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Convention in these slides

Just a quick point about some unusual convention | am using :
@ ) means that the results in the slides are really important
@ <> means that the content is more advanced
@ & is a very simple exercise (can be done in class)
@ & is a somewhat more difficult exercise that you can use as training

@ [BV x.y|] means that the content is covered in the Convex
Optimization book at chapter x, section y.
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Why should | bother to learn this stuff 7

@ Markov Chain and Markov Decision Programm are very powerful
modeling tool for a lot of practicle applications.

@ Dynamic programming is a flexible tool, easy to implement, that can
efficiently address these problems.

o — useful for any futur "manager”
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Introduction Q

A Markov Chain (X;)tcn is @ memoryless stochastic process.

A classical example is the random walk : let (&¢):en be a sequence of
i.i.d. centered random variables and define

Xo =0, Xet1 = Xe + &e41.

@ A Markov chain can represent a large number of systems affected by
random noises.

@ A controled Controlled Markov Chain is a Markov Chain such that the
evolution is affected by an action.
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Markov chain : definition &

Let (Q, F,P) be a probability space. Let (X;):cn be a sequence of
discrete random variable taking value in X. Let F; = o(Xp,..., X¢) be
the o-algebra generated by all X for 7 < t.
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Markov chain : definition &
Let (Q, F,P) be a probability space. Let (X;):cn be a sequence of
discrete random variable taking value in X. Let F; = o(Xp,..., X¢) be
the o-algebra generated by all X for 7 < t.
We say that (X¢)ten is a Markov Chain if

P(X: € A| Fs) =P(X: € A| Xs), Vs < t,VA measurable

or equivalently

E[f(X:) | Fs] = E[f(Xe) | Xq], Vs <t, Vf bounded and measurable
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Markov chain : definition &
Let (Q, F,P) be a probability space. Let (X;):cn be a sequence of
discrete random variable taking value in X. Let F; = o(Xp,..., X¢) be
the o-algebra generated by all X for 7 < t.
We say that (X¢)ten is a Markov Chain if

P(X: € A| Fs) =P(X: € A| Xs), Vs < t,VA measurable

or equivalently

E[f(X¢) | Fs] = E[f(X¢) | Xs], Vs <t, Vf bounded and measurable

If all X; are discrete, this reads

P(Xe =x¢ | Xo=x0,...,Xs = x5) = P(X¢ = x¢ | Xs = xs), Vs < t, Vxg,
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Exercises

& Exercise: Show that if (X;):en is a sequence of independent random
variables then it is a Markov Chain.

@ Exercise: Let (£¢)ten be i.i.d. Assume that, for all t € N,

k—1

Xk = Z o Xeyr + &t
k=0

Show that X; can easily be deduced from a Markov chain.
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Discrete Markov chains Q

Let (X¢)ten be a Markov chain s.t. supp(X;) C X where X is finitel.
o We call P, : X2 — [0, 1] the matrix such that,

Pi(x,y) = P(Xi11 = y|X: = x)

the t-transition kernel of the Markov Chain (X;)ten.

@ A time-homogeneous Markov chain is such that P; = P for all t.

extension to countable case are straightforward.
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Chapman Kolmogorov equation %

o Let pur : X — [0, 1] be a row vector such that representing the law of
X; (i.e P(X; = x) = p(x)), then we have (Chapman-Kolmogorov)?

Hitk = Mth-
@ In particular, we have
P(Xepr = y| X = x) = PX(x, y).
o Let h: X — R, be represented as a column vector, then

=Y PX(x,y)h(y) = B[h(Xeqi)| Xe = X].
yeX

2For simplicity the last three items are given under time-homogeneity.
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Time homogeneous Markov chain graph representation

A simple way to represent a discrete Markov chain is through a directed
graph:

@ each node represent a state,

e we add an arc between node x and y iff P(x,y) > 0,

@ when positive, we add the value P(x, y) on the arc between x and y.
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Time homogeneous Markov chain graph representation

A simple way to represent a discrete Markov chain is through a directed
graph:

@ each node represent a state,
e we add an arc between node x and y iff P(x,y) > 0,
@ when positive, we add the value P(x, y) on the arc between x and y.

A time homogenous Markov chain is irreduccible if, starting from any
point you can eventually reach any other points. More precisely, if for all
x,y € X there exists t € N such that P(X; = y|Xp = x) > 0. Or
equivalently if its graph is strongly connected.
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Absorbing state

@ An absorbing state of a Markov chain, is a state x such that there is

no positive transition from x to another state y # x, that is such that
P(x,x) = 1.

o If, from any state x there is a path to an absorbing state, then a the
Markov chain will almost surely end in an absorbing state.
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Controlled Markov chains Q

A controlled Markov chain is a Markov Chain whose transition kernel at
time t is decided by an action a; € A:

P(Xt+1 = }/|Xt = X) = P?t(xay)'

e We consider a set of actions (or control) A, assumed finite for
simplicity.

@ Forallt e Nand a€ A, let P{ be a transition kernel.

@ We call a function m mapping the states X’ in to the action A a
policy, and a collection m = (7¢)ten a strategy.

o For any strategy m we define (X[")ten such that (X;, ar)een is a
Markov chain with

IP)( Z:.l =Y,at41 = b‘xzr =X,ar = a) = P?(Xay)ﬂm(y):b'
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Example and representation of Controlled Markov Chain

We consider a maintenance problem. A unit U can be either working or
broken. When it is in a working state there is a 20% chance of being
broken at the next time step. When it is broken it must be replaced and
will be working at the next step.

& Exercise: Model this as a Markov Chain.

& Exercise: We now assume that at each time step, if the unit is working,
we can decide to maintain it (keeping it in a working state) or not. And if

broken we can repair it, or not. Model this modified version as a controlled
Markov Chain.
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Stochastic Dynamic System

o A (discrete time) stochastic dynamic system is a stochastic process
(Xt)ten such that

Xer1 = fe(Xe, ae, &), vt

where f; is a deterministic function, a; takes values in A, and &; is an
exogeneous random variable (i.e. its law is not affected by X; and a;).

@ All controlled Markov chain can be written as a stochastic dynamic
system.

o If (&4)ten is an independent sequence of random variables, then
(Xt)ten is a controlled Markov chain.
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Markov Decision Problem Q

o Let (X;)ten be a controlled Markov chain, with action in A. We
denote [1 the set of associated policy.

o Let, for all ¢, ¢; : X2 — RU +o0 be a transition cost.3

@ A Markov Decision Problem is

7'\r/|ei|[|‘ E[%Ptct(xfa Xtﬂ-i-l)] )

where p € [0,1] is a discount factor.

3the transition cost can also be dependent of action a.
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Another point of view

We can also write the MDP problem in the following way

Min E [E[i pree(Xe, Xe1) | ar = 7Tt(xt)H

(7Tt)t€N =1

s.t. ar = 7T1_-(Xt) YVt
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Another point of view

We can also write the MDP problem in the following way

Min E [E[i pree(Xe, Xe1) | ar = 7Tt(Xt)H

(Wt)teN =1

s.t. ar = 7T1_-(Xt) YVt

Equivalently, with a stochastic dynamic system point of view, we have

Min E [iPtCt(Xt, Xt+1)]

(e)ren —1
s.t. dy = Wt(xt) VYt
Xit1 = ft(Xt, atast) vt
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Finite horizon problem

We now assume that for t > T, ¢; =0, p=1 and cr(x,y) = K(x). Thus
the problem reads

T-1
Min E [ 3 ce(Xe, Xern) + K(XT)]
(7t)ten )
s.t. dy = 7Tt(xt) VYt
Xi41 = f(Xe, ar, &) vVt

Further, we often assume that the initial state Xo = xg is known.

This will be known as the Finite Horizon Problem.
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Bellman's Principle of Optimality

An optimal policy has the prop-
erty that whatever the initial
state and initial decision are, the
remaining decisions must con-
stitute an optimal policy with
regard to the state resulting
from the first decision (Richard

Richard Ernest Bellman Bellman)
(August 26, 1920 — March 19,
1984)
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The shortest path on a graph illustrates Bellman's
Principle of Optimality

For an auto travel analogy, sup-

pose that the fastest route from

Los Angeles to Boston passes

through Chicago.

The principle of optimality
Boston translates to obvious fact that

the Chicago to Boston portion

LmAngem L> / of the route is also the fastest

/ Chlugo

route for a trip that starts from
Chicago and ends in Boston.
(Dimitri P. Bertsekas)
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Idea Behind Dynamic Programming

Suppose that we have two states A and B and 4 timesteps.
For all t, we pay a cost to move from a node to one-another.

14/3\

2
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Idea Behind Dynamic Programming

We start from final position x7, and computes cost to move from A3 or B3
to final position at time t =3

146\
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Idea Behind Dynamic Programming

We do the same at time t = 2, considering the cost
to go to As or Bs.

18
4 g 11
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Idea Behind Dynamic Programming

We do the same at time t = 1, considering the cost
to go to Ay or B,.

25
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Idea Behind Dynamic Programming

Then, we can deduce easily the optimal trajectories from time t =0to T.

18
4 g 11

2
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|dea behind dynamic programming

If we are in a Markovian setting, that is such that noises are time
independent, then

@ The cost-to-go at time t depends only upon the current state.

@ We can compute recursively the cost to go for each position, starting
from the terminal state and computing optimal trajectories backward.
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Bellman's function : finite horizon Q

In the finite horizon setting, the Bellman function reads

\i

1
Vi(x) := Min ]E{ (X, XTI )+ K(XT) | Xe=x

T
mel !

\]
Il

and in particular V7 = K.
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Bellman's function : finite horizon Q

In the finite horizon setting, the Bellman function reads

\i

-1

Vi(x) := Min ]E[ G (XEXT )+ K(XF) | Xe=x
T=t

and in particular V7 = K.
Or, in the stochastic dynamic system point of view

T-1
Vi(x) = Min E [ 3 er(Xo, Xes1) + K(X7) | Xe=x
T=t

(mr)reqe,7-1]
s.t. a, =7.(X;)
Xt+1 = fT(XT7a’T7£T)

XT.‘ =X
V. Leclere Dynamic Programming
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Bellman's recursion : finite horizon Q

In the finite horizon setting we have
V() = K(x)
V() =minE [ Xes1) + Viga (Xesa) ( X, =x, a =3

= gneiﬂy%;( P3(x,y) (Ct(X7Y) + Vtﬂ(y))
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Bellman's recursion : finite horizon Q

In the finite horizon setting we have

Vr(x) = K(x)
V() =minE [ct(x, Xe1) + Visr (Xes1) ( X, = x, ar = a]

= gneiﬂy;( P3(x,y) (Ct(X7Y) + Vtﬂ(y))

An optimal policy is given by

me(x) € arﬂin; P y) (el y) + Vera ().
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters

Result: optimal trajectory and value;
Vr=K; V:=0

fort: T—1— 0do

for x € X do

L Vi(x) = minaGAE[Ct(XaXt+1) + Ve (Xeq1) | Xe = x, ar = 3}

Algorithm 1: Classical stochastic dynamic programming algorithm
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters

Result: optimal trajectory and value;

V=K ; Vi,=0

fort: T—1—0do

for x ¢ X do

Vi(x) = o0

for a € A do
Q(x,a)=E [ct(x, Xiv1) + Vig1(Xep1) | Xe =x, ar = a}
if Q(x,a) < Vi(x) then
L Vi(x) = Q(x, a)

me(x) = a

Algorithm 2: Classical stochastic dynamic programming algorithm
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
Vi=K; V,=0
fort: T—1— 0do
for x € X do
Vi(x) = o0
for a € Ado
Q(Xa a) =0
for y € X do
L Q(x,a) = Q(x, a) + P(x, y)[ce(x, y) + Vesa(y)]
if Q(x,a) < Vi(x) then
L Vi(x) = Q(x, a)

me(x) = a

Algorithm 3: Classical stochastic dynamic programming algorithm
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3 curses of dimensionality @

Complexity = O(T x |X|? x |A|)
Linear in the number of time steps, but we have 3 curses of dimensionality

@ State. Complexity is exponential in the dimension of X
e.g. 3 independent states each taking 10 values leads to a loop over
103 points.

@ Decision. Complexity is exponential in the dimension of X}.
~> due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

© Expectation. Complexity is exponential in the dimension of =;.
~~ due to expectation computation. Can be accelerated through
Monte-Carlo approximation (still at least 1000 points)
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3 curses of dimensionality @

Complexity = O(T x |X|? x |A|)
Linear in the number of time steps, but we have 3 curses of dimensionality

@ State. Complexity is exponential in the dimension of X
e.g. 3 independent states each taking 10 values leads to a loop over
103 points.

@ Decision. Complexity is exponential in the dimension of X}.
~> due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

© Expectation. Complexity is exponential in the dimension of =;.
~~ due to expectation computation. Can be accelerated through
Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.

V. Leclere Dynamic Programming February 11, 2022 24 /40



Some remarks &

@ The loop on the next state y does not need to be on all state, but
only on all reachable next state from state x.
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Some remarks &

@ The loop on the next state y does not need to be on all state, but
only on all reachable next state from state x.

@ In some cases you do not need to compute the V¢(x) for all x € X,
indeed you might be able to show that some part of the state space X
are not reachable (or not reachable under an optimal policy) at time t.
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Some remarks &

@ The loop on the next state y does not need to be on all state, but
only on all reachable next state from state x.

@ In some cases you do not need to compute the V¢(x) for all x € X,
indeed you might be able to show that some part of the state space X
are not reachable (or not reachable under an optimal policy) at time t.

@ To represent that, at some time t, some state x € X are forbidden,
you can simply encode V;(x) = +oc.

o To represent that, at some time t, the transition x — y is forbidden,
you can simply encode ¢;(x,y) = +oc.
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Exercise

o Let ¥ ={0,1,2,3}, A={0,1}.

o Let (X¢)tequ5) be a controlled Markov chain, such that, if a =0, it
stays in its state, and if a =1 it has a probability 0.5 of going 1 up (if
possible, otherwise stay in place), and 0.5 of going 1 down (if
possible, otherwise stay in place).

Solve by Dynamic Programming the following optimization problem.

4
Max E[thz’ | Xo =0
t=0
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Bellman's value function

The Bellman's value function, a.k.a cost-to-go function, is defined as
(when the expectation make sense)

Vi(x) = Min [ZPT e (XT XThy) | Xt:X]

It is the value of the problem starting from time t in state x.
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Bellman's value function &

The Bellman's value function, a.k.a cost-to-go function, is defined as
(when the expectation make sense)

Vi(x) 3:7'\r/|6iﬁ [ZPT e (XT XThy) | Xt:X]

It is the value of the problem starting from time t in state x.
The expectation is well defined for example if we consider finite controlled Markov chain
and one of the following holds:

@ we are in the finite horizon framework,

@ ¢t =cand p<1,

@ ¢ = ¢ and there is a cemetery state (that is an aborbing state with null transition
cost) that is almost surely reached.
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Bellman’s recursion &

Vi(+) = Min E[Zp & (XF,XT,0) ‘ X™ = x]
= Min E e (XT, X,1) e XZ)| X7 =]
T T=t+1
=t 3 P () + MinE| S e, X7)| Xia = v))
ex T=t+1
=Min >  P*(x, y)(ce(x, ¥) + pVisa(y))
yeX

= DQIEE [Ct(xtaxt-i-l) + pVir1(Xeq1) ’ Xe=x,ar = 3]
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Bellman’s recursion &

Vi) = Min B[ 30 07 (X7, X7,) | X7 =]
= Min B [c, (X7, XT,1) F 3 e (XX | X7 =]

T=t+1

(x Y)<Ct(X y)+M|nIE{ Z pT e (X, X:+1)) X[ :yD

M2~
Ar] Z P, y)(ce(x, y) + pVira(y))

I
s

= DQIEE {Ct(xtaxt+l) + pVir1(Xeq1) ’ Xe=x,ar = 3]

This equation should be understood as the cost-to-go from state x and time t is
equal to the minimum expected current cost plus futur cost.
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Stationary problem %

From now on we make the following assumption:
@ the set of possible values X is finite,
@ the transition cost is not time dependent, i.e., ¢; = c,
@ the transition kernel is not time dependent, i.e. P = P?.

Then the MDP problem is said to be stationary.
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Stationary problem %

From now on we make the following assumption:
@ the set of possible values X is finite,
@ the transition cost is not time dependent, i.e., ¢; = c,
@ the transition kernel is not time dependent, i.e. P = P?.

Then the MDP problem is said to be stationary.

A strategy s = (mt)ten is said to be stationary iff it is not time dependent,
i.e. T = T.
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Stationary problem %

From now on we make the following assumption:
@ the set of possible values X is finite,
@ the transition cost is not time dependent, i.e., ¢; = c,
@ the transition kernel is not time dependent, i.e. P = P?.

Then the MDP problem is said to be stationary.

A strategy s = (mt)ten is said to be stationary iff it is not time dependent,
ie. Ty = T.

A stationary MDP admits an optimal stationary policy.
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Stochastic Shortest Path problem %

We consider a stationary MDP, with a cemetery state.

Stopping assumption
We assume that, for every state x, there exists T such that, under any

(stationary) strategy 7 there is a positive probability of reaching the
cemetery state.

& Exercise: Show that the finite horizon problem satisfy this stopping
assumption.

& Exercise: Show that, if p < 1, even without an absorbing state, we can
construct an equivalent MDP satisfying the stopping assumption.
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Dynamic Programming equation @

Under this stopping assumption, the value function

o
V(x) := Min E[ZpTc (XT,XZ,1) ]

Is the only function V satisfying the Dynamic Programming equation

V(x) =minE [c(x Xep1) + pV(Xes1) ( X, = x, ar = a}

= m|n Z P3(x, y)(C(X,y)‘i‘PV(Y))

acA
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Value iteration Q

Define the following sequence of function through the so-called Value
Iteration procedure

VQZX'-)O

Vig1 o x—=min > P(x,y) <ct(x,y) + th(y)>
ae‘AyGX

Then we have V; — V%,

@& Exercise: Recognize the Dynamic Programming algorithm of the finite
horizon case. Interpret this result in terms of finite horizon approximation.
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Optimal policy %

Naturally, a stationary policy m is optimal iff the minimum is attained in
the DP equation, i.e.

Vi) = 30 PTGy (aloy) +pVA)),  Wre X
yeXx
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Law of large number and Central Limit Theorem @
Let {X,—}I.eN be a sequence of independent and identically distributed, real
valued random variables. We denote the empirical mean My = % Z,N:1 X;.

Theorem (LLN)

If X1 admits first order moment, then the empirical mean My converge
almost surely toward the expectation E[Xj].
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Law of large number and Central Limit Theorem @
Let {X;},_y be a sequence of independent and identically distributed, real
valued random variables. We denote the empirical mean My = % Z,N:l X;.

Theorem (LLN)

If X1 admits first order moment, then the empirical mean My converge
almost surely toward the expectation E[Xj].

Theorem (CLT)

If X1 admits second order moment, then we have

ﬁ(MN —IE[X]) — N(0,0)

where the convergence is in law and o is the standard deviation of Xj.
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Law of large number and Central Limit Theorem @
Let {X;},_y be a sequence of independent and identically distributed, real
valued random variables. We denote the empirical mean My = % Z,N:l X;.

Theorem (LLN)

If X1 admits first order moment, then the empirical mean My converge
almost surely toward the expectation E[Xj].

Theorem (CLT)

If X1 admits second order moment, then we have
ﬁ(MN _ E[x]) — N(0,0)

where the convergence is in law and o is the standard deviation of Xj.

In particular, the CLT means that, for G ~ N(0,0) and any |a, b],
]P’(ﬁ(MN —E[X] €a, b]) S IP’(G € [a, b]).
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Monte-Carlo method Q

o Let {X,-}I.EN be a sequence of rv iid with finite variance.

*(1-p/2)std(X) ]
@ We have IP’(MN € [E[X] + — N |) =P
@ In order to estimate the expectation E [X] we can
» sample N independent realizations of X, {X;}
» compute the empirical mean My = Zk X’, and standard-deviation sy

» choose an error level p (e.g. 5%) and compute ®~1(1 — p/2) (1.96)
» and we know that, asymptotically, the expectation E [X] is in

My + 2@ | \ith probability (on the sample) 1 —
e p y p p

i€[1,N]
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Good practice in optimization under uncertainty @

o Optimization under uncertainty is hard.
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Good practice in optimization under uncertainty @

@ Optimization under uncertainty is hard.

@ You should first decide on a simulator for your problem, as precise as
possible.

@ Then, you should decide which problem you are going to solve. Most
of the time it will be an approximation of the true problem.

@ You can now solve, exactly or approximately this problem. Once you
have a solution you should simulate it on your simulator (expected
cost can be estimated by Monte Carlo).

@ It is good practice to come up with reasonable heuristic to test your
solution.
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What you have to know

@ What is a Markov Chain, a Markov Controlled Chain.
@ What is a Markov Decision Problem, a state, a policy
@ What is the Bellman’s value function a.k.a cost-to-go

@ Estimate the value of a policy through Monte Carlo
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What you really should know

@ the complexity of Dynamic Programming

@ how to model forbidden state in DP

@ How to guarantee that an MDP in infinite horizon admits an optimal
stationary policy

V. Leclere Dynamic Programming February 11, 2022 38/40



What you have to be able to do

@ Recognize an MDP
@ Write a Dynamic Programming equation

@ Solve a simple, finite horizon, MDP problem through Dynamic
Programming

V. Leclere Dynamic Programming February 11, 2022 39/40



What you should be able to do

@ Know if a problem can numerically be tackled through Dynamic
Programming

@ Reframe a non-Markovian problem as a Markovian problem through
extending the state

@ Implement a value iteration algorithm in infinite horizon setting

V. Leclere Dynamic Programming February 11, 2022 40 /40



	Controlled Markov Chain
	Dynamic Programming
	Markov Decision Problem
	Dynamic Programming: Intuition
	Dynamic Programming : Value function
	Dynamic Programming : implementation

	Infinite horizon
	Parting thoughts
	Wrap-up

