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Why should I bother to learn this stuff ?

Main algorithm principle for training machine learning model, and in
particular deep neural network
=⇒ useful for

I understanding how the library train ML models
I specialization in optimization
I specialization in machine learning
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The optimization problem ♥

We consider the following optimization problem

Min
x∈Rp

F (x) := E
[
f (x , ξ)

]
where ξ is a random variable.
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Computing the gradient ♥

F (x) := E
[
f (x , ξ)

]
Under some regularity conditions (e.g. f (·, ξ) differentiable, ∂f (x , ·)

∂x
Lipschitz, and ξ integrable) we have

∇F (x) = E
[
∂f
∂x (x , ξ)

]
This is obvious if ξ is finitely supported : supp(ξ) = {ξi}i∈[N], and
pi := P(ξ = ξi),

∇F (x) = ∂

∂x

( ∑
i∈[N]

pi f (x , ζ)
)

=
∑
i∈[N]

pi
∂

∂x f (x , ζ)
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Standard continuous optimization method

Thus, we are looking at
Min
x∈Rp

F (x)

where F is a (strongly) convex differentiable function if f (·, ξ) is, and we
know how to compute its gradient.

Thus, we should be able to solve our problem through the method
presented in earlier courses:

gradient algorithm
conjugate gradient
Newton / Quasi-Newton

Why bother with another (class of) algorithm ?
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Computing the gradient is costly ♥

For a given solution x ∈ Rp computing the gradient

∇F (x) = E
[∂f (x , ξ)

∂x

]
is costly as it requires to compute a multidimensionnal integral (if ξ
admits a density), or a large sum.

Indeed, in most machine learning application, we consider that ξ is
uniformly distributed over the data (empirical risk minimization), thus
computing the gradient require a pass over every sample in the dataset.

Dataset of size N > 106 are common.

V. Leclère Stochastic Gradient Method May 28th, 2021 6 / 14



Computing the gradient is costly ♥

For a given solution x ∈ Rp computing the gradient

∇F (x) = E
[∂f (x , ξ)

∂x

]
is costly as it requires to compute a multidimensionnal integral (if ξ
admits a density), or a large sum.

Indeed, in most machine learning application, we consider that ξ is
uniformly distributed over the data (empirical risk minimization), thus
computing the gradient require a pass over every sample in the dataset.

Dataset of size N > 106 are common.

V. Leclère Stochastic Gradient Method May 28th, 2021 6 / 14



Computing the gradient is costly ♥

For a given solution x ∈ Rp computing the gradient

∇F (x) = E
[∂f (x , ξ)

∂x

]
is costly as it requires to compute a multidimensionnal integral (if ξ
admits a density), or a large sum.

Indeed, in most machine learning application, we consider that ξ is
uniformly distributed over the data (empirical risk minimization), thus
computing the gradient require a pass over every sample in the dataset.

Dataset of size N > 106 are common.

V. Leclère Stochastic Gradient Method May 28th, 2021 6 / 14



Estimating the gradient ♥

Instead of using a true gradient

g (k) = ∇F (x (k))

we can use a statistical estimator of the gradient

ĝ (k) ; ∇F (x (k)) = E
[∂f (x (k), ξ)

∂x

]
The most standard estimator being

ĝ (k) =
∂f (x (k), ξ(k))

∂x

where ξ(k) is drawn randomly according to the law of ξ (i.e. it is a random
datapoint).
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Pros and Cons ♥

Pros:
computing ĝ (k) = ∂f (x (k),ξ(k))

∂x is really easy
we do not need to spend lots of time early on to get a precise gradient
we can stop whenever we want (do not need a full pass on the data)

Cons:
ĝ (k) is a noisy estimator of the gradient
requires a new convergence theory
x (k+1) := x (k+1) − αĝ (k) generally does not converges almost surely
to the optimal solution as this make a noisy trajectory
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Noisy trajectory ♦

At optimality we should have ∇F (x ]) = 0

It doesnot mean that ∂f (x],ξ(k))
∂x equals 0 !

In particular there is no reasong for ĝ (k) to be eventually small, only
its expectation should be small !

; we generally use either:

I decreasing step e.g. α(k) =
α(0)

k
I average points x̄ (k) =

1
k
∑

κ≤k x (κ)
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Mini-batch version ♦

ĝ (k) = ∂f (x (k),ξ(k))
∂x is an easy to compute but noisy estimator of the

gradient
ĝ (k) = 1

N
∑

i∈[N]
∂f (x (k),ξi )

∂x is a long (full batch) to compute but
perfect estimator
minibatch aims at a middle ground : randomly draw a sample S of
realizations of ξ, and use ĝ (k) = 1

|S|
∑

ξ∈S
∂f (x (k),ξ)

∂x
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Video explanation

Videos by Andrew Ng (Former Standford professor)
https://www.youtube.com/watch?v=W9iWNJNFzQI&list=
PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=24 (13’)
https://www.youtube.com/watch?v=l4lSUAcvHFs&list=
PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=25(6’)

Another video with numericals tricks to improve the convergence
https://www.youtube.com/watch?v=kK8-jCCR4is&list=
PLWbSa0uhIdsa6wpq9s_cKOP-PjeU0aIIu&index=23(10’)
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What you have to know

That for a stochastic problem gradient step requires to compute an
expectation
That stochastic gradient do not compute the true gradient, but only
an estimator of the gradient
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What you really should know

gradient algorithm (or more advanced version) is faster in term of
number of iterations
stochastic gradient needs more iteration, but each is faster
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What you have to be able to do

dive in the scientific litterature on the subject if you need to
implement this type of algorithm
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