research, machine learning (and some
part of probability or mechanics)
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Affine sets ♥
Let X be a normed vector space (usually X = Rn), and C ⊂ X

C is affine if it contains any lines going through two distinct points of
C , i.e.

∀x , y ∈ C , ∀θ ∈ R, θx + (1− θ)y ∈ C .

The affine hull of C is the set of affine combination of elements of C ,

aff(C ) :=
{ K∑

i=1

θixi

∣∣∣ ∀xi ∈ C , ∀θi ∈ R,
K∑

i=1

θi = 1, ∀i ∈ [K ], ∀K ∈ N
}

aff(C ) is the smallest affine space containing C .

The affine dimension of C is the dimension of aff(C ) (i.e.the
dimension of the vector space aff(C )− x0 for x0 ∈ C ).

The relative interior of C is defined as

ri(C ) :=
{
x ∈ C

∣∣∣ ∃r > 0, B(x , r) ∩ aff(C ) ⊂ C
}
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Convex sets ♥

C is convex if for any two points x and y in C
the segment [x , y ] ⊂ C , i.e.

∀x , y ∈ C , ∀θ ∈ [0, 1], θx + (1− θ)y ∈ C .

The convex hull of C as the set of convex
combination of elements of C , i.e.

conv(C ) :=
{ K∑

i=1

θixi | ∀xi ∈ C ,

∀θi ∈ [0, 1],
K∑

i=1

θi = 1, ∀i ∈ [K ], ∀K ∈ N
}

conv(C ) is the smallest convex set containing

C .
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Cones ♥

C is a cone if for all x ∈ C the ray R+x ⊂ C , i.e.

∀x ∈ C , ∀θ ∈ R+, θx ∈ C .

The (convex) conic hull of C is the set of all (convex) conic
combination of elements of C i.e.

cone(C ) :=
{ K∑

i=1

θixi | ∀xi ∈ C , ∀θi ∈ R+, ∀i ∈ [K ], ∀K ∈ N
}

cone(C ) is the smallest convex cone containing C .

A cone C is pointed if it does not contain any full line Rx for x 6= 0.

For C convex, cone(C ) =
⋃

t>0 tC
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Examples

Let X = Rn.

Any affine space is convex.

Any hyperplane X can be defined as H := {x ∈ X | a>x = b} for well
choosen a ∈ Rn and b ∈ R and is an affine space of dimension n − 1.

H divide X into two half-spaces {x ∈ Rn | a>x ≤ b and
{x ∈ Rn | a>x ≥ b} which are (closed) convex sets.

For any norm ‖ · ‖ the ball B‖· ‖(x0, r) := {x ∈ X | ‖x − x0‖ ≤ r} is
a (closed) convex set.
♣ Exercise: Prove it.

The set C = {(x , t) ∈ X × R | ‖x‖ ≤ t } is a cone.

The set C = {x ∈ X | Ax ≤ b} where A and b are given is a (closed)
convex set called polyhedron.
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Operations preserving convexity ♥

Assume that all set denoted by C (indexed or not) are convex.

C1 + C2 and C1 × C2 are convex sets.

For any arbitrary index set I the intersection
⋂

i∈I Ci is convex.

Let f be an affine function. Then f (C ) and f −1(C ) are convex.

In particular, C + x0, and tC are convex. The projection of C on any
affine space is convex.

The closure cl(C ) and relative interior ri(C ) are convex.

♣ Exercise: Prove these results.
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Perspective and linear-fractional function ♦
Let P : Rn × R→ Rn be the perspective function defined as
P(x , t) = x/t, with dom(P) = Rn × R∗+.

Theorem

If C ⊂ dom(P) is convex, then P(C ) is convex.
If C ⊂ Rn is convex, then P−1(C ) is convex.

♠ Exercise: Prove this result.

Let f : Rn → Rm be a linear-fractional function of the form
f (x) := (Ax + b)/(c>x + d), with dom(f ) = {x |c>x + d > 0}.

Theorem

If C ⊂ dom(f ) is convex, then f (C ) and f −1(C ) are convex.

♣ Exercise: prove this result.
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Cone ordering

Let K ⊂ Rn be a closed, convex, pointed cone with non empty interior.
We define the cone ordering according to K by

x �K y ⇐⇒ y − x ∈ K .

♣ Exercise: Prove that �K is a partial order (i.e.reflexive, antisymmetric,
transitive) compatible with scalar product, addition and limits.
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Separation ♦
Let X be a Banach space, and X ∗ its topological dual (i.e. the set of all
continuous linear form on X ).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X . There exists a
separating hyperplane (x∗, α) ∈ X ∗ × R such that

〈x∗, a〉 ≤ α ≤ 〈x∗, b〉 ∀a, b ∈ A× B.

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X . Assume that, A is
closed, and B is compact (e.g. a point), then there exists a strict separating
hyperplane (x∗, α) ∈ X ∗ × R such that, there exists ε > 0,

〈x∗, a〉+ ε ≤ α ≤ 〈x∗, b〉 − ε ∀a, b ∈ A× B.

Remark: these theorems require the Zorn Lemma which is equivalent to the
axiom of choice.
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Supporting hyperplane ♦

Theorem

Let x0 /∈ ri(C ) and C convex. Then
there a 6= 0 such that

a>x ≥ a>x0, ∀x ∈ C

If x0 ∈ C, say that
H = {x | a>x = a>x0} is a supporting
hyperplane of C at x0.

♣ Exercise: prove this theorem
Remark : there can be more than one
supporting hyperplane at a given point.
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Convex set as intersection of half-spaces ♦

The closed convex hull of C ⊂ X , denoted conv(C ) is the smallest
closed convex set containing C .

conv(C ) is the intersection of all the half-spaces containing C .

A polyhedron is a finite intersection of half-spaces, a convex set is a
possibily non-finite intersection of half-spaces.
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Dual and normal cones

Let C ⊂ Rn be a set. We define
its dual cone by

C ? := {x | x>c ≥ 0, ∀c ∈ C}

For any set C , C ? is a closed
convex cone.

The normal cone of C at x0 is

NC (x0) := {λ ∈ E | λ>(x − x0) ≤ 0,

∀x ∈ C }
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Examples

The positive orthant K = Rn
+ is a self dual cone, that is K ? = K .

In the space of symetric matrices Sn(R), with the scalar product
〈A,B〉 = tr(AB), the set of positive semidefinite matrices
K = S+

n (R) is self dual.

Let ‖ · ‖ be a norm. The cone K = {(x , t) | ‖x‖ ≤ t} has for dual
K ? = {(λ, z) | ‖λ‖? ≤ z}, where ‖λ‖? := supx :‖x‖≤1 λ

>x .

♠ Exercise: prove these results
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Some basic properties

Let K ⊂ Rn be a cone.

K ? is closed convex.

K1 ⊂ K2 implies K ?
2 ⊂ K ?

1

K ?? = convK

♣ Exercise: Prove these results
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Functions with non finite values ♥
It is very usefull in optimization to allow functions to take non finite
values, that is to take values in R̄ := R ∪ {−∞,+∞}.
If both −∞ and +∞ are allowed be very careful of each addition !

Let f : X → R̄. We define the domain of f as

dom(f ) := {x ∈ X | f (x) < +∞}.

The epigraph of f as

epi(f ) := {(x , t) ∈ X × R | f (x) ≤ t }

The sublevel set of level α

levα(f ) := {x ∈ X | f (x) ≤ α}.

f is lower semi continuous (l.s.c.) if epi(f ) is closed.

f is proper if it never takes value −∞, has a non-empty domain (at
least one finite value) and is l.s.c.
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Convex function ♥

A function f : X → R̄ is
convex if its epigraph is
convex.

f : X → R ∪ {+∞} is
convex iff

∀t ∈ [0, 1], ∀x , y ∈ X ,

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)

f is concave if −f is convex.
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Basic properties ♥

If f , g convex, t > 0, then tf + g is convex.

If f convex non-decreasing, g convex, then f ◦ g convex.

If f convex and a affine, then f ◦ a is convex.

If (fi )i∈I is a family of convex functions, then supi∈I fi is convex.

The domain and the sublevel sets of a convex function are convex.

♣ Exercise: Prove these results.

Theorem (Jensen inequality)

Let f be a convex function and X an integrable random variable. Then we
have

f (E
[
X
]
) ≤ E

[
f (X )

]
.
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Convex functions : strict and strong convexity ♥

f : X → R ∪ {+∞} is strictly convex iff

∀t ∈]0, 1[, ∀x , y ∈ X , f (tx + (1− t)y) < tf (x) + (1− t)f (y).

If f ∈ C 1(Rn)

I 〈∇f (x)−∇f (y), x − y〉 ≥ 0 iff f convex
I if strict inequality holds, then f strictly convex
I f : X → R ∪ {+∞} is α-convex iff ∀x , y ∈ X

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
α

2
‖y − x‖2.

If f ∈ C 2(Rn),

I ∇2f < 0 iff f convex
I if ∇2f � 0 then f strictly convex
I if ∇2f < αI then f is α-convex
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Examples

The indicator function of a set C ⊂ X ,

IC (x) :=

{
0 if x ∈ C

+∞ otherwise

is convex iff C is convex.

x 7→ eax is convex for any a ∈ R
x 7→ ‖x‖q is convex for q ≥ 1 and any norm

x 7→ ln(x) is concave

x 7→ x ln(x) is convex

x 7→ x 7→ ln(
∑n

i=1 e
xi ) is convex
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Convex optimization problem ♥

min
x∈C

f (x)

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

If C is compact and f proper lsc, then there exists an optimal solution.

If f proper lsc and coercive, then there exists an optimal solution.

The set of optimal solutions is convex.

If f is strictly convex the minimum (if it exists) is unique.

If f is α-convex the minimum exists and is unique.

♣ Exercise: Prove these results.
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Optimality conditions ♥

Note that minimizing f over C or minimizing f + IC over X is the same
thing.
We consider the (unconstrained) optimization problem

Min
x∈X

f (x),

with x ] an optimal solution and f not necessarily convex.

If f is differentiable, then ∇f (x ]) = 0.

If f is twice differentiable, then ∇2f (x ]) � 0.

If f is twice differentiable and ∇2f (x0) � 0 then x0 is a local
minimum.

If in addition f is convex then ∇f (x) = 0 is a sufficient optimality
condition.

V. Leclère Convexity February, 19th 2021 23 / 39

Partial infimum ♥

Let f be a convex function and C a convex set. The function

g : x 7→ inf
y∈C

f (x , y)

is convex.
♠ Exercise: Prove this result.

♣ Exercise: Prove that the function distance to a convex set C defined by

dC (x) := inf
c∈C
‖c − x‖

is convex.
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Perspective function ♦

Let φ : E → R̄. The perspective
of φ is defined as
φ̃ : R∗+ × E → R by

φ̃(η, y) := ηφ(y/η).

Theorem

φ is convex iff φ̃ is convex.

♠ Exercise: prove this result
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Inf-Convolution ♦

Let f and g be proper function from X to R ∪ {+∞}. We define

f�g : x 7→ inf
y∈X

f (y) + g(x − y)

♣ Exercise: Show that

f�g = g�f
If f and g are convex then so is f�g
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Subdifferential of convex function ♦

Let X be an Hilbert space, f : X → R̄ convex.

The subdifferential of f at x ∈ dom(f ) is the set of slopes of all affine
minorants of f exact at x :

∂f (x) :=
{
λ ∈ X | f (·) ≥ 〈λ, · − x〉+ f (x)

}
.

If f is derivable at x then

∂f (x) =
{
∇f (x)

}
.
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Examples ♦

If f : x 7→ |x |, then

∂f (x) =





−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

If C is convex then, for x ∈ C , ∂(IC )(x) = NC (x)
♣ Exercise: Prove it.

If f1 and f2 are convex and differentiable. Define f = max(f1, f2).
Then

I if f1(x) > f2(x), ∂f (x) = {∇f1(x)}
I if f1(x) < f2(x), ∂f (x) = {∇f2(x)};
I if f1(x) = f2(x), ∂f (x) = conv({∇f1(x),∇f2(x)}).
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Subdifferential calculus ♦
Let f1 and f2 be proper convex functions.

Theorem

We have
∂(f1)(x) + ∂(f2)(x) ⊂ ∂(f1 + f2)(x), ∀x

Further if ri(dom(f1)) ∩ ri(dom(f2)) 6= ∅ then

∂(f1)(x) + ∂(f2)(x) = ∂(f1 + f2)(x), ∀x

When fi is polyhedral you can replace ri(dom(fi )) by dom(fi ) in the
condition.

Theorem

If f is convex and a : x 7→ Ax + b with Im(a) ∩ ri(dom(f )) 6= ∅, then

∂(f ◦ a)(x) = A>∂f (Ax + b).
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First order condition of optimality ♦

Theorem

Let f : X 7→ R ∪ {+∞} be a convex function (not necessarily)
differentiable. x ] is a minimizer of f if and only if 0 ∈ ∂f (x ]).

Theorem

Let f be a proper convex function and C a closed non empty convex set
such that ri(C ) ∩ ri(dom(f )) 6= ∅ then x ] is an optimal solution to

min
x∈C

f (x)

iff
0 ∈ ∂f (x ]) + NC (x ]),

iff
∃λ ∈ ∂f (x ]), λ ∈ −NC (x ]).
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Partial infimum ♦

Let f : X × Y → R̄ be a jointly convex and proper function, and define

v(x) = inf
y∈Y

f (x , y)

then v is convex.
If v is proper, and v(x) = f (x , y ](x)) then

∂v(x) =
{
g ∈ X | (g , 0) ∈ ∂f (x , y ](x))

}

proof:

g ∈ ∂v(x) ⇔ ∀x ′, v(x ′) ≥ v(x) + 〈g , x ′ − x〉

⇔ ∀x ′, y ′ f (x ′, y ′) ≥ f (x , y ](x)) +

〈(
g
0

)
,

(
x ′

y ′

)
−

(
x

y ](x)

)〉

⇔
(
g
0

)
∈ ∂f (x , y ](x))
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Convex function : regularity ♦

Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.

A proper convex function is subdifferentiable on the relative interior of
its domain.

If f is convex, it is L-Lipschitz iff ∂f (x) ⊂ B(0, L), ∀x ∈ dom(f )
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Fenchel transform ♦

Let X be a Hilbert space, f : X → R̄ be a proper function.

The Fenchel transform of f , is f ∗ : X → R̄ with

f ∗(λ) := sup
x∈X
〈λ, x〉 − f (x).

f ∗ is convex lsc as the supremum of affine functions.

f ≤ g implies that f ∗ ≥ g∗.

If f is proper convex lsc, then f ∗∗ = f , otherwise f ∗∗ ≤ f .
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Fenchel transform and subdifferential ♦
By definition f ∗(λ) ≥ 〈λ, x〉 − f (x) for all x ,

thus we always have (Fenchel-Young) f (x) + f ∗(λ) ≥ 〈λ, x〉.
Recall that λ ∈ ∂f (x) iff for all x ′,

f (x ′) ≥ f (x) + 〈λ, x ′ − x〉
iff

〈λ, x〉 − f (x) ≥ 〈λ, x ′〉 − f (x ′) ∀x ′

that is

λ ∈ ∂f (x)⇔ x ∈ arg max
x ′∈X

{
〈λ, x ′〉 − f (x ′)

}
⇔ f (x) + f ∗(λ) = 〈λ, x〉

From Fenchel-Young equality we have

∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x).

If f proper convex lsc

λ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(λ).
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Exercise

Let ‖ · ‖ be a norm on Rn and ‖y‖? := supx :‖x‖≤1 y
>x its dual norm. Let

f : x 7→ ‖x‖. Compute f ? and ∂f (0).
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What you have to know

What is a affine set, a convex set, a polyhedron, a (convex) cone

What is a convex function, that it is above its tangeants.

Jensen inequality

What is a convex optimization problem. That any local minimum is a
global minimum.

The necessary optimality condition ∇f (x ]) ∈ [TX (x ])]+
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What you really should know

That you can separate convex sets with a linear function

What is the positive dual of a cone

Basic manipulations preserving convexity (sum, cartesian product,
intersection, linear projection)

What is the domain, the sublevel of a function f

What is a lower semi continuous function, a proper convex function

Conditions of (strict, strong) convexity for differentiable functions

The partial minimum of a convex function is convex

The definition of the subdifferential.

The definition of the Fenchel transform.

The link between Fenchel transform and subdifferential.
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What you have to be able to do

Show that a set is convex

Show that a function is (strictly, strongly) convex

Go from constrained problem to unconstrained problem using the
indicator function IX
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What you should be able to do

Compute dual cones

Use advanced results (projection, partial infimum, perspective) to
show that a function or a set is convex

Compute the Fenchel transform of simple function
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Why should I bother to learn this stuff ?

Optimality conditions enable to solve exactly some easy optimization
problems (e.g. in microeconomics, some mechanical problems...)

Optimality conditions are used to derive algorithms for complex
problem

=⇒ fundamental both for studying optimization as well as other
science
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Optimization problem: vocabulary ♥

Generically speaking, an optimization problem is

Min
x∈X

f (x) (P)

where

f : Rn → R is the objective function (a.k.a. cost function),

X is the feasible set,

x ∈ X is an admissible decision variables or a solution,

x ] ∈ X such that val(P) = f (x ]) = infx∈X f (x) is an optimal solution,

if X = Rn the problem is unconstrained,

if X and f are convex, then the problem is convex,

if X is a polyhedron and f linear then the problem is linear,

if X is a convex cone and f linear then the problem is conic.
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Optimization problem: explicit formulation ♥
The previous optimization problem is often defined explicitely is the
following standard form

Min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

with

X :=
{
x ∈ Rn | ∀i ∈ [nE ], gi (x) = 0, ∀j ∈ [nI ], hj(x) ≤ 0

}
.

(P) is a differentiable optimization problem if f and {gi}i∈[nE ] and
{hj}j∈[nI ] are differentiable.

(P) is a convex differentiable optimization problem if f , and hj (for
j ∈ [nI ]) are convex differentiable and gi (for i ∈ [nE ]) are affine.
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A few remarks and tricks ♦

We can always write an abstract optimization problem in standard
form (exercise !)

For a given optimization problem there is an infinite number of
standard form possible (exercise !)

We can always find an equivalent problem in dimension Rn+1 with
linear cost (exercise !)

A minimization problem with X = ∅ has value +∞
A minimization problem has value −∞ iff there exists a sequence
xn ∈ X such that f (xn)→ −∞
Maximizing f is just minimizing −f (beware of rechanging the sign of
the value).
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Differentiable case ♥

Theorem

Assume that f : Rn → R̄ is differentiable at x ].

1 If x ] is an unconstrained local minimum of f then ∇f (x ]) = 0.

2 If in addition f is convex, then ∇f (x ]) = 0 is a global minimum.

Proof:

1 Assume ∇f (x]) 6= 0. DL of order 1 at x] show that
f (x] − t∇f (x])) < f (x]) for t > 0 small enough.

2 f (y) ≥ f (x) + 〈∇f (x]), y − x〉.
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Convex case ♥

Theorem

Consider f : Rn → R̄. Then x ] is a global minimum iff

0 ∈ ∂f (x ])

Theorem

Consider a proper convex function f : Rn → R̄, and X a closed convex set,
such that ri(dom(f )) ∩ ri(X ) 6= ∅.
Then x ] is a minimizer of f on X iff there exists g ∈ ∂f (x ]) such that
−g ∈ NX (x ]).

proof : The technical assumption ensure that ∂(f + IX ) = ∂f + ∂(IX ) = ∂f +NX .

Thus 0 ∈ ∂(f + IX )(x]) iff there exists g ∈ ∂f (x]) such that −g ∈ NX (x]).
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Tangeant cones ♦

For f : Rn → R, we consider an optimisation problem of the form

Min
x∈X

f (x).

Definition

We say that d ∈ Rn is tangeant to X at x ∈ X if there exists a sequence
xk ∈ X converging to x and a sequence tk ↘ 0 such that

d = lim
k

xk − x

tk
.

Let TX (x) be the tangeant cone of X at x , that is, the set of all tangeant
to X at x .

♣ Exercise: TX (x) is a closed cone.
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Optimality conditions - differentiable objective function ♦
Consider a function f : Rn → R and the optimization problem

(P) Min
x∈X

f (x).

If x ] /∈ int(X ) we do not necessarily need to have ∇f (x ]) = 0, indeed we
just to have 〈d ,∇f (x ])〉 for all ”admissible” direction d .

Theorem

Assume that f is differentiable at x ].

1 If x ] is a local minimum of (P) we have

∇f (x ]) ∈
[
TX (x ])

]+
. (∗)

2 If f and X are convex, and (∗) holds, then x ] is an optimal solution
of (P)

♠ Exercise: Prove this result.

V. Leclère Optimality conditions March 12th, 2021 9 / 21

Convex case ♦

Let K ad
X (x) be the cone of admissible direction

K ad
X (x) :=

{
t(y − x) ∈ Rn | y ∈ X , t ≥ 0

}

Lemma

If X ⊂ Rn is convex, and x ∈ X, we have

TX (x) = K ad
X (x).

Recall that

TX (x) :=
{

lim
k

xk − x

tk
∈ Rn | tk ↘ 0, xk ∈ X , xk → x

}

♠ Exercise: Prove this lemma
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Differentiable constraints ♦
We consider the following set of admissible solution

X =
{
x ∈ Rn | gi (x) = 0, i ∈ [nE ] hj(x) ≤ 0, j ∈ [nj ]

}
,

where g and h are differentiable functions.

Recall that the tangeant cone is given by

TX (x) = { d ∈ Rn | ∃tk ↘ 0, ∃dk → d , g(x+tkdk) = 0, h(x+tkdk) ≤ 0}

We define the linearized tangeant cone

T `
X (x) := { d ∈ Rn |

〈
∇gi (x) , d

〉
= 0, ∀i ∈ [ni ]〈

∇hj(x) , d
〉
≤ 0, ∀j ∈ I0(x)}

where
I0(x) :=

{
j ∈ [nI ] | hj(x) = 0

}
.
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Constraint qualifications ♦

We always have
TX (x) ⊂ T `

X (x).

♣ Exercise: Prove it.
We say that the constraints are qualified at x if

TX (x) = T `
X (x).
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Sufficient qualification conditions ♥

We denote the index set of active constraints at x

I0(x) :=
{
i ∈ [nI ] | hi (x) = 0

}
.

The following conditions are sufficient qualification conditions at x :

g and hi for i ∈ I0(x) are locally affine;

g is affine, hj are convex, and there exists xS such that g(xS) = 0 and
hj(xS) < 0 (Slater);

there exists a point xMF such that
〈
∇gi (x) , xMF − x

〉
= 0, and

{∇gi (x)} is linearly independent, and
〈
∇hi (x) , xMF − x

〉
< 0 for

j ∈ I0(x) (Mangasarian-Fromovitz).
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Expliciting the optimality condition I ♦

Under constraint qualification the optimality condition reads

∇f (x) ∈
[
T `
X (x)

]+

where

T `
X (x) = { d ∈ Rn |

〈
∇gi (x) , d

〉
= 0, i ∈ [nI ]

〈
∇hj(x) , d

〉
≤ 0, j ∈ I0(x)︸ ︷︷ ︸

Ad∈C

}.

with A =

(
((∇gi (x))>)i∈[nI ]

((∇hj(x))>)j∈I0(x)

)
and C = {0}nE × (R−)nI .

♣ Exercise: Show that C+ = RnE × (R−)nI
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Expliciting the optimality condition II ♦
Recall that the dual cone of K is

K+ := {d ∈ Rn | 〈d , x〉 ≥ 0,∀x ∈ K}.
Let C be a closed convex set.

If K = A−1C :=
{
x ∈ Rn | Ax ∈ C

}
, then K+ =

{
A>λ | λ ∈ C+

}
.

♣ Exercise: prove it.
Hence,

∇f (x) ∈
[
T `
X (x)︸ ︷︷ ︸
A−1C

]+

reads
∃λ ∈ C+, ∇f (x) = A>λ

or

∃λ ∈ RnE , ∃µ ∈ RI0(x)
+ ∇f (x) +

nE∑

i=1

λi∇gi (x) +
∑

j∈I0(x)

µj∇hj(x) = 0.
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Karush Kuhn Tucker condition ♥

Theorem (KKT)

Assume that the objective function f and the constraint function gi and hj are
differentiable. Assume that the constraints are qualified at x.

Then if x is a local minimum of

min
x∈X0

{
f (x) | gi (x) = 0, i ∈ [nE ] hj(x) ≤ 0, j ∈ [nI ]

}

then there exists λ such that

∇f (x) +

nE∑

i=1

λi∇gi (x) +

nI∑

j=1

µj∇hj(x) = 0

g(x) = 0, h(x) ≤ 0

λ ∈ RnE , µ ∈ RnI
+

µjhj(x) = 0 ∀j ∈ [nI ]
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What you have to know

Basic vocabulary : objective, constraint, admissible solution,
differentiable optimization problem

First order necessary KKT conditions
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What you really should know

What is a tangeant cone

Sufficient qualification conditions (linear and Slater’s)

That KKT conditions are sufficient in the convex case
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What you have to be able to do

Write the KKT condition for a given explicit problem, and use them
to solve said problem
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What you should be able to do

Check that constraints are qualified

V. Leclère Optimality conditions March 12th, 2021 21 / 21



Duality
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Why should I bother to learn this stuff ?

Duality allow a second representation of the same convex problem,
giving sometimes some interesting insights (e.g. principle of virtual
forces in mechanics)

Duality is a good way of getting lower bounds

Duality is a powerful tool for decomposition methods

=⇒ fundamental both for studying optimization (continuous and
operations research)

=⇒ usefull in other fields like mechanics and machine learning
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Min-Max duality ♥
Consider the following problem

Min
x∈X

sup
y∈Y

Φ(x , y)

where, for the moment, X and Y are arbitrary sets, and Φ an arbitrary
function.
By definition the dual of this problem is

Max
y∈Y

inf
x∈X

Φ(x , y)

and we have weak duality, that is

sup
y∈Y

inf
x∈X

Φ(x , y) ≤ inf
x∈X

sup
y∈Y

Φ(x , y)

♣ Exercise: Prove this result.
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Dual representation of some characteristic functions
Recall that, if X ⊂ Rn

IX (x) =

{
0 if x ∈ X

+∞ otherwise

and if X is an assertion,

IX (x) =

{
0 if X

+∞ otherwise

Note that
Ig(x)=0 = sup

λ∈RnE

λ>g(x)

and
Ih(x)≤0 = sup

µ∈RnI
+

µ>h(x)

♣ Exercise: Prove these results.
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From constrained to min-sup formulation ♥

Min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

Is equivalent to
Min
x∈Rn

f (x) + Ig(x)=0 + Ih(x)≤0

or
Min
x∈Rn

f (x) + sup
λ∈RnE

λ>g(x) + sup
µ∈RnI

+

µ>h(x)

which is usually written

Min
x∈Rn

sup
λ,µ≥0

f (x) + λ>g(x) + µ>h(x)︸ ︷︷ ︸
:=L(x ;λ,µ)
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Lagrangian duality ♥
To a (primal) problem (no convexity or regularity assumptions here)

(P) Min
x∈Rn

f (x)

s.t. gi (x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

we associate the Lagrangian

L(x ;λ, µ) := f (x) + λ>g(x) + µ>h(x)

such that
(P) Min

x∈Rn
sup
λ,µ≥0

L(x ;λ, µ)

The dual problem is defined as

(D) Max
λ,µ≥0

inf
x∈Rn

L(x ;λ, µ)
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Weak duality

By the min-max duality we easily see that

val(D) ≤ val(P).

Further any admissible dual multipliers λ ∈ RnE µ ∈ RnI
+ yields a lower

bound:
g(λ, µ) := inf

x∈Rn
L(x ;λ, µ) ≤ val(D) ≤ val(P)

Obviously, any admissible solution x ∈ Rn (i.e. such that g(x) = 0 and
h(x) ≤ 0), yields an upper bound

val(P) ≤ f (x) = sup
λ,µ≥0

L(x ;λ, µ)
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Exercise : two-way partitionning

Let W ∈ Sn be a symmetric matrix, consider the following problem.

(P) Min
x∈Rn

x>Wx

s.t. x2
i = 1 ∀i ∈ [n]

1 Consider a set of n element that you want to partition in 2 subsets,
with a cost ci ,j if i and j are in the same set, and a cost −ci ,j if they
are in a different set. Justify that it can be solved by solving (P).

2 Is (P) a convex problem ?

3 Show that, for any λ ∈ Rn such that W + diag(λ) � 0, we have
val(P) ≥ −∑

λi . Deduce a lower bound on val(P).
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Min-Max duality

Recall the generic primal problem of the form

p? := Min
x∈X

sup
y∈Y

Φ(x , y)

with associated dual

d? := Max
y∈Y

inf
x∈X

Φ(x , y).

Recall that the duality gap p? − d? ≥ 0.
We say that we have strong duality if d? = p?.
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Saddle point

Definition

Let Φ : X ×Y → R̄ be any function. (x ], y ]) is a (local) saddle point of Φ
on X × Y if

x ] is a (local) minimum of x 7→ Φ(x , y ]).

y ] is a (local) maximum of y 7→ Φ(x ], y).

If there exists a Saddle Point (x ], y ]) of Φ, then there is strong duality, x ]

is an optimal primal solution and y ] an optimal dual solution, i.e.

p? = d? = Φ(x ], y ]).
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Sufficient conditions for saddle point ♦

Theorem

If

X and Y are convex, one of them is compact

Φ is continuous

Φ(·, y) is convex for all y ∈ Y
Φ(x , ·) is concave for all x ∈ X

then there exists a saddle point (i.e. we can exchange ”Min” and ”Max”).
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Slater’s conditions for convex optimization ♥
Consider the following convex optimization problem

(P) Min
x∈Rn

f (x)

s.t. Ax = b

hj(x) ≤ 0 ∀j ∈ [nI ]

We say that a point x s such that Ax s = b, x s ∈ ri(dom(f )), and
hj(x

s) < 0 for all j ∈ [nI ], is a Slater’s point.

Theorem

If (P) is convex (i.e. f and hj are convex), and there exists a Slater’s point
then there is strong (Lagrangian) duality.

Further if (P) admits an optimal solution x ] then L admits a saddle point
(x ], λ]), and λ] is an optimal solution to (D).
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Pertubed problem ♦

We consider the following pertubed problem

v(p, q) = Min
x∈Rn

f (x)

s.t. g(x) = p

h(x) ≤ q

In particular we have v(0, 0) = val(P).
By duality,

v(p, q) ≥ d(p, q) = sup
λ,µ≥0

inf
x
f (x) + λ>(g(x)− p) + µ>(h(x)− q).

In particular d is convex as a supremum of convex functions.
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Marginal interpretation of the dual multiplier ♥
Assume that (P) is convex, and satisfy the Slater’s qualification condition.
In particular v(0, 0) = d(0, 0).
Let (λ, µ) be optimal multiplier of (P).
We have, for any xp,q admissible for the perturbed problem, that is such
that g(xp,q) = p, h(xp,q) ≤ q,

val(P) = v(0, 0) = inf
x
f (x) + λ>g(x) + µ>h(x)

≤ f (xp,q) + λ>g(xp,q) + µ>h(xp,q)

≤ f (xp,q) + λ>p + µ>q

In particular we have,

v(p, q) = inf
xp,q

f (xp,q) ≥ v(0, 0)− λ>p − µ>q

which reads
−(λ, µ) ∈ ∂v(0, 0)
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Exercise

♣ Exercise: Consider the following problem, for b ∈ R,

Min
x∈R

x2

s.t. x ≤ b

1 Does there exist an optimal multiplier ?

2 Without solving the dual, give the optimal multiplier µb.
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KKT conditions ♥

Recall the first order KKT conditions for our problem (P)

∇f (x) + λ>A +

nI∑

j=1

µj∇hj(x) = 0

Ax = b, h(x) ≤ 0

λ ∈ RnE , µ ∈ RnI
+

λjgj(x) = 0 ∀j ∈ [nI ]

Further, recall that

the existence of a Slater’s point in a convex problem ensure
constraints qualifications,

first order conditions are sufficient for convex problem.
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KKT and duality ♦

If (P) is convex and there exists a Slater’s point. Then the following
assertions are equivalent:

1 x ] is an optimal solution of (P),

2 (x ], λ]) is a saddle point of L,

3 (x ], λ]) satisfies the KKT conditions.
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Recovering KKT conditions from Lagrangian duality ♦

(P) Min
x∈Rn

f (x)

s.t. A(x) = b

hj(x) ≤ 0 ∀j ∈ [nI ]

with associated Lagrangian

L(x ;λ, µ) := f (x) + λ>(A(x)− b) + µ>h(x)

The KKT conditions can be seen has:

1 ∇xL(x ;λ, µ) = 0 (Lagrangian minimized in x)

2 g(x), h(x) ≤ 0 (x primal admissible, also obtained as ∇λL = 0)

3 µ ≥ 0 ((λ, µ) dual admissible)

4 µj = 0 or hj(x) = 0, for all j ∈ [nI ]
(complementarity constraint ; 2nI possibilities).
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Complementarity condition and marginal value
interpretation ♦

Consider a convex problem satisfying Slater’s condition.
Recall that −µ] ∈ ∂v(0) where v(p) is the value of the perturbed problem.
From this interpretation we can recover the complementarity condition

µj = 0 or gj(x) = 0

Indeed, let x be an optimal solution.

If constraint j is not saturated at x (i.e gi (x) < 0), we can marginally
move the constraint without affecting the optimal solution, and thus
the optimal value. In particular it means that µj = 0.

If µj 6= 0, it means that marginally moving the constraint change the
optimal value and thus the optimal solution. In particular constraint j
must be saturated, i.e gi (x) = 0.
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What you have to know

Weak duality: sup inf Φ ≤ inf sup Φ

Definition of the Lagrangian L
Definition of primal and dual problem

Max
λ,µ

inf
x
L(x ;λ, µ)

︸ ︷︷ ︸
Dual

≤ inf
x

Max
λ,µ

L(x ;λ, µ)

︸ ︷︷ ︸
Primal

Marginal interpretation of the optimal multipliers
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What you really should know

A saddle point of L is a primal-dual optimal pair

Sufficient condition of strong duality under convexity (Slater’s)
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What you have to be able to do

Turn a constrained optimization problem into an unconstrained
Min sup problem through the Lagrangian

Write the dual of a given problem

Heuristically recover the KKT conditions from the Lagrangian of a
problem
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What you should be able to do

Get lower bounds through duality
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Why should I bother to learn this stuff ?

Being able to recognize the type of problem is the first step toward
finding the right tool to adress it.

Having an idea of the tools available to you will help choose one.

=⇒ usefull for any engineer (or intern) that might have to model and
then solve a practical optimization problem.
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Why bother with classes of optimization problems ?

Consider a function f : X → R, and the following optimization problem

Min
x∈Rn

f (x)

s.t. x ∈ X

Solving this problem can be more or less hard depending on the class in
which f and X ⊂ Rn1 belongs.
Determining in which class a problem belongs is quite important:

some problem can be solved for n of order 10 at most, other for n of
order 106 or more;

the methodological approach to tackle different problems vary wildly;

the numerical tools (e.g. solvers) also...

It is important that you are able to (roughly) classify correctly the problem
you face, in order to know what can be done or not.

1There is also an important theory of optimization where X is not contained in a
finite dimensional space, which will not be discussed here.

V. Leclère Optimization and algorithms March 26th, 2021 3 / 45

Classification with respect to the objective function f

f linear is the simplest case

f quadratic is a very important case, simple if f is convex

f smooth (e.g. C2) allow to use first and second order information on
f

(f polynomial is a special case, with specific algorithms)

f convex imply that any local minimum is a global minimum

Finding the optimal solution is a reasonable goal only in the convex case.
Otherwise the algorithm aims at finding one or multiple local optimum.

The algorithm we present are mainly for smooth functions. Convergence
theory will be done in the convex case.
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Classification with respect to the constraint set
X = Rn, is known as unconstrained optimization.
X =

{
x ∈ Rn | Ax = b

}
, can be cast, up to reparametrization, as

unconstrained optimization. It might be more efficient to directly deal
with the constraints.
X =

{
x ∈ Rn | x i ≤ xi ≤ x̄i , ∀i ∈ [n]

}
is the box constrained

optimization.
X =

{
x ∈ Rn | Ax ≤ b

}
is a polyhedron.

X convex, generally given as{
x ∈ Rn | Ax = b, hj(x) ≤ 0, ∀j ∈ [nI ]

}
with hj convex.

If X is a finite set we speak of combinatorial optimization.
X can also be non-convex but smooth (e.g. a manifold)

A few comments:

Unconstrained optimization is by far easier.
Box constraint, and sometimes spherical constraints, are easy.
Polyhedral constraint orient toward LP based methods.
Integrity constraints make the problem a lot harder and change the
nature of the optimization methods.
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Least-square problem (LS)

Min
x∈Rn

‖Ax − b‖2

equivalent (in which sense ?) to Minx∈Rn ‖Ax − b‖2
2

; convex, smooth, unconstrained problem

explicit solution knwon through algebraic manipulation

sometimes easier to solve by optimization method than algebraic
manipulation

can be (approximately) solved for n ≥ 1011 (sparse case)
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Exercise : functional approximation

We consider a physical function Φ that is approximated as the
superposition of multiple simple phenomenon (e.g. waves). Each simple
phenomenon p ∈ [P] is represented by a function Φp : Rd → R.

We have data points (xk , yk)k∈[n], and want to find the Φ that match at
best the data while being a linear combination of Φp.

Propose a least-square regression that answer this question.
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Linear optimization problem (LP)

Min
x∈Rn

c>x

s.t. Ax = b

A′x ≤ b′

convex problem with linear objective and polyhedral constraint set

a rare case where exact solution can be obtained

easily solved through dedicated code, open-source (e.g. GLPK) or
proprietary (e.g. CPLEX, Gurobi)

can be solved for n ≥ 108

very important case in practice and as a subroutine for other problems

two main algorithms:
I simplex algorithm (seen in 1A)
I interior point method (discussed later in this course)
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Exercise

♣ Exercise: Consider a chocolate manufacturing company that produces
only two types of chocolate – A and B. Both the chocolates require Milk
and Choco only. To manufacture each unit of A and B, the following
quantities are required:

Each unit of A requires 1 unit of Milk and 3 units of Choco

Each unit of B requires 1 unit of Milk and 2 units of Choco

The company kitchen has a total of 5 units of Milk and 12 units of Choco.
On each sale, the company makes a profit of

6 per unit A sold

5 per unit B sold.

Model this as an LP.
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Quadratic optimization problem (QP)

Min
x∈Rn

1

2
x>Qx + c>x

s.t. Ax = b

A′x ≤ b′

quadratic objective and polyhedral constraint set

exact solution can be obtained

easily solved if Q � 0, hard otherwise

can be solved for n ≥ 107 (convex case)
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Exercise : Lasso as QP

♣ Exercise: A classical extension of the least-square problem, which has
strong theoretical and practical intereset is the LASSO problem

Min
x∈Rp

‖Ax − y‖2 + λ‖x‖1

Show that this problem can be cast as a QP problem.
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Quadratically constrained quadratic problem (QCQP)

Min
x∈Rn

1

2
x>Qx + c>x

s.t.
1

2
x>Pix + q>i x ≤ bi ∀i ∈ [k]

Ax = b

A′x ≤ b′

Reasonably easy if convex (i.e if Q and Pi are semi-defini positive)

can be solved for n ≥ 107

less important than previous examples
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Exercise : binary optimization is equivalent to QCQP

♣ Exercise: Consider the following optimization problem.

Min
x∈Rn

c>x

s.t. Ax = b

xi ∈ {0, 1} ∀i ∈ I

Write this problem as a QCQP. Is it convex ?
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Second order cone problem (SOCP)

Min
x∈Rn

c>x

s.t. ‖Aix + bi‖2 ≤ c>i x + di ∀i ∈ [k]

Ax = b

A′x ≤ b′

convex problem

can be solved for n ≥ 107, through most ”linear” solver, relying on
interior points methods

equivalent to convex QCQP

extend the modeling power of LP

appears naturally in robust optimization
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Exercise : facility location problem

♣ Exercise: Consider a facility that plan to deliver product to clients by
drone (thus in direct line). Assume that you have N clients, each with
position (in R2) xn. The drone make each time a direct travel from the
facility location to the client. Assume that the drone have a maximum
range of R, and that you want to minimize the average travel distance
while being able to serve all of your clients.
Model this problem as an SOCP.
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Exercise : robust linear programming

♠ Exercise: Consider the following robust linear programm

Min
x∈Rn

c>x

s.t. (ai + Riδi )
>x ≤ bi ∀‖δi‖2 ≤ 1, ∀i ∈ [m]

Write this problem as an SOCP.
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Semi definite programming (SDP)

Min
X∈Sn(R)

tr
(
CX
)

s.t. A(X ) = b

X � 0

where X , and C are symmetric matrices, and A : Sn → Rm a linear
mapping.

convex problem

can be solved for n ≥ 103, through some ”linear” solver, relying on
interior points methods

contains SOCP

limited in size in part because the number of actual variables is n2
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Exercise : condition number

For a matrix A ∈ Sn
++, we defined the condition number

κ(A) := λmax(A)/λmin(A) ≥ 1. Condition number are important for
numerical stability issues and speed of convergence of algorithms.

♠ Exercise: Let F (θ) be a symmetric matrix parametrized by θ ∈ Rd

whose coefficients are linear in θ. Model the problem of finding the
parameter θ ∈ Θ, where Θ is a polyhedron, minimizing κ(θ) as an SDP.
What happen if the coefficient of F (θ) are affine in θ ? Suggest a solution
method ? (hard)
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Unconstrained convex-differentiable optimization

Min
x

f (x)

where f is convex, finite, and differentiable.

Iterative algorithm yields ε-solution

Solution are global due to convexity

Complexity theory is well understood : maximum theoretical speed,
and algorithms matching this speed

Convergence speed is easier under strong convexity assumptions

Can be solved for n ≥ 105

; this is where we will spend most of our time
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Unconstrained convex non-differentiable optimization

Min
x

f (x)

where f is convex and finite.

Iterative algorithm yields ε-solution

Solution are global due to convexity

Complexity theory is well understood : maximum theoretical speed,
and algorithms matching this speed

Can be solved for n ≥ 104
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Unconstrained differentiable optimization

Min
x

f (x)

where f is differentiable.

Iterative algorithm yields ε local optimum

Algorithms are mostly the same as in convex differentiable setting,
but the theory is more involved

Can find a local optimum for n ≥ 105

; most algorithms presented in this course can be used to get to
hopefully get to a locally optimum point.
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Constrained convex optimization

Min
x

f (x)

s.t. x ∈ X

where X is convex set.

Easiest if X is a box or ball

Specific approach relying on LP if X is a polyhedron

Various methods in the generic case:
I projection
I feasible direction
I constraint penalization
I dualization
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Exercise
Consider a finite set X = {xi}i∈[n], and P+ the set of probabilities on X .
For P,Q ∈ P, with supp(Q) = X , we define the Kullback-Leibler
divergence as

dKL(P|Q) =
n∑

i=1

pi ln(pi/qi )

where pi = P(X = xi ) and qi = Q(X = xi ).
♠ Exercise: Let X be 100 equidistant points spanning in [−1, 1]. Let Q be
uniform on X .
We are looking for the probability P on X such that

EP[X ] ∈ [−0.1, 0.1]

EP[X 2] ∈ [0.5, 0.6]

EP[3X 2 − 2X ] ∈ [−0.3,−0.2]

P(X < 0) ∈ [0.3, 0.4]

that minimize the Kullback-Leibler divergence from Q.
Model this problem as an optimization problem. In which class does it
belongs ?
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Combinatorial problem

min
x∈X

f (x)

where X is a finite set.

This roughly represent the problem of combinatorial optimization.

X being finite you can, in theory, test all possibilities and choose the
best. However this brute force approach is often unpractical due to
the size of X .

Even if an exact solution can be obtained, it is not often the case.

Finding lower bound is interesting to understand how far your current
solution is from the optimum.

Practical methods are often matheuristics or meta-heuristics adapted
to the specificity of the problem.

Problems are often very hard, and practical solvability depends on the
specific problem structure.
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Mixed Integer Linear Programming

min
x∈Rn

c>x

s.t. Ax = b

x ≥ 0

x i ∈ N ∀i ∈ I ⊂ [n]

A very important class of problem, with huge modeling power.
By order of difficulty we distinguish : continuous variables, binary
variables and integer variables.
Exact solution methods rely on the idea of branch and cut.
(https://www.youtube.com/watch?v=2zKCQ03JzOY (13’))
Very powerful (commercial) solver (like Gurobi, Cplex, Mosek...) are
developped and improved every year to tackle these problems. They
use a mix of insightful mathematical ideas and heuristic knowledge.
Efficiency of the solver depend on the type of problem, and the
formulation of the problem.
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Mixed Integer Conic Programming

min
x∈Rn

c>x

s.t. Ax = b

x ≥ 0

x ∈ C

x i ∈ N ∀i ∈ I ⊂ [n]

where C is a convex cone.

Harder than MILP

More recent development, thus the theory and heuristic experience is
less advanced than MILP

Numerical efficiency is quickly improving
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Exercise : stock optimization

♠ Exercise: Consider that you sell a given product over T days. The
demand for each day is dt . Having a quantity xt of items in stock have a
cost (per day) of cxt . You can order, each day, a quantity qt , and have to
satisfy the demand.

For each of the following variation : model the problem, explicit the class
to which it belongs, and give the optimal solution if easily found.

1 Without any further constraint / specifications.

2 There is an ”ordering cost”: each time you order, you have to pay a
fix cost κ.

3 Instead of an ”ordering cost” there is a maximum number of days at
which you can order a replenishment.
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”Ad Hoc” solution

A heuristic is an admissible, not necessarily optimal, solution to a given
optimisation problem. It gives upper-bound.

In a lot of applications, experience or good sense, can give reasonably
good heuristics.

Sometimes these heuristics can have a few parameters that can be
tuned by trial and error.

♣ Exercise: In the stock optimization example, with fixed ordering cost,
propose a simple heuristic.
♣ Exercise: Now assume that, in this same example, there is some
uncertainty on the demand, adapt your heuristic to offer a robustness
parameter.
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Random search

A good way of obtaining good solutions is to randomly test multiple
admissible solutions, and keep the best one.
Examples:

exhaustive search (combinatorial)

genetic algorithms

simulated annealing

swarm particles

Use case :

hard problems (combinatorial or continuous) where finding an
admissible solution is easy

when you just want an admissible solution, if possible better than
what you had
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Descent methods

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (1)

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k) (2)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.

; most of this is discussed in next classes.
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Descent direction

For a differentiable objective function f , d (k) will be a descent direction iff
∇f (x (k)) · d (k) ≤ 0, which can be seen from a first order development:

f (x (k) + t(k)d (k)) = f (x (k)) + t
〈
∇f (x (k)) , d (k)

〉
+ o(t).

The most classical descent direction is d (k) = −∇f (x (k)), which
correspond to the gradient algorithm.
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Step-size choice

The step-size t(k) can be:

fixed t(k) = t(0), for all iteration,

optimal t(k) ∈ arg mint≥0 f (x (k) + td (k)),

a ”good” step, following some rules (e.g Armijo’s rules).

Finding the optimal step size is a special case of unidimensional
optimization (or linear search).
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Model based methods

Another class of algorithm consists in constructing a simple model of the
objective function f that is optimized and then refined.
Generally speaking, model based algorithm goes as follow:

1 Solve minx∈X f k(x)

2 Update model f k into f k+1

This approach might work if

The model problem minx∈X f k(x) is simple

The model f k locally looks like the true function f around the
optimum

V. Leclère Optimization and algorithms March 26th, 2021 35 / 45

J(x)
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Kelley algorithm

Data: Convex objective function f , Compact set X , Initial point
x0 ∈ X

Result: Admissible solution x (k), lower-bound v (k)

Set f (0) ≡ −∞ ;
for k ∈ N do

Compute a subgradient g (k) ∈ ∂f (x (k)) ;

Define a cut C(k) : x 7→ f (x (k)) + 〈g (k), x − x (k)〉;
Update the lower approximation f (k+1) = max{f (k), C(k)} ;

Solve (P(k)) : min
x∈X

f (k+1)(x);

Set v (k) = val(P(k));

Select x (k+1) ∈ sol(P(k));

end

Algorithm 1: Kelley’s cutting plane algorithm
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Trust region method

Consider an unconstrained, non-linear, smooth problem

Min
x∈Rn

f (x)

The idea of trust region is based on the following two facts:

f locally ressemble it’s second order limited development

f (x + h) = f (x) +
〈
∇f (x) , h

〉
+

1

2
h>∇2f (x)h + o(‖h‖2)

we know how to compute the minimum of a quadratic function on a
ball.
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Trust region method

The trust region method goes as follows, given a current point xk and
trust radius ∆k

1 compute f k(xk + h) = f (xk) +
〈
∇f (xk) , h

〉
+ 1

2h
>∇2f (xk)h

2 solve miny∈B(xk ,∆k ) f
k(y), with optimal solution yk

3 compute f (yk)

4 compute the concordance rk as the ratio actual decrease / model
decrease

rk =
f (xk)− f (yk)

f k(xk)− f k(yk)

I If rk is small, the model is bad and you decrease ∆k and restart the
iteration

I If rk is large (close to 1) update the current point xk+1 = yk .

5 If rk is close to one and yk is on the boundary, increase ∆k .

; there are full books on trust region methods.
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What you have to know

Important elements defining an optimization problem :
continuous/discrete, smooth/non-differentiable, convex/non-convex,
linear/non-linear, constrained/unconstrained.

Main optimization classes: LP, MILP, differentiable unconstrained,
combinatorial.

The difference between heuristic and exact methods

Main classes of exact method : descent direction, approximation
method.
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What you really should know

Other important classes of optimization problem (LS, QP, SOCP,
SDP)

Some ideas of heuristic methods (simulated annealing, genetic
algorithms)

Kelley’s cutting plane algorithm

Principle of trust region method
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What you have to be able to do

Recognise a LP / MILP

Recognise a (convex) differentiable optimization problem, constrained
or not
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What you should be able to do

know how to use a ”lift” variable, e.g.

Min
x

max(f1(x), f2(x)) = Min
x ,z

zs.t. f1(x) ≤ z

f2(x) ≤ z
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Why should I bother to learn this stuff ?

Gradient algorithm is the easiest, most robust optimization algorithm.
It is not numerically efficient, but numerous more advanced algorithm
are built on it.

Conjugate gradient algorithm(s) are efficient methods for
(quasi)-quadratic function. They are in particular used for
approximately solving large linear systems.

=⇒ useful for comprehension of
I more advanced continuous optimization algorithms
I machine learning training methods
I numerical methods for solving discretized PDE
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A word on solution

In this lecture, we are going to address unconstrained, finite
dimensional, non-linear, smooth, optimization problem.

In continuous non-linear (and non-quadratic) optimization, we cannot
expect to obtain an exact solution. We are thus looking for
approximate solution.

By solution, we generally means local minimum.1

The speed of convergence of an algorithm is thus determining an
upper bound on the number of iterations required to get an
ε-solution, for ε > 0.

1Sometimes just stationary points. Equivalent to global minimum in the convex
setting.
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Black-box optimization ♥
We consider the following unconstrained optimization problem

Min
x∈Rn

f (x)

The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x .
Oracle gives local information on f . Oracles are generally a user
defined code.

I A zeroth order oracle only return the value f (x).
I A first order oracle return both f (x) and ∇f (x).
I A second order oracle return f (x), ∇f (x) and ∇2f (x).

By opposition, structured optimization leverage more knowledge on
the objective function f . Classical model are

I f (x) =
∑N

i=1 fi (x);
I f (x) = f0(x) + λg(x), where f0(x) is smooth and g is ”simple”,

typically g(x) = ‖x‖1;
I ...
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Descent methods
Consider the unconstrained optimization problem

v ] = min
x∈Rn

f (x).

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
‖∇f (x (k))‖ is small enough.

V. Leclère Descent direction algorithms March 26th, 2021 5 / 29

Descent direction algorithms ♥

For a differentiable objective function f , d (k) will be a descent direction iff
∇f (x (k)) · d (k) < 0, which can be seen from a first order development:

f (x (k) + t(k)d (k)) = f (x (k)) + t
〈
∇f (x (k)) , d (k)

〉
+ o(t).

The most classical descent direction are

1 d (k) = −∇f (x (k)) (gradient)

2 d (k) = −∇f (x (k)) + β(k)d (k−1) (conjugate gradient)

3 d (k) = −α(k)∇f (x (k)) + β(k)(x (k) − x (k−1)) (heavy ball ♦)

4 d (k) = −
[
∇2f (x (k))

]−1∇f (x (k)) (Newton)

5 d (k) = −W (k)∇f (x (k)) (Quasi-Newton)

where W (k) ≈
[
∇2f (x (k))

]−1
.
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Step-size choice ♥

The step-size t(k) can be:

fixed t(k) = t(0),
I too small and it will take forever
I too large and it won’t converge

optimal t(k) ∈ arg minτ≥0 f (x (k) + τd (k)),
I computing it require solving an unidimensional problem
I might not be worth the computation

a backtracking step choice, for given τ0 > 0, α ∈]0, 0.5[, β ∈]0, 1[,
1 τ = τ 0

2 if f (x (k) + τd (k)) > f (x (k)) + ατ∇f (x (k))>d (k) : t(k) = τ , STOP
3 τ ← βτ , go back to 2.

I start with an ”optimist” step τ0

I automatically adapt to ensure convergence
I more complex procedure exists
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Strong convexity definition(s) ♥

Recall that f : Rn → R is m-convex2 iff

f (tx+(1−t)y) ≤ tf (x)+(1−t)f (y)−m

2
t(1−t)‖y−x‖2, ∀x , y , ∀t ∈]0, 1[

If f is differentiable, it is m-convex iff

f (y) ≥ f (x) +
〈
∇f (x) , y − x

〉
+

m

2
‖y − x‖2, ∀y , x

If f is twice differentiable, it is m-convex iff

mI � ∇2f (x) ∀x

; this last characterization is the most usefull for our analysis.

2A strongly convex function is a m-convex function for some m > 0
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Bounding the Hessian

Consider a m-convex C2 function (on its domain), and x (0) ∈ dom f .
Denote S := levf (x0)(f ) =

{
x ∈ Rn | f (x) ≤ f (x0)

}
.

As f is a strongly convex function S is bounded.

As ∇2f is continuous, there exists M > 0 such that, ‖∇2f (x)‖ ≤ M, for
all x ∈ S .

Thus we have, for all x ∈ S ,

mI � ∇2f (x) � MI
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Strongly convex suboptimality certificate ♦
Let f be a m-convex C2 function. We have

f (y) ≥ f (x) +
〈
∇f (x) , y − x

〉
+

m

2
‖y − x‖2, ∀y , x

The under approximation is minimized, for a given x , for

y ] = x − 1

m
∇f (x), yielding

f (y) ≥ f (x)− 1

2m
‖∇f (x)‖2

v ] +
1

2m
‖∇f (x)‖2 ≥ f (x)

Thus we obtain the following sub-optimality certificate

‖ ∇f (x)‖ ≤
√

2mε =⇒ f (x) ≤ v ] + ε
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Condition numbers ♦

For any A ∈ S++
n positive definite matrix, we define its condition number

κ(A) = λmax/λmin ≥ 1 the ratio between its largest and smallest
eigenvalue.

Consider a bounded convex set C . Let Dout be the diameter of the
smallest ball Bout containing C , and Din be the diameter of the largest ball
Bin contained in C .

Then the condition number of C is

cond(C ) =
(Dout

Din

)2
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Condition number of sublevel set ♦
We have, for all x ∈ S ,

mI � ∇2f (x) � MI

thus
κ(∇2f (x)) ≤ M/m

Further,

v ] +
m

2
‖x − x ]‖2 ≤ f (x) ≤ v ] +

M

2
‖x − x ]‖2

For any v ] ≤ α ≤ f (x0), we have

B(x ],
√

2(α− v ])/M) ⊂ lev
α

f ⊂ B(x ],
√

2(α− v ])/m)

and thus
cond(Cα) ≤ M/m
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Gradient descent ♥
The gradient descent algorithm is a first-order descent direction
algorithm with d (k) = − ∇f (x (k)).

That is, with an initial point x0, we have

x (k+1) = x (k) − t(k)∇f (x (k)).

The three step-size choices (fixed, optimal and decreasing) leads to
variations of the algorithm.

This algorithm is slow, but robust in the sense that he often ends up
converging.

Most implementation of advanced algorithms have fail-safe procedure
that default to a gradient step when something goes wrong for
numerical reasons.

It is the basis of the stochastic-gradient algorithm, which is used (in
advanced form) to train ML models.
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Steepest descent algorithm ♦
Using the linear approximation
f (x (k) + h) = f (x (k) +∇f (x (k))>h + o(‖h‖), it is quite natural to
look for the steepest descent direction, that is

d (k) ∈ arg min
h

{
∇f (x (k))>h | ‖h‖ ≤ 1

}

Here ‖ · ‖ could be any norm on Rn.
I If ‖ · ‖ = ‖ · ‖2 , the steepest descent is a gradient step, i.e.

proportional to −∇f (x (k)).
I If ‖ · ‖ = ‖ · ‖P , ‖x‖ = ‖P1/2x‖2 for some P ∈ Sn

++, then the

steepest descent is −P−1∇f (x (k)). In other words, a steepest descent
step is a gradient step done on a problem after a change of variable
x̄ = P1/2x .

I If ‖ · ‖ = ‖ · ‖1 , then the steepest descent can be chosen along a
single coordinate, leading to the coordinate descent algorithm.

♠ Exercise: Prove these results.
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Convergence results - convex case ♦

Assume that f is such that 0 � ∇2f � MI .

Theorem

The gradient algorithm with fixed step size t(k) = t ≤ 1
M satisfies

f (x (k))− v ] ≤ 2M‖x (0) − x ]‖
k

= O(1/k)

; this is a sublinear rate of convergence.
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Convergence results - strongly convex case ♦

Assume that f is such that mI � ∇2f � MI , with m > 0. Define the
conditionning factor κ = M/m.

Theorem

If x (k) is obtained from the optimal step, we have

f (x (k))− v ] ≤ ck(f (x0)− v ]), c = 1− 1/κ

If x (k) is obtained by receeding step size we have

f (x (k))− v ] ≤ ck(f (x0)− v ]), c = 1−min
{

2mα, 2βα
}
/κ

; linear rate of convergence.
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Solving a linear system I

The gradient conjugate algorithm stem from looking for numerical solution
to the linear equation

Ax = b

Never, ever, compute A−1 to solve a linear system.

Classical algebraic method do a methodological factorisation of A to
obtain the (exact) value of x .

These methods are in O(n3) operations. They only yields a solution
at the end of the algorithm.

The solution would be exact if there was no rounding errors...
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Solving a linear system II

Alternatively, we can look to solve

Min
x∈Rn

f (x) :=
1

2
x>Ax − b>x

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.

We will assume that A ∈ Sn
++. If A is non symetric, but invertible, we

could consider A>Ax = A>b.
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Conjugate directions ♦
We say that u, v ∈ Rn are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.

〈
u , v

〉
A

:= u>Av = 0

Let (d̃i )i∈[k] be a linearly independent family of vector. We can construct
a family of conjugate directions (di )i∈[k] through the Gram-Schmidt

procedure (without normalisation), i.e., d̃1 = d1, and

dκ = d̃κ −
κ−1∑

i=1

βi ,κdi

where

βi ,κ =

〈
d̃κ , di

〉
A〈

di , di
〉
A

=
d̃>κ Adi
d>i Adi
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Conjugate direction method for quadratic function I ♦
Consider, for A ∈ Sn

++

f (x) :=
1

2
x>Ax − b>x

A conjugate direction algorithm is a descent direction algorithm such that,

x (k+1) = arg min
x∈x1+E (k)

f (x)

where
E (k) = vect(d (1), . . . , d (k))

♠ Exercise: Denote g (k) = ∇f (x (k)). Show that

1 g (k)>di = 0 for i < k
2 g (k+1) = g (k) + t(k)Ad (k)

3 g (k)>d (i) + t(k)d (k)>Ad (i) = 0 for i ≤ k
4 Either

I g (k)>d (k) = 0 and t(k) = 0

I or g (k)>d (k) < 0 and t(k) = − g (k)>d (k)

t(k)d (k)>Ad (k)
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Conjugate direction method for quadratic function II ♦
Data: Linearly independent direction d̃ (1), . . . , d̃ (n), initial point x (1)

Matrix A and vector b
for k ∈ [n] do

d (k) = d̃ (k) −∑k−1
i=1

〈
d̃ (k) ,d (i)

〉
A〈

d (i) ,d (i)
〉
A

d (i) ; // A-orthogonalisation

t(k) = ∇f (x (k))>d (k)〈
d (k) ,d (k)

〉
A

; // optimal step

x (k+1) = x (k) + t(k)d (k)

Algorithm 1: Conjugate direction algorithm

This algorithm is such that (for a quadratic function f )

x (k+1) = arg min
x∈x1+E (k)

f (x)

where
E (k) = vect(d (1), . . . , d (k))
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Conjugate gradient algorithm - quadratic function I ♦
If we choose d̃ (k) = −∇f (x (k)) we obtain the conjugate gradient
algorithm.

In particular we obtain that E (k) = vect(g (1), . . . , (g (k))), and thus

g (k)>g (i) = 0

Note that

g (i+1) − g (i) = t(i)Ad (i), thus

〈
d̃ (k) , d (i)

〉
A〈

d (i) , d (i)
〉
A

=
(d̃ (k))>(g (i+1) − g (i))

d (i)>(g (i+1) − g (i))

Thus, through orthogonality we have

d (k) = d̃ (k) −
k−1∑

i=1

−g (k)>(g (i+1) − g (i))

d (i)>(g (i+1) − g (i))
d (i)

= −g (k) +
g (k)>(g (k) − g (k−1))

d (k−1)>(g (k) − g (k−1))
d (k−1) = −g (k) +

‖g (k)‖2

‖g (k−1)‖2
d (k−1)
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Conjugate gradient algorithm - quadratic function II ♦

Data: Initial point x (1), matrix A and vector b
g (1) = Ax (1) − b ;

d (1) = −g (1) for k = 2..n do
If ‖g (k)‖2

2 is small : STOP;

d (k) = −g (k) +
‖g (k)‖2

2

‖g (k−1)‖2
2
d (k−1) ;

t(k) =
‖g (k)‖2

2

d (k)>Ad (k)
; // optimal step

x (k+1) = x (k) + t(k)d (k) ;

g (k+1) = g (k) + t(k)Ad (k)

Algorithm 2: Conjugate gradient algorithm - quadratic function
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Conjugate gradient properties ♦

We can show the following properties, for a quadratic function,

The algorithm find an optimal solution in at most n iterations

If κ = λmax/λmin, we have

‖x (k+1) − x ]‖A ≤ 2
(√κ− 1√

κ+ 1

)k
‖x (1) − x ]‖A

By comparison, gradient descent with optimal step yields

‖x (k+1) − x ]‖A ≤ 2
(κ− 1

κ+ 1

)k
‖x (1) − x ]‖A
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Non-linear conjugate gradient ♦

Data: Initial point x (1), first order oracle
for k ∈ [n] do

g (k) = ∇f (x (k)) ;

If ‖g (k)‖2
2 is small : STOP;

d (k) = −g (k) + β(k)d (k−1) ;

t(k) obtained by receeding linear search ;

x (k+1) = x (k) + t(k)d (k) ;

Algorithm 3: Conjugate gradient algorithm - non-linear function
Two natural choices for the choice of β, equivalent for quadratic functions

β(k) =
‖g (k)‖2

2

‖g (k−1)‖2
2

(Fletcher-Reeves)

β(k) =
g (k)>(g (k) − g (k−1))

‖g (k−1)‖2
2

(Polak-Ribière)
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What you have to know

What is a descent direction method.

That there is a step-size choice to make.

That there exists multiple descent direction.

Gradient method is the slowest method, and in most case you should
used more advanced method through adapted library.

Conditionning of the problem is important for convergence speed.
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What you really should know

A problem can be pre-conditionned through change of variable to get
faster results.

Solving linear system can be done exactly through algebraic method,
or approximately (or exactly) through minimization method.

Conjugate gradient method are efficient tools for (approximately)
solving a linear equation.

Conjugate gradient works by exactly minimizing the quadratic
function on an affine subspace.
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What you have to be able to do

Implement a gradient method with receeding step-size.
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What you should be able to do

Implement a conjugate gradient method.

Use the strongly convex and/or Lipschitz gradient assumptions to
derive bounds.
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Why should I bother to learn this stuff ?

Newton algorithm is, in theory, the best black box algorithm for
smooth strongly convex function. It is used in practice as well as a
stepping step for more advanced algorithm.

Quasi-Newton algorithms (in particular L-BFGS) are the actual by
default algorithm for most smooth black-box optimization library.
Used in large scale application (e.g. weather forecast) for decades.

=⇒ useful for
I understanding the optimization software you might use as an engineer
I understanding more advanced methods (e.g. interior points methods)
I getting an idea of why the convergence might behave strangely in

practice
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Newton algorithm ♥

Let f be C2 such that ∇2f (x) � 0 for all x (so in particular strictly
convex).
The Newton algorithm is a descent direction algorithm with :

d (k) = −[∇2f (x (k))]−1∇f (x (k))

t(k) = 1

Note that

∇f (x (k))>d (k) = −∇f (x (k))>[∇2f (x (k))]−1∇f (x (k)) < 0

(unless ∇f (x (k)) = 0)
; d (k) is a descent direction.

We are now going to give multiple justifications to this direction choice.
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Second-order approximation minimization ♥

We have

f (x (k) + d) = f (x (k)) +∇f (x (k))>d +
1

2
d>∇2f (x (k))d + o(‖d‖2)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

∇f (x (k)) +∇2f (x (k))d (k) = 0

; The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second orde approximation.

; A trust region method with confidence radius +∞ is simply the
Newton method.
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Steepest descent with adaptative norm ♦

The Newton direction d (k) is the steepest descent direction for the
quadratic norm associated to ∇2f (x (k)):

d (k) = arg min
d

{
∇f (x (k))>d | ‖d‖∇f (x(k)) ≤ 1

}

Recall that the steepest gradient descent for a quadratic norm ‖ · ‖P
converges rapidly if the condition number of the Hessian, after change
of coordinate, is small.

In particular a good choice near x ] is P = ∇f (x ]).

; fast around x ]
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Solution of linearized optimality condition ♦

The optimality condition is given by

∇f (x ]) = 0

We can linearize it as

∇f (x (k) + d) ≈ ∇f (x (k)) +∇2f (x (k))d = 0

And the Newton step d (k) is the solution of this linearization.
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Affine invariance ♦

Recall that gradient and conjugate gradient method can be
accelarated through smart affine change of variables
(pre-conditionning).

It is not the same for the Newton method:
I Let A be an invertible matrix, and denote y = Ax + b, and

f̃ : x 7→ f (Ax + b).
I ∇f̃ (y) = A∇f (x) and ∇2 f̃ (y) = A>∇2f (x)A
I The Newton step for f̃ is thus

dy = −(A>∇2f (x)A)−1A∇f (x) = −A−1(∇2f (x))−1∇f (x) = A−1dx

I Consequently
x (k+1) − x (k) = A(y (k+1) − y (k))
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Damped Newton algorithm ♥

Data: Initial point x (0), Second order oracle, error ε > 0.
while ‖∇f (x (k))‖ ≥ ε do

Solve for d (k)

∇2f (x (k))d (k) = −∇f (x (k))

Compute t(k) by backtracking line-search, starting from t = 1;
x (k+1) = x (k) + t(k)d (k)

Algorithm 1: Damped Newton algorithm

The Newton algorithm with fixed step size t = 1 is too numerically
unstable, and you should always use a backtracking line-search.

If the function is not strictly convex the Newton direction is not
necessarily a descent direction, and you should check for it (and
default to a gradient step).
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Convergence idea ♦

Assume that f is strongly convex, such that mI � ∇2f (x) � MI , and that
the Hessian ∇2f is L-Lipschitz.
We can show that there exists 0 < η ≤ m2/L and γ > 0 such that

If ‖∇f (x (k))‖2 ≥ η, then

f (x (k+1))− f (x (k)) ≤ −γ

If ‖∇f (x (k))‖2 < η, then t(k) = 1 and

L

2m2
‖∇f (x (k+1))‖2 ≤

( L

2m2
‖∇f (x (k))‖2

)2
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Newton is fast around the solution ♦
We have, if ‖∇f (x (k))‖2 < η, then t(k) = 1 and

L

2m2
‖∇f (x (k+1))‖2 ≤

( L

2m2
‖∇f (x (k))‖2

)2

Let k = k0 + `, ` ≥ 1, with k0 such that ‖∇f (x (k0))‖2 < η. Then
‖∇f (x (k))‖2 < η, and,

L

2m2
‖∇f (x (k))‖2 ≤

( L

2m2
‖∇f (x (k−1))‖2

)2

Recursively,

L

2m2
‖∇f (x (k))‖2 ≤

( L

2m2
‖∇f (x (k0))‖2

)2`

≤ 1

22`

And thus

f (x (k))− v ] ≤ 1

2m
‖∇f (x (k))‖2

2 ≤
2m3

L2

1

22`−1

; in the quadratic convergence phase, Newton’s algorithm get the result
in a few iterations (5 or 6).
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

The damped phase, where t(k) can be less than 1. Each iteration
yield an absolute improvement of −γ < 0.

The quadratic phase, where each step t(k) = 1.

Thus the total number of iteration to get an ε solution is bounded above
by

f (x (0))− v ]

γ
+ log2(log2(ε0/ε))︸ ︷︷ ︸

.6

where ε0 = 2m3/L2.

Note that, in 6 iterations in the quadratic convergent phase we get an
error ε ≈ 5.10−20ε0.

V. Leclère Newton and Quasi-Newton algorithms April 16th, 2021 11 / 23

The main idea ♥

Newton’s step is the very efficient (near optimality) but have three
drawbacks:

having a second order oracle to compute the Hessian

storing the Hessian (n2 values)

solving a (dense) linear system : ∇2f (x (k))d = −∇f (x (k))

The main idea of Quasi Newton method is to construct, from first order
informations, a sequence of matrix M(k), if possible sparse, that
approximate the (inverse of) the Hessian.
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Conditions on the approximate Hessian I ♦
We want to construct M(k) an approximation of ∇2f (x (k)), leading to a
quadratic model of f at iteration k

f (k)(x) := f (x (k)) +
〈
∇f (x (k)) , x − x (k)

〉
+

1

2
(x − x (k))>M(k)(x − x (k))

We ask that the gradient of the model f (k) and the through function
matches in current and last iterates:

{
∇f (k)(x (k)) = ∇f (x (k))

∇f (k)(x (k−1)) = ∇f (x (k−1))

This simply write as the Quasi-Newton equation

M(k) (x (k) − x (k−1))︸ ︷︷ ︸
δ

(k−1)
x

= ∇f (x (k))−∇f (x (k−1))︸ ︷︷ ︸
δ

(k−1)
g

♣ Exercise: prove it
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Conditions on the approximate Hessian II ♦

We are looking for a matrix M such that

M � 0

Mδx = δg (only possible if δ>g δx > 0 ♣ Exercise: prove it)

M> = M

M is constructed from first order informations only

If possible, M is sparse

; an infinite number of solutions as we have n(n + 1)/2 variables and n
constraints.

; a large number of quasi-Newton algorithms developped and tested
between 1960-1980.
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Choosing the approximate Hessian M (k) ♦

At the end of iteration k we have determined

x (k+1) and δ
(k)
x = x (k+1) − x (k)

g (k+1) = ∇f (x (k)) and δ
(k)
g = g (k+1) − g (k)

and we are looking for M(k+1) ≈ ∇2f (x (k+1) satisfying the previous
requirement.

The idea is to choose M(k+1) close to M(k), that is to solve (analytically)

Min
M∈Sn

++

d(M,M(k))

s.t. Mδ
(k)
x = δ

(k)
g

for some distance d .
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BFGS ♦

Broyden-Fletcher-Goldfarb-Shanno chose

d(A,B) := tr(AB)− ln det(AB)

A few remarks

Ψ : M 7→ trM − ln det(M) is convex on Sn
++

For M ∈ Sn
++, trM − ln det(M) =

∑n
i=1 λi − ln(λi )

Ψ is minimized in the identity matrix

d(A,B)− n is the Kullback-Lieber divergence between N (0,A) and
N (0,B)
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BFGS update ♦

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have (to alleviate notation we drop the index k on δ
(k)
x and δ

(k)
g )

M(k+1) = M(k) +
δgδ
>
g

δ>g δx
− M(k)δxδ

>
x M

(k)

δ>x M(k)δx

Even better, denoting W = M−1,

W (k+1) =
(
I −

δxδ
>
g

δ>g δx

)
W (k)

(
I − δgδ

>
x

δ>g δx

)
+
δxδ
>
x

δ>g δx
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BFGS algorithm ♦

Data: Initial point x (0), First order oracle, error ε > 0.
W (0) = I ; while ‖∇f (x (k))‖ ≥ ε do

g (k) := ∇f (x (k));
d (k) := −W (k)g (k);
Compute t(k) by backtracking line-search, starting from t = 1;
x (k+1) = x (k) + t(k)d (k);
δg = g (k+1) − g (k), δx = x (k+1) − x (k);

W (k+1) =
(
I − δxδ

>
g

δ>g δx

)
W (k)

(
I − δgδ

>
x

δ>g δx

)
+

δxδ
>
x

δ>g δx
;

k = k + 1;

Algorithm 2: BFGS algorithm

First order oracle only

No need to solve a linear system

Still large memory requirement
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Limited-memory BFGS (L-BFGS) ♦

For n ≥ 103 storing the matrices is a difficulty.

Instead of storing and updating the matrix W (k) we store (δx , δg )
pairs.

We can then compute d (k) = −W (k)g (k) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W (k).

; an algorithm with rougly the same storage requirement as gradient
algorithm, and convergence almost equivalent to Newton method.

; this is the ”go to” algorithm when you want high level precision for
strongly convex smooth problem. It is the default choice in a lot of
optimization libraries.
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What you have to know

At least one idea behind Newton’s algorithm.

The Newton step.

That quasi-Newton methods are almost as good as Newton, without
requiring a second order oracle.
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What you really should know

Newton’s algorithm default step is 1, but you should use backtracking
step anyway.

Newton’s algorithm converges in two phases : a slow damped phase,
and a very fast quadratically convergent phase close to the optimum
(at most 6 iterations).

BFGS is the by default quasi-Newton method. It work by updating an
approximation of the inverse of the Hessian close to the precedent
approximation and satisfying some natural requirement.

L-BFGS limit the memory requirement by never storing the matrix
but only the step and gradient updates.
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What you have to be able to do

Implement a damped Newton method.
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What you should be able to do

Implement a BFGS method (with the update formula in front of your
eyes)
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Why should I bother to learn this stuff ?

Most real problems have constraints that you have to deal with.

This course give a snapshot of the tools available to you.

=⇒ useful for
I having an idea of what can be done when you have constraints
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Constrained optimization problem

In the previous courses we have developped algorithms for
unconstrained optimization problem.

We now want to sketch some methods to deal with the constrained
problem

Min
x∈Rn

f (x)

s.t. x ∈ X

We are going to discuss multiple type of constraint set X :
I X is a ball :

{
x | ‖x − x0‖2 ≤ r

}

I X is a box :
{
x | xi ≤ xi ≤ x̄i ∀i ∈ [n]

}

I X is a polyhedron:
{
x | Ax ≤ b

}

I X is given through explicit constraints
{
x | g(x) = 0, h(x) ≤ 0

}
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Admissible descent direction

Recall that a descent direction d at point x (k) ∈ Rn is a vector such
that ∇f (x (k))>d < 0.

An admissible descent direction at point x (k) ∈ X is a descent
direction d such that, there exists ε > 0, such that, forall t ≤ ε,
x (k) + td ∈ X .

In other words, an admissible descent direction, is a direction that
locally decrease the objective while staying in the constraint set.

An admissible descent direction algorithm is naturally defined by:
I A choice of admissible descent direction d (k)

I A choice of (sufficiently small) step t(k)

I x (k+1) = x (k) + t(k)d (k) ∈ X

Warning : this does-not necessarilly converges. We can construct
example where the step size get increasingly small because of the
constraints.
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A counter example ♦

Consider

min
x∈R3

f (x) :=
4

3
(x2

1 − x1x2 + x2
2 )3/4 − x3

s.t. x ≥ 0

We set x (0) = (0, 2−3/2, 0), and d (k) such that d
(k)
i = −g (k)

i 1
x

(k)
i >0

, with

g
(k)
i = ∇f (x (k)), and choose t(k) as the optimal step.

This is an admissible direction descent with optimal step.

f is strictly convex.

x (k) converges toward a non-optimal point.
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Conditional gradient algorithm
We address an optimization problem

with convex objective function f and
compact polyhedral constraint set X ,
i.e.

min
x∈X⊂Rn

f (x)

where

X =
{
x ∈ Rn | Ax ≤ b, Ãx = b̃

}

It is a descent algorithm, where we
first look for an admissible descent
direction d (k), and then look for the
optimal step.
As f is convex, we know that for any
point x (k),

f (y) ≥ f (x (k)) +∇f (x (k)) · (y − x (k))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X .
The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X . More
precisely, at step k we solve

y (k) ∈ arg min
y∈X

f (x (k))+∇f (x (k))·(y−x (k)).
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Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense that for
all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme point of X ,
which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg minx∈X ∇f (x (k)) · y , the lower-bound being
obtained easily.
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Projection on a convex set ♥

Let X ⊂ Rn be a non-empty closed convex set. We call PX : Rn → Rn the
projection on X the fonction such that

PX (x) = arg min
x ′∈X

‖x ′ − x‖2
2

We have

x̄ = PX (x) iff (x − x̄) ∈ NX (x̄) (i.e.
〈
x − x̄ , x ′ − x̄

〉
≤ 0, ∀x ′ ∈ X )〈

PX (y)− PX (x) , y − x
〉
≥ 0 (PX is non-decreasing)

‖PX (y)− PX (x)‖2 ≤ ‖y − x‖ (PX is a contraction)

♠ Exercise: Prove these results
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Projected gradient I ♥

Consider

Min
x∈Rn

f (x)

s.t. x ∈ X

where f is differentiable and X convex.
The projected gradient algorithm generate the following sequence

x (k+1) = PX

[
x (k) − t(k)g (k)

]
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Projected gradient II ♦

Theorem

Assume that X 6= ∅ is a closed convex set. x ] ∈ X is a critical point if and
only if for one (or all) t > 0,

x ] = PX

[
x ] − t∇f (x ])

]
.

Theorem

If f is lower bounded on X , and with L-Lipschitz gradient, and X closed
convex (non empty) set. Then the projected gradient algorithm with step
staying in [a, b] ⊂]0, 2/L[, then ‖xk+1 − xk‖ → 0, and any adherence point
of {xk}k∈N is a critical point.

Corollary : if f convex differentiable with L-Lipschitz gradient, X compact
convex non empty, the projected gradient algorithm with step 1/L is
converging toward the optimal solution.
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When to use ? ♥

Projected gradient is usefull only if the projection is simple, as
projecting over a convex set consists in solving a constrained
optimization problem.

Projection is simple for balls and boxes.

Finding an admissible direction is doable if the constraint set is
polyhedral, or more generally conic-representable.
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Idea of penalization ♥

We consider the constrained optimization problem

(P) Min
x∈Rn

f (x)

s.t. x ∈ X

and the following penalized version

(Pt) Min
x∈Rn

f (x) + tp(x)

where t > 0, and p : Rn → R ∪ {+∞} is a penalization function.

Thus, a (constrained) problem is replaced by a sequence of
(unconstrained) problems.
♣ Exercise: What is happening if p = IX ?
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Some monotonicity results ♦

(Pt) Min
x∈Rn

f (x) + tp(x)

The idea is that, with higher t, the penalization has more impact on the
problem.
More precisely, let 0 < t1 < t2, and xti be an optimal solution of (Pti ).
We have:

p(xt1) ≥ p(xt2)

f (xt1) ≤ f (xt2)

♣ Exercise: prove these results.
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Outer penalization

A first idea for choosing a penalization function p consists in choosing a
function p such that:

p(x) = 0 for x ∈ X

p(x) > 0 for x 6∈ X

intuitively the idea is that p is the fine to pay for not respecting the
constraint. Heuristically, it should be increasing with the distance to X .
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Outer penalization - theoretical results ♦

Assume that

p is l.s.c on Rn

p ≥ 0

p(x) = 0 iff x ∈ X

Further assume that f is l.s.c and there exists t0 > 0 such that
x 7→ f (x) + t0p(x) is coercive (i.e. →∞ if ‖x‖ → ∞).
Then,

1 for t > t0, (Pt) admit at least one optimal solution

2 (xt)t→+∞ is bounded

3 any adherence point of (xt)t→+∞ is an optimal solution of P.

V. Leclère Constrained optimization April 16th, 2021 15 / 27

Outer penalization - quadratic case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}

then the quadratic penalization consists in choosing

p : x 7→ ‖g(x)‖2 + ‖(h(x))+‖2

This choice is interesting as (for affinely lower-bounded f ):

x 7→ f (x) + 1
t p(x) is differentiable if f is differentiable

xt → x ] if t → 0

However, generally speaking, if the constraints are impactful (e.g. have
non-zero optimal multipliers), then

xt 6∈ X

V. Leclère Constrained optimization April 16th, 2021 16 / 27



Outer penalization - L1 case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}

another natural penalization consists in choosing

p : x 7→ ‖g(x)‖1 + ‖(h(x))+‖1

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for t small enough, an optimal
solution to the penalized problem (Pt) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.

Unfortunately this come to the price of non-differentiability.
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Inner penalization

Another approach consists in choosing a penalization function that takes
value +∞ outside of X .

The idea here is to add a potential that repulse the optimal solution from
the boundary.

This is typically done in a way to keep f + tp smooth, and if possible
convex.

More on that in the next course.
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Duality, here we go again ♥

Recall that to a primal problem

(P) Min
x∈Rn

f (x) (1)

s.t. g(x) = 0 (2)

h(x) ≤ 0 (3)

we associate the dual problem

(D) Max
λ,µ≥0

Min
x

f (x) + λ>g(x) + µ>h(x)
︸ ︷︷ ︸

Φ(λ,µ)

♣ Exercise: Under which sufficient conditions are these problem equivalent
?
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Duality seen as exact penalization ♥

If (P) is convex differentiable and the constraints are qualified, then for
any optimal multiplier λ, µ the unconstrained problem

Min
x

f (x) + λ>g(x) + µ>h(x)

have the same optimal solution as the original problem (P).
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Projected gradient in the dual
Consider the dual problem

(D) Max
λ,µ≥0

Φ(λ, µ)

Recall that, under technical conditions,

∇Φ(λ, µ) =

(
g(x ](λ, µ))
h(x ](λ, µ))

)

where x ](λ, µ) is an optimal solution of the inner minimization problem for
given λ, µ.
We suggest to solve this problem through projected gradient with fixed
step ρ:

λ(k+1) = λ(k) + ρg(x ](λ(k), µ(k)))

µ(k+1) = [µ(k) + ρh(x ](λ(k), µ(k)))]+
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Uzawa algorithm

Data: Initial primal point x (0), Initial dual points λ(0), µ(0), unconstrained
optimization method, dual step ρ > 0.

while ‖g(x (k))‖2 + ‖(h(x (k)))+‖2 ≥ ε do
Solve for x (k+1)

Min
x

f (x) + λ(k)>g(x) + µ(k)>h(x)

Update the multipliers

λ(k+1) = λ(k) + ρg(x (k+1))

µ(k+1) = [µ(k) + ρh(x (k+1))]+

Algorithm 1: Uzawa algorithm
Convergence requires strong convexity and constraints qualifications.
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Exercise : decomposition by prices

We consider the following energy problem:

you are an energy producer with N production unit

you have to satisfy a given demand planning for the next 24h (i.e. the
total output at time t should be equal to dt)

the time step is the hour, and each unit have a production cost for
each planning given as a convex quadratic function of the planning

1 Model this problem as an optimization problem. In which class does it
belongs ? How many variables ?

2 Apply Uzawa’s algorithm to this problem. Why could this be an
interesting idea ?

3 Give an economic interpretation to this method.

4 What would happen if each unit had production constraints ?
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What you have to know

There is three main ways of dealing with constraints:
I choosing an admissible direction
I projection of the next iterate
I penalizing the constraints
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What you really should know

admissible direction methods are mainly usefull for polyhedral
constraint set

projection is usefull only if the admissible set is simple (ball or bound
constraints)

penalization can be inner or outer, differentiable or not.
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What you have to be able to do

Implement a penalization approach.
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What you should be able to do

Implement Uzawa’s algorithm.
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Why should I bother to learn this stuff ?

Interior point methods are competitive with simplex method for linear
programm

Interior point methods are state of the art for most conic (convex)
problems

=⇒ useful for
I understanding what is used in numerical solvers
I specialization in optimization
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Convex differentiable optimization problem

We consider the following convex optimization problem

(P) min
x∈Rn

f (x)

s.t. Ax = b

gi (x) ≤ 0 ∀i ∈ J1, nI K

where A is a nE × n matrix, and all functions f and gi are assumed
convex, real valued and twice differentiable.
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Introducing the Lagrangian I ♥

(P) min
x∈Rn

f (x)

s.t. Ax = b

gi (x) ≤ 0 ∀i ∈ J1, nI K

is equivalent to

min
x∈Rn

f (x) + I{0}(Ax − b) +

nI∑

i=1

IR−(hi (x))

which we rewrite

min
x∈Rn

sup
λ∈RnE ,µ∈RnI

+

f (x) + sup
λ∈RnE

λ>(Ax − b) +

nI∑

i=1

sup
µi≥0

µihi (x)
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Introducing the Lagrangian II ♥

(P∞) min
x∈Rn

sup
λ∈RnE ,µ∈RnI

+

f (x) + λ>(Ax − b) +

nI∑

i=1

µigi (x)

︸ ︷︷ ︸
:=L(x ;λ,µ)

(D) sup
λ∈RnE ,µ∈RnI

+

min
x∈Rn

f (x) + λ>(Ax − b) +

nI∑

i=1

µigi (x)

As for any function φ we always have

sup
y

inf
x
φ(x , y) ≤ inf

x
sup
y
φ(x , y)

we have that (weak duality)

val(D) ≤ val(P).

V. Leclère Interior Points Methods May 21st, 2021 5 / 37

Lower bounds from duality ♥

Define the dual function

d(λ, µ) := inf
x
L(x ;λ, µ)

Then we have val(D) = supλ∈RnE ,µ∈RnI
+
d(λ, µ).

Thus, we can compute a lower bound to val(D) ≤ val(P) by choosing an
any admissible dual points λ ∈ RnE , µ ∈ RnI

+ and solving the unconstrained
problem

d(λ, µ) = inf
x∈Rn

f (x) + λ>(Ax − b) +

nI∑

i=1

µihi (x)
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Constraint qualification

Recall that, for a convex differentiable optimization problem, the
constraints are qualified if Slater’s condition is satisfied :

∃x0 ∈ Rn, Ax0 = b, ∀i ∈ J1, nI K, gi (x0) < 0

i.e.there exists a strictly admissible feasable point
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Saddle point ♥

If (P) is a convex optimization
problem with qualified
constraints, then

val(D) = val(P)

any optimal solution x ] of
(P) is part of a saddle point
(x ];λ], µ]) of L
(λ], µ]) is an optimal
solution of (D)
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Karush Kuhn Tucker conditions ♥

If Slater’s condition is satisfied, then x ] is an optimal solution to (P) if and
only if there exists optimal multipliers λ] ∈ RnE and µ] ∈ RnI satisfying





∇f (x ]) + A>λ] +
∑nI

i=1 µ
]
i∇gi (x ]) = 0 first order condition

Ax ] = b primal admissibility

g(x ]) ≤ 0

µ] ≥ 0 dual admissibility

µ]i gi (x
]) = 0, ∀i ∈ J1, nI K complementarity

The three last conditions are sometimes compactly written

0 ≥ g(x ]) ⊥ µ ≥ 0
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Intuition for Newton’s method : unconstrained case ♥

Newton’s method is an iterative optimization method that minimizes a
quadratic approximation of the objective function at the current point x (k).
Consider the following unconstrained optimization problem:

min
x∈Rn

f (x)

At x (k) we have

f (x (k) + d) = f (x (k)) +∇f (x (k))>d +
1

2
d>∇2f (x (k))d + o(‖d‖2)

And the direction d (k) minimizing the quadratic approximation is given by
solving for d

∇f (x (k)) +∇2f (x (k))d = 0.
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Intuition for Newton’s method : eq. constrained case ♥
Approximate the linearly constrained optimization problem

min
x∈Rn

f (x)

s.t. Ax = b

by

min
d∈Rn

f (x (k)) +∇f (x (k))>d +
1

2
d>∇2f (x (k))d

s.t. A(x (k) + d) = b

Which is equivalent to solving (for given admissible x (k))

min
d∈Rn

∇f (x (k))>d +
1

2
d>∇2f (x (k))d

s.t. Ad = 0
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Finding Newton’s direction

min
d∈Rn

∇f (x (k))>d +
1

2
d>∇2f (x (k))d

s.t. Ad = 0

By KKT the optimal d (k) is given by solving for (d , λ)

{
∇f (x (k)) +∇2f (x (k))d + A>λ = 0

Ad = 0

Or in a matricial form
(
∇2f (x (k)) A>

A 0

)(
d
λ

)
=

(
−∇f (x (k))

0

)
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Newton’s algorithm: equality constrained case

Data: Initial admissible point x0

Result: quasi-optimal point
k = 0;
while |∇f (x (k))| ≥ ε do

Solve for d
(
∇2f (x (k)) A>

A 0

)(
d
λ

)
=

(
−∇f (x (k))

0

)

Line-search for α ∈ [0, 1] on f (x (k) + αd (k))
x (k+1) = x (k) + αd (k)

k = k + 1

Algorithm 1: Newton’s algorithm
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Constrained optimization problem

We now want to consider a convex differentiable optimization problem
with equality and inequality constraints.

(P∞) min
x∈Rn

f (x)

s.t. Ax = b

gi (x) ≤ 0 ∀i ∈ J1, nI K

where all functions f and gi are assumed convex, finite valued and twice
differentiable.
Which we rewrite

min
x∈Rn

f (x) +

nI∑

i=1

IR−(gi (x))

s.t. Ax = b
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The negative log function

The idea of barrier method
is to replace the indicator
function IR− by a smooth
function.

We choose the function
z 7→ −1/t log(−z)

Note that they also take
value +∞ on R+ −2 −1.5 −1 −0.5

2

4

6

8

Illustration of barrier functions

t = 0.5
t = 1
t = 2
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Calculus ♦

We define

φ : x 7→ −
nI∑

i=1

ln(−gi (x))

Thus we have
1

t
φ(x) −−−−→

t→+∞
I{gi (x)<0, ∀i∈[nI ]}

We have

∇φ(x) =

nI∑

i=1

− 1

gi (x)
∇gi (x)

∇2φ(x) =

nI∑

i=1

[
1

g2
i (x)
∇gi (x)∇gi (x)> − 1

gi (x)
∇2gi (x)

]
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Penalized problem ♥

We consider

(P∞t) min
x∈Rn

tf (x) +
1

t
φ(x)

s.t. Ax = b

with optimal solution x ]t .

Letting t goes to +∞ get to
solution of (P) along the central
path.

−c

−c
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Characterizing central path I ♦

xt is solution of

(Pt) min
x∈Rn

tf (x) + φ(x)

s.t. Ax = b

if and only if, there exists λt ∈ RnE , such that





Axt = b

gi (xt) < 0 ∀i ∈ [nI ]

t∇f (xt) +∇φ(xt) + A>λ = 0
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Characterizing central path II ♦





Axt = b

g(xt) < 0

t∇f (xt) +∇φ(xt) + A>λ = 0

If A = 0 it means that ∇f (xt) is
orthogonal to the level lines of φ

−c
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Duality ♦
Recall the original optimization problem

(P∞) min
x∈Rn

f (x)

s.t. Ax = b

gi (x) ≤ 0 ∀i ∈ J1, nI K

with Lagrangian

L(x ;λ, µ) := f (x) + λ>(Ax − b) +

nI∑

i=1

µigi (x)

and dual function
d(λ, µ) := inf

x∈Rn
L(x ;λ, µ).

For any admissible dual point (λ, µ) ∈ RnE × RnI
+ , we have

d(λ, µ) ≤ val(P∞)
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Getting a lower bound

For given admissible dual point (λ, µ) ∈ RnE × RnI
+ , a point x ](λ, µ)

minimizing L(·, λ, µ), is characterized by first order conditions

∇f (x ](λ, µ)) + A>λ+

nI∑

i=1

µi∇gi (x ](λ, µ)) = 0

which gives
d(λ, µ) = L(x ](λ, µ);λ, µ) ≤ val(P∞)
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Dual point on the central path ♦
Now recall that xt , solution of (Pt), is characterized by

{
Axt = b, g(xt) < 0

t∇f (xt) +∇φ(xt) + A>λ = 0

And we have seen that

∇φ(x) =

nI∑

i=1

1

−gi (x)
∇gi (x)

Thus,

∇f (xt) + A>λ/t +

nI∑

i=1

1

−tgi (xt)︸ ︷︷ ︸
(µt)i

∇gi (x) = 0

which means that xt = x ](λ/t, µt).
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Bounding the error ♦

Let xt be a primal point on the central path satisfying

∃λt ∈ RnE , t∇f (xt) +∇φ(xt) + A>λt = 0

We define a dual point (µt)i = 1
−tgi (xt) > 0. We have

d(µt , λt/t) = L(xt , µt , λt/t)

= f (xt) +
1

t
λ>t (Axt − b)︸ ︷︷ ︸

=0

+

nI∑

i=1

1

−tgi (xt)
gi (xt)

= f (xt)−
nI
t
≤ val(P∞)

And in particular xt is an nI/t-optimal solution of (P∞).
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Interpretation through KKT condition ♥

A point xt is on the central path iff it is strictly admissible and there exists
λ ∈ RnE such that

∇f (xt) + A>λ+

nI∑

i=1

1

−tgi (x)︸ ︷︷ ︸
(µt)i

∇gi (x) = 0

which can be rewritten




∇f (x) + A>λ+
∑ni

i=1 µi∇gi (x) = 0

Ax = b, gi (x) ≤ 0

µ ≥ 0

−µigi (x) = 1
t ∀i ∈ [nI ]
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Taking a step back ♥

We saw that we can extend Newton’s method to solve linearly
constrained optimization problem.

We saw that we can approximate inequality constraints through the
use of logarithmic barrier −1/t

∑
i ln(−gi (x)).

We proved that xt is an nI/t-optimal solution.

The trade-off with t is : larger t means xt closer to optimal solution
x∞ but the approximate problem (Pt) have worse conditionning.
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Barrier method ♥

Data: increase ρ > 1, error
ε > 0, initial t

Result: ε-optimal point
solve (Pt) and set x = xt ;
while nI/t ≥ ε do

increase t: t = ρt
centering step: solve (Pt)
starting at x ;
update : x = xt

Question : why solve (Pt) to
optimality ?
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Solving (Pt) with Newton’s method

(Pt) min
x∈Rn

tf (x) + φ(x)

s.t. Ax = b

is a linearly constrained optimization problem that can be solved by
Newton’s method.
More precisely we have xk+1 = x (k) + d (k) with d (k) a solution of

(
t∇2f (x (k)) +∇2φ(x (k)) A>

A 0

)(
d (k)

λ

)
=

(
−t∇f (x (k))−∇φ(x (k))

0

)

V. Leclère Interior Points Methods May 21st, 2021 28 / 37

Path following interior point method

Data: increase ρ > 1, error ε > 0, initial t0

initial strictly feasible point x0

k = 0
for k ∈ N do // Outer step

x ← x0 , t ← t0

for κ ∈ [K ] do // Inner step

solve for d ; // Newton step for (Pt)
(
tk∇2f (x) +∇2φ(x) A>

A 0

)(
d
λ

)
=

(
−tk∇f (x)−∇φ(x)

0

)

reduce α from 1 until f (x + αd) ≤ f (x);
x ← x + αd ;

t ← ρt;

Algorithm 2: Path following algorithm
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Path following algorithm
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A linear problem - inequality form

We consider the following LP

min
x∈Rn

c>x

s.t. a>i x ≤ bi ∀i ∈ [nI ]

Where a>i = A[:, i ] is the row of matrix A, such that the constraints can
be written Ax ≤ b.
Thus, xt is the solution of

min
x∈Rn

tc>x + φ(x)

where

φ(x) := −
nI∑

i=1

ln(bi − a>i x)
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Calculus ♦

φ(x) = −
nI∑

i=1

ln(bi − a>i x)

∇φ(x) =

nI∑

i=1

1

bi − a>i x
ai

∇2φ(x) =
1

(bi − a>i x)2
aia
>
i

This can be written in matrix form, using the vector d ∈ RnI defined by
di = 1

bi−a>i x

∇φ(x) = A>d

∇2φ(x) = A>diag(d)2A
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Newton step ♦

Starting from x , the Newton direction for (Pt) is

dirt(x) = − (∇2φ(x))−1(tc +∇φ(x))

which, in algebraic form, yields

dirt(x) = − [A>diag(d)2A]−1(tc + A>d)

with di = 1/(bi − a>i x).

Theory tell us to use a step-size of 1 for Newton’s method.

Practice teach us to use a smaller step-size (or linear-search).
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Interior Point Method for LP pseudo code

Data: Initial admissible point x0, initial penalization t0 > 0;
parameter: ρ > 1, Nin ≥ 1, Nout ≥ 1;
Result: quasi-optimal point
x = x0, t = t0;
for k = 1..Nout do

for κ = 1..Nin do
Compute d , with di = 1/(bi − aTi x);
Solve for dir

A>diag(d)2Adir = −(tc + A>d)

reduce α from 1 untila f (x + αdir) ≤ f (x);
update x ← x + αdir ;

update t ← ρt;

Algorithm 3: Interior Point Method for LP

asimplest condition described here
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What you have to know

IPM are state of the art algorithms for LP and more generally conic
optimization problem

That logarithmic barrier are a useful inner penalization method
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What you really should know

That Newton’s algorithm can be applied with equality constraints

What is the central path

That IPM work with inner and outer optimization loop
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Why should I bother to learn this stuff ?

Main algorithm principle for training machine learning model, and in
particular deep neural network

=⇒ useful for
I understanding how the library train ML models
I specialization in optimization
I specialization in machine learning
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The optimization problem ♥

We consider the following optimization problem

Min
x∈Rp

F (x) := E
[
f (x , ξ)

]

where ξ is a random variable.
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Computing the gradient ♥

F (x) := E
[
f (x , ξ)

]

Under some regularity conditions (e.g. f (·, ξ) differentiable,
∂f (x , ·)
∂x

Lipschitz, and ξ integrable) we have

∇F (x) = E
[
∂f

∂x
(x , ξ)

]

This is obvious if ξ is finitely supported : supp(ξ) = {ξi}i∈[N], and
pi := P(ξ = ξi ),

∇F (x) =
∂

∂x

( ∑

i∈ [N]

pi f (x , ζ)

)
=
∑

i∈ [N]

pi
∂

∂x
f (x , ζ)
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Standard continuous optimization method

Thus, we are looking at
Min
x∈Rp

F (x)

where F is a (strongly) convex differentiable function if f (·, ξ) is, and we
know how to compute its gradient.

Thus, we should be able to solve our problem through the method
presented in earlier courses:

gradient algorithm

conjugate gradient

Newton / Quasi-Newton

Why bother with another (class of) algorithm ?
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Computing the gradient is costly ♥

For a given solution x ∈ Rp computing the gradient

∇F (x) = E
[∂f (x , ξ)

∂x

]

is costly as it requires to compute a multidimensionnal integral (if ξ
admits a density), or a large sum.

Indeed, in most machine learning application, we consider that ξ is
uniformly distributed over the data (empirical risk minimization), thus
computing the gradient require a pass over every sample in the dataset.

Dataset of size N > 106 are common.
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Estimating the gradient ♥

Instead of using a true gradient

g (k) = ∇F (x (k))

we can use a statistical estimator of the gradient

ĝ (k) ; ∇F (x (k)) = E
[∂f (x (k), ξ)

∂x

]

The most standard estimator being

ĝ (k) =
∂f (x (k), ξ(k))

∂x

where ξ(k) is drawn randomly according to the law of ξ (i.e. it is a random
datapoint).

V. Leclère Stochastic Gradient Method May 28th, 2021 7 / 14

Pros and Cons ♥

Pros:

computing ĝ (k) = ∂f (x(k),ξ(k))
∂x is really easy

we do not need to spend lots of time early on to get a precise gradient

we can stop whenever we want (do not need a full pass on the data)

Cons:

ĝ (k) is a noisy estimator of the gradient

requires a new convergence theory

x (k+1) := x (k+1) − αĝ (k) generally does not converges almost surely
to the optimal solution as this make a noisy trajectory
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Noisy trajectory ♦

At optimality we should have ∇F (x ]) = 0

It doesnot mean that ∂f (x],ξ(k))
∂x equals 0 !

In particular there is no reasong for ĝ (k) to be eventually small, only
its expectation should be small !

; we generally use either:

I decreasing step e.g. α(k) =
α(0)

k

I average points x̄ (k) =
1

k

∑
κ≤k x

(κ)
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Mini-batch version ♦

ĝ (k) = ∂f (x(k),ξ(k))
∂x is an easy to compute but noisy estimator of the

gradient

ĝ (k) = 1
N

∑
i∈[N]

∂f (x(k),ξi )
∂x is a long (full batch) to compute but

perfect estimator

minibatch aims at a middle ground : randomly draw a sample S of

realizations of ξ, and use ĝ (k) = 1
|S |
∑

ξ∈S
∂f (x(k),ξ)

∂x
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Video explanation

Videos by Andrew Ng (Former Standford professor)

https://www.youtube.com/watch?v=W9iWNJNFzQI&list=

PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=24 (13’)

https://www.youtube.com/watch?v=l4lSUAcvHFs&list=

PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=25(6’)

Another video with numericals tricks to improve the convergence

https://www.youtube.com/watch?v=kK8-jCCR4is&list=

PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=23(10’)
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What you have to know

That for a stochastic problem gradient step requires to compute an
expectation

That stochastic gradient do not compute the true gradient, but only
an estimator of the gradient
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What you really should know

gradient algorithm (or more advanced version) is faster in term of
number of iterations

stochastic gradient needs more iteration, but each is faster
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What you have to be able to do

dive in the scientific litterature on the subject if you need to
implement this type of algorithm
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