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Convention in these slides

Just a quick point about some unusual convention I am using :

♥ means that the results in the slides are really important

♦ means that the content is more advanced

♣ is a very simple exercise (can be done in class)

♠ is a somewhat more difficult exercise that you can use as training

[BV x.y] means that the content is covered in the Convex
Optimization book at chapter x, section y.
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Why should I bother to learn this stuff ?

Markov Chain and Markov Decision Programm are very powerful
modeling tool for a lot of practicle applications.

Dynamic programming is a flexible tool, easy to implement, that can
efficiently address these problems.

=⇒ useful for any futur ”manager”
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Introduction ♥

A Markov Chain (Xt)t∈N is a memoryless stochastic process.

A classical example is the random walk : let (ξt)t∈N be a sequence of
i.i.d. centered random variables and define

X0 = 0, Xt+1 = Xt + ξt+1.

A Markov chain can represent a large number of systems affected by
random noises.

A controled Controlled Markov Chain is a Markov Chain such that the
evolution is affected by an action.
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Markov chain : definition ♦
Let (Ω,F ,P) be a probability space. Let (Xt)t∈N be a sequence of
discrete random variable taking value in X . Let Ft = σ(X0, . . . ,Xt) be
the σ-algebra generated by all Xτ for τ ≤ t.

We say that (Xt)t∈N is a Markov Chain if

P(Xt ∈ A | Fs) = P(Xt ∈ A | Xs), ∀s ≤ t, ∀A measurable

or equivalently

E[f (Xt) | Fs ] = E[f (Xt) | Xs ], ∀s ≤ t, ∀f bounded and measurable

If all Xt are discrete, this reads

P(Xt = xt | X0 = x0, . . . ,Xs = xs) = P(Xt = xt | Xs = xs), ∀s ≤ t,∀x0, . . . , xt
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Exercises

♣ Exercise: Show that if (Xt)t∈N is a sequence of independent random
variables then it is a Markov Chain.
♠ Exercise: Let (ξt)t∈N be i.i.d. Assume that, for all t ∈ N,

Xt+k =
k−1∑
κ=0

ακXt+κ + ξt .

Show that Xt can easily be deduced from a Markov chain.
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Discrete Markov chains ♥

Let (Xt)t∈N be a Markov chain s.t. supp(Xt) ⊂ X where X is finite1.

We call Pt : X 2 → [0, 1] the matrix such that,

Pt(x , y) = P(Xt+1 = y |Xt = x)

the t-transition kernel of the Markov Chain (Xt)t∈N.

A time-homogeneous Markov chain is such that Pt = P for all t.

1extension to countable case are straightforward.
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Chapman Kolmogorov equation ♦

Let µt : X → [0, 1] be a row vector such that representing the law of
Xt (i.e P(Xt = x) = µ(x)), then we have (Chapman-Kolmogorov)2

µt+k = µtP
k .

In particular, we have

P(Xt+k = y | Xt = x) = Pk(x , y).

Let h : X → R, be represented as a column vector, then

Pkh(x) :=
∑
y∈X

Pk(x , y)h(y) = E[h(Xt+k)|Xt = x ].

2For simplicity the last three items are given under time-homogeneity.
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Time homogeneous Markov chain graph representation

A simple way to represent a discrete Markov chain is through a directed
graph:

each node represent a state,

we add an arc between node x and y iff P(x , y) > 0,

when positive, we add the value P(x , y) on the arc between x and y .

A time homogenous Markov chain is irreduccible if, starting from any
point you can eventually reach any other points. More precisely, if for all
x , y ∈ X there exists t ∈ N such that P(Xt = y |X0 = x) > 0. Or
equivalently if its graph is strongly connected.
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Absorbing state

An absorbing state of a Markov chain, is a state x such that there is
no positive transition from x to another state y 6= x , that is such that
P(x , x) = 1.

If, from any state x there is a path to an absorbing state, then a the
Markov chain will almost surely end in an absorbing state.
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Controlled Markov chains ♥
A controlled Markov chain is a Markov Chain whose transition kernel at
time t is decided by an action at ∈ A:

P(Xt+1 = y |Xt = x) = Pat
t (x , y).

We consider a set of actions (or control) A, assumed finite for
simplicity.

For all t ∈ N and a ∈ A, let Pa
t be a transition kernel.

We call a function π mapping the states X in to the action A a
policy, and a collection π = (πt)t∈N a strategy.

For any strategy π we define (Xπ
t )t∈N such that (Xt , at)t∈N is a

Markov chain with

P(Xπ
t+1 = y , at+1 = b|Xπ

t = x , at = a) = Pa
t (x , y)1πt(y)=b.
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Example and representation of Controlled Markov Chain

We consider a maintenance problem. A unit U can be either working or
broken. When it is in a working state there is a 20% chance of being
broken at the next time step. When it is broken it must be replaced and
will be working at the next step.

♣ Exercise: Model this as a Markov Chain.

♣ Exercise: We now assume that at each time step, if the unit is working,
we can decide to maintain it (keeping it in a working state) or not. And if
broken we can repair it, or not. Model this modified version as a controlled
Markov Chain.
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Stochastic Dynamic System

A (discrete time) stochastic dynamic system is a stochastic process
(X t)t∈N such that

Xt+1 = ft(Xt , at , ξt), ∀t

where ft is a deterministic function, at takes values in A, and ξt is an
exogeneous random variable (i.e. its law is not affected by Xt and at).

All controlled Markov chain can be written as a stochastic dynamic
system.

If (ξt)t∈N is an independent sequence of random variables, then
(Xt)t∈N is a controlled Markov chain.

V. Leclère Dynamic Programming February 11, 2022 13 / 40



Contents

1 Controlled Markov Chain

2 Dynamic Programming
Markov Decision Problem
Dynamic Programming: Intuition
Dynamic Programming : Value function
Dynamic Programming : implementation

3 Infinite horizon

4 Parting thoughts

5 Wrap-up

V. Leclère Dynamic Programming February 11, 2022 13 / 40



Contents

1 Controlled Markov Chain

2 Dynamic Programming
Markov Decision Problem
Dynamic Programming: Intuition
Dynamic Programming : Value function
Dynamic Programming : implementation

3 Infinite horizon

4 Parting thoughts

5 Wrap-up

V. Leclère Dynamic Programming February 11, 2022 13 / 40



Markov Decision Problem ♥

Let (Xt)t∈N be a controlled Markov chain, with action in A. We
denote Π the set of associated policy.

Let, for all t, ct : X 2 → R ∪+∞ be a transition cost.3

A Markov Decision Problem is

Min
π∈Π

E
[∑
t∈N

ρtct(Xπ
t ,X

π
t+1)

]
,

where ρ ∈ [0, 1] is a discount factor.

3the transition cost can also be dependent of action a.
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Another point of view

We can also write the MDP problem in the following way

Min
(πt)t∈N

E
[
E
[ ∞∑
t=1

ρtct(Xt ,Xt+1) | at = πt(Xt)
]]

s.t. at = πt(Xt) ∀t

Equivalently, with a stochastic dynamic system point of view, we have

Min
(πt)t∈N

E
[ ∞∑
t=1

ρtct(Xt ,Xt+1)
]

s.t. at = πt(Xt) ∀t
Xt+1 = ft(Xt , at , ξt) ∀t
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Finite horizon problem

We now assume that for t > T , ct ≡ 0, ρ = 1 and cT (x , y) = K (x). Thus
the problem reads

Min
(πt)t∈N

E
[ T−1∑

t=1

ct(Xt ,Xt+1) + K (XT )
]

s.t. at = πt(Xt) ∀t
Xt+1 = ft(Xt , at , ξt) ∀t

Further, we often assume that the initial state X0 = x0 is known.

This will be known as the Finite Horizon Problem.
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the prop-
erty that whatever the initial
state and initial decision are, the
remaining decisions must con-
stitute an optimal policy with
regard to the state resulting
from the first decision (Richard
Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy, sup-
pose that the fastest route from
Los Angeles to Boston passes
through Chicago.
The principle of optimality
translates to obvious fact that
the Chicago to Boston portion
of the route is also the fastest
route for a trip that starts from
Chicago and ends in Boston.
(Dimitri P. Bertsekas)
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Idea Behind Dynamic Programming

Suppose that we have two states A and B and 4 timesteps.
For all t, we pay a cost to move from a node to one-another.
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t0 t1 t2 t3 T

9

13
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6
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8

5
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7
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Idea Behind Dynamic Programming

We start from final position xT , and computes cost to move from A3 or B3

to final position at time t = 3
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Idea Behind Dynamic Programming

We do the same at time t = 2, considering the cost
to go to A3 or B3.
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Idea Behind Dynamic Programming

We do the same at time t = 1, considering the cost
to go to A2 or B2.
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Idea Behind Dynamic Programming

Then, we can deduce easily the optimal trajectories from time t = 0 to T .
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Idea behind dynamic programming

If we are in a Markovian setting, that is such that noises are time
independent, then

1 The cost-to-go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position, starting
from the terminal state and computing optimal trajectories backward.

V. Leclère Dynamic Programming February 11, 2022 20 / 40



Contents

1 Controlled Markov Chain

2 Dynamic Programming
Markov Decision Problem
Dynamic Programming: Intuition
Dynamic Programming : Value function
Dynamic Programming : implementation

3 Infinite horizon

4 Parting thoughts

5 Wrap-up

V. Leclère Dynamic Programming February 11, 2022 20 / 40



Bellman’s function : finite horizon ♥

In the finite horizon setting, the Bellman function reads

Vt(x) := Min
π∈Π

E
[ T−1∑
τ=t

cτ (Xπ
τ ,X

π
τ+1) + K (Xπ

T ) | Xt = x
]

and in particular VT = K .
Or, in the stochastic dynamic system point of view

Vt(x) = Min
(πτ )τ∈Jt,T−1K

E
[ T−1∑
τ=t

cτ (X τ ,Xt+1) + K (XT ) | Xt = x
]

s.t. aτ = πτ (X τ ) ∀τ
Xt+1 = fτ (X τ , aτ , ξτ ) ∀τ
X t = x
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Bellman’s recursion : finite horizon ♥

In the finite horizon setting we have
VT (x) = K (x)

Vt(x) = min
a∈A

E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

= min
a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + Vt+1(y)

)

An optimal policy is given by

πt(x) ∈ arg min
a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + Vt+1(y)

)
.
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ X do

Vt(x) = mina∈A E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

Algorithm 1: Classical stochastic dynamic programming algorithm
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ X do
Vt(x) =∞
for a ∈ A do

Q(x , a) = E
[
ct(x ,Xt+1) + Vt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

if Q(x , a) < Vt(x) then
Vt(x) = Q(x , a)
πt(x) = a

Algorithm 2: Classical stochastic dynamic programming algorithm
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ X do
Vt(x) =∞
for a ∈ A do

Q(x , a) = 0
for y ∈ X do

Q(x , a) = Q(x , a) + Pa(x , y)[ct(x , y) + Vt+1(y)]

if Q(x , a) < Vt(x) then
Vt(x) = Q(x , a)
πt(x) = a

Algorithm 3: Classical stochastic dynamic programming algorithm
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3 curses of dimensionality ♥

Complexity = O(T × |X |2 × |A|)
Linear in the number of time steps, but we have 3 curses of dimensionality
:

1 State. Complexity is exponential in the dimension of X
e.g. 3 independent states each taking 10 values leads to a loop over
103 points.

2 Decision. Complexity is exponential in the dimension of Xt .
 due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of Ξt .
 due to expectation computation. Can be accelerated through
Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.
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Some remarks ♦

The loop on the next state y does not need to be on all state, but
only on all reachable next state from state x .

In some cases you do not need to compute the Vt(x) for all x ∈ X ,
indeed you might be able to show that some part of the state space X
are not reachable (or not reachable under an optimal policy) at time t.

To represent that, at some time t, some state x ∈ X are forbidden,
you can simply encode Vt(x) = +∞.

To represent that, at some time t, the transition x → y is forbidden,
you can simply encode ct(x , y) = +∞.
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Exercise

Let X = {0, 1, 2, 3}, A = {0, 1}.
Let (Xt)t∈J1,5K be a controlled Markov chain, such that, if a = 0, it
stays in its state, and if a = 1 it has a probability 0.5 of going 1 up (if
possible, otherwise stay in place), and 0.5 of going 1 down (if
possible, otherwise stay in place).

Solve by Dynamic Programming the following optimization problem.

Max E
[ 4∑
t=0

Xt
2 | X0 = 0

]
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Bellman’s value function ♦

The Bellman’s value function, a.k.a cost-to-go function, is defined as
(when the expectation make sense)

Vt(x) := Min
π∈Π

E
[ +∞∑
τ=t

ρτ−tcτ (Xπ
τ ,X

π
τ+1) | Xt = x

]
It is the value of the problem starting from time t in state x .

The expectation is well defined for example if we consider finite controlled Markov chain
and one of the following holds:

we are in the finite horizon framework,

ct = c and ρ < 1,

ct = c and there is a cemetery state (that is an aborbing state with null transition
cost) that is almost surely reached.
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Bellman’s recursion ♦

Vt(x) = Min
π∈Π

E
[ +∞∑
τ=t

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t = x

]
= Min

π∈Π
E
[
cτ (Xπ

t ,X
π
t+1) +

+∞∑
τ=t+1

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t = x

]
= Min

a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + Min

π∈Π
E
[ +∞∑
τ=t+1

ρτ−tcτ (Xπ
τ ,X

π
τ+1)

∣∣∣ Xπ
t+1 = y

])
= Min

a∈A

∑
y∈X

Pa(x , y)(ct(x , y) + ρVt+1(y))

= Min
a∈A

E
[
ct(Xt ,Xt+1) + ρVt+1(Xt+1)

∣∣∣ Xt = x , at = a
]

This equation should be understood as the cost-to-go from state x and time t is

equal to the minimum expected current cost plus futur cost.
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Stationary problem ♦

From now on we make the following assumption:

the set of possible values X is finite,

the transition cost is not time dependent, i.e., ct = c,

the transition kernel is not time dependent, i.e. Pa
t = Pa.

Then the MDP problem is said to be stationary.

A strategy s = (πt)t∈N is said to be stationary iff it is not time dependent,
i.e. πt = π.

A stationary MDP admits an optimal stationary policy.
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Stochastic Shortest Path problem ♦

We consider a stationary MDP, with a cemetery state.

Stopping assumption

We assume that, for every state x , there exists T such that, under any
(stationary) strategy π there is a positive probability of reaching the
cemetery state.

♣ Exercise: Show that the finite horizon problem satisfy this stopping
assumption.

♠ Exercise: Show that, if ρ < 1, even without an absorbing state, we can
construct an equivalent MDP satisfying the stopping assumption.
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Dynamic Programming equation ♥

Under this stopping assumption, the value function

V ](x) := Min
π∈Π

E
[ +∞∑
τ=0

ρτc(Xπ
τ ,X

π
τ+1)

]
Is the only function V satisfying the Dynamic Programming equation

V (x) = min
a∈A

E
[
c(x ,Xt+1) + ρV (Xt+1)

∣∣∣ Xt = x , at = a
]

= min
a∈A

∑
y∈X

Pa(x , y)
(
c(x , y) + ρV (y)

)
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Value iteration ♥

Define the following sequence of function through the so-called Value
Iteration procedureV0 : x 7→ 0

Vt+1 : x 7→ min
a∈A

∑
y∈X

Pa(x , y)
(
ct(x , y) + ρVt(y)

)
Then we have Vt → V ].

♠ Exercise: Recognize the Dynamic Programming algorithm of the finite
horizon case. Interpret this result in terms of finite horizon approximation.
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Optimal policy ♦

Naturally, a stationary policy π is optimal iff the minimum is attained in
the DP equation, i.e.

V ](x) =
∑
y∈X

Pπ(x)(x , y)
(
ct(x , y) + ρV ](y)

)
, ∀x ∈ X
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Law of large number and Central Limit Theorem ♥
Let

{
X i

}
i∈N be a sequence of independent and identically distributed, real

valued random variables. We denote the empirical mean MN = 1
N

∑N
i=1 Xi .

Theorem (LLN)

If X1 admits first order moment, then the empirical mean MN converge
almost surely toward the expectation E[X1].

Theorem (CLT)

If X1 admits second order moment, then we have

√
n
(
MN − E

[
X
])
→ N (0, σ)

where the convergence is in law and σ is the standard deviation of X1.

In particular, the CLT means that, for G ∼ N (0, σ) and any [a, b],

P
(√

n(MN − E
[
X
]
∈ [a, b]

)
→N P

(
G ∈ [a, b]

)
.

V. Leclère Dynamic Programming February 11, 2022 34 / 40



Law of large number and Central Limit Theorem ♥
Let

{
X i

}
i∈N be a sequence of independent and identically distributed, real

valued random variables. We denote the empirical mean MN = 1
N

∑N
i=1 Xi .

Theorem (LLN)

If X1 admits first order moment, then the empirical mean MN converge
almost surely toward the expectation E[X1].

Theorem (CLT)

If X1 admits second order moment, then we have

√
n
(
MN − E

[
X
])
→ N (0, σ)

where the convergence is in law and σ is the standard deviation of X1.

In particular, the CLT means that, for G ∼ N (0, σ) and any [a, b],

P
(√

n(MN − E
[
X
]
∈ [a, b]

)
→N P

(
G ∈ [a, b]

)
.

V. Leclère Dynamic Programming February 11, 2022 34 / 40



Law of large number and Central Limit Theorem ♥
Let

{
X i

}
i∈N be a sequence of independent and identically distributed, real

valued random variables. We denote the empirical mean MN = 1
N

∑N
i=1 Xi .

Theorem (LLN)

If X1 admits first order moment, then the empirical mean MN converge
almost surely toward the expectation E[X1].

Theorem (CLT)

If X1 admits second order moment, then we have

√
n
(
MN − E

[
X
])
→ N (0, σ)

where the convergence is in law and σ is the standard deviation of X1.

In particular, the CLT means that, for G ∼ N (0, σ) and any [a, b],

P
(√

n(MN − E
[
X
]
∈ [a, b]

)
→N P

(
G ∈ [a, b]

)
.

V. Leclère Dynamic Programming February 11, 2022 34 / 40



Monte-Carlo method ♥

Let
{
Xi
}
i∈N be a sequence of rv iid with finite variance.

We have P
(
MN ∈

[
E
[
X
]
± Φ−1(1−p/2)std(X )√

N

])
≈ p

In order to estimate the expectation E
[
X
]
, we can

I sample N independent realizations of X ,
{
Xi

}
i∈J1,NK

I compute the empirical mean MN =
∑N

i=1 Xi

N , and standard-deviation sN
I choose an error level p (e.g. 5%) and compute Φ−1(1− p/2) (1.96)
I and we know that, asymptotically, the expectation E

[
X
]

is in[
MN ± Φ−1(p)sN√

N

]
with probability (on the sample) 1− p
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Good practice in optimization under uncertainty ♥

Optimization under uncertainty is hard.

You should first decide on a simulator for your problem, as precise as
possible.

Then, you should decide which problem you are going to solve. Most
of the time it will be an approximation of the true problem.

You can now solve, exactly or approximately this problem. Once you
have a solution you should simulate it on your simulator (expected
cost can be estimated by Monte Carlo).

It is good practice to come up with reasonable heuristic to test your
solution.
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What you have to know

What is a Markov Chain, a Markov Controlled Chain.

What is a Markov Decision Problem, a state, a policy

What is the Bellman’s value function a.k.a cost-to-go

Estimate the value of a policy through Monte Carlo
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What you really should know

the complexity of Dynamic Programming

how to model forbidden state in DP

How to guarantee that an MDP in infinite horizon admits an optimal
stationary policy
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What you have to be able to do

Recognize an MDP

Write a Dynamic Programming equation

Solve a simple, finite horizon, MDP problem through Dynamic
Programming
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What you should be able to do

Know if a problem can numerically be tackled through Dynamic
Programming

Reframe a non-Markovian problem as a Markovian problem through
extending the state

Implement a value iteration algorithm in infinite horizon setting
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