## Stochastic Gradient Method

#### V. Leclère (ENPC)

May 28th, 2021

# Why should I bother to learn this stuff ?

- Main algorithm principle for training machine learning model, and in particular deep neural network
- ullet  $\Longrightarrow$  useful for
  - understanding how the library train ML models
  - specialization in optimization
  - specialization in machine learning

#### Contents

#### Setting up the problem

#### 2 Full batch method

3 Stochastic and minibatch version



#### We consider the following optimization problem

$$\underset{x \in \mathbb{R}^{p}}{\operatorname{Min}} \quad F(x) := \mathbb{E}\Big[f(x, \xi)\Big]$$

where  $\boldsymbol{\xi}$  is a random variable.

#### Contents

Setting up the problem

#### 2 Full batch method

3 Stochastic and minibatch version



# Computing the gradient

$$F(\mathbf{x}) := \mathbb{E}\Big[f(\mathbf{x}, \boldsymbol{\xi})\Big]$$

Under some regularity conditions (e.g.  $f(\cdot,\xi)$  differentiable,  $\frac{\partial f(x,\cdot)}{\partial x}$ Lipschitz, and  $\xi$  integrable) we have

$$abla F(\mathbf{x}) = \mathbb{E}\left[rac{\partial f}{\partial x}(\mathbf{x}, \boldsymbol{\xi})
ight]$$

This is obvious if  $\boldsymbol{\xi}$  is finitely supported :  $\operatorname{supp}(\boldsymbol{\xi}) = \{\xi_i\}_{i \in [N]}$ , and  $p_i := \mathbb{P}(\boldsymbol{\xi} = \xi_i)$ ,

$$\nabla F(\mathbf{x}) = \frac{\partial}{\partial x} \left( \sum_{i \in [N]} p_i f(\mathbf{x}, \zeta) \right) = \sum_{i \in [N]} p_i \frac{\partial}{\partial x} f(\mathbf{x}, \zeta)$$

# Computing the gradient

$$F(\mathbf{x}) := \mathbb{E}\Big[f(\mathbf{x}, \boldsymbol{\xi})\Big]$$

Under some regularity conditions (e.g.  $f(\cdot,\xi)$  differentiable,  $\frac{\partial f(x,\cdot)}{\partial x}$ Lipschitz, and  $\xi$  integrable) we have

$$abla F(\mathbf{x}) = \mathbb{E}\left[\frac{\partial f}{\partial x}(\mathbf{x}, \boldsymbol{\xi})\right]$$

This is obvious if  $\boldsymbol{\xi}$  is finitely supported : supp $(\boldsymbol{\xi}) = \{\xi_i\}_{i \in [N]}$ , and  $p_i := \mathbb{P}(\boldsymbol{\xi} = \xi_i)$ ,

$$\nabla F(\mathbf{x}) = \frac{\partial}{\partial x} \left( \sum_{i \in [N]} p_i f(\mathbf{x}, \zeta) \right) = \sum_{i \in [N]} p_i \frac{\partial}{\partial x} f(\mathbf{x}, \zeta)$$

## Standard continuous optimization method

Thus, we are looking at

 $\min_{\mathbf{x}\in\mathbb{R}^p}F(\mathbf{x})$ 

where F is a (strongly) convex differentiable function if  $f(\cdot, \xi)$  is, and we know how to compute its gradient.

Thus, we should be able to solve our problem through the method presented in earlier courses:

- gradient algorithm
- conjugate gradient
- Newton / Quasi-Newton

Why bother with another (class of) algorithm ?

### Standard continuous optimization method

Thus, we are looking at

 $\min_{\mathbf{x}\in\mathbb{R}^p}F(\mathbf{x})$ 

where F is a (strongly) convex differentiable function if  $f(\cdot, \xi)$  is, and we know how to compute its gradient.

Thus, we should be able to solve our problem through the method presented in earlier courses:

- gradient algorithm
- conjugate gradient
- Newton / Quasi-Newton

Why bother with another (class of) algorithm ?

## Standard continuous optimization method

Thus, we are looking at

 $\min_{\mathbf{x}\in\mathbb{R}^p}F(\mathbf{x})$ 

where F is a (strongly) convex differentiable function if  $f(\cdot, \xi)$  is, and we know how to compute its gradient.

Thus, we should be able to solve our problem through the method presented in earlier courses:

- gradient algorithm
- conjugate gradient
- Newton / Quasi-Newton

Why bother with another (class of) algorithm ?

#### Contents

Setting up the problem

- 2 Full batch method
- 3 Stochastic and minibatch version



# Computing the gradient is costly

For a given solution  $\mathbf{x} \in \mathbb{R}^p$  computing the gradient

$$abla F(\mathbf{x}) = \mathbb{E}\Big[\frac{\partial f(\mathbf{x}, \boldsymbol{\xi})}{\partial \mathbf{x}}\Big]$$

is costly as it requires to compute a multidimensionnal integral (if  $\xi$  admits a density), or a large sum.

Indeed, in most machine learning application, we consider that  $\boldsymbol{\xi}$  is uniformly distributed over the data (*empirical risk minimization*), thus computing the gradient require a pass over every sample in the dataset.

Dataset of size  $N > 10^6$  are common.

# Computing the gradient is costly

For a given solution  $\mathbf{x} \in \mathbb{R}^p$  computing the gradient

$$abla F(\mathbf{x}) = \mathbb{E}\Big[\frac{\partial f(\mathbf{x}, \boldsymbol{\xi})}{\partial \mathbf{x}}\Big]$$

is costly as it requires to compute a multidimensionnal integral (if  $\xi$  admits a density), or a large sum.

Indeed, in most machine learning application, we consider that  $\xi$  is uniformly distributed over the data (*empirical risk minimization*), thus computing the gradient require a pass over every sample in the dataset.

Dataset of size  $N > 10^6$  are common.

# Computing the gradient is costly

For a given solution  $\mathbf{x} \in \mathbb{R}^p$  computing the gradient

$$abla F(\mathbf{x}) = \mathbb{E}\Big[\frac{\partial f(\mathbf{x}, \boldsymbol{\xi})}{\partial \mathbf{x}}\Big]$$

is costly as it requires to compute a multidimensionnal integral (if  $\xi$  admits a density), or a large sum.

Indeed, in most machine learning application, we consider that  $\xi$  is uniformly distributed over the data (*empirical risk minimization*), thus computing the gradient require a pass over every sample in the dataset.

Dataset of size  $N > 10^6$  are common.

## Estimating the gradient

Instead of using a true gradient

$$g^{(k)} = \nabla F(x^{(k)})$$

we can use a statistical estimator of the gradient

$$\hat{g}^{(k)} \rightsquigarrow \nabla F(x^{(k)}) = \mathbb{E}\Big[\frac{\partial f(x^{(k)}, \boldsymbol{\xi})}{\partial x}\Big]$$

The most standard estimator being

$$\hat{g}^{(k)} = \frac{\partial f(x^{(k)}, \xi^{(k)})}{\partial x}$$

where  $\xi^{(k)}$  is drawn randomly according to the law of  $\boldsymbol{\xi}$  (i.e. it is a random datapoint).

## Estimating the gradient

Instead of using a true gradient

$$g^{(k)} = \nabla F(x^{(k)})$$

we can use a statistical estimator of the gradient

$$\hat{g}^{(k)} \rightsquigarrow \nabla F(x^{(k)}) = \mathbb{E}\Big[\frac{\partial f(x^{(k)}, \boldsymbol{\xi})}{\partial x}\Big]$$

The most standard estimator being

$$\hat{g}^{(k)} = \frac{\partial f(x^{(k)}, \xi^{(k)})}{\partial x}$$

where  $\xi^{(k)}$  is drawn randomly according to the law of  $\xi$  (i.e. it is a random datapoint).

# Pros and Cons

 $\heartsuit$ 

Pros:

- computing  $\hat{g}^{(k)} = \frac{\partial f(x^{(k)},\xi^{(k)})}{\partial x}$  is really easy
- we do not need to spend lots of time early on to get a precise gradient
- ${\ensuremath{\, \bullet }}$  we can stop whenever we want (do not need a full pass on the data) Cons:
  - $\hat{g}^{(k)}$  is a noisy estimator of the gradient
  - requires a new convergence theory
  - x<sup>(k+1)</sup> := x<sup>(k+1)</sup> αĝ<sup>(k)</sup> generally does not converges almost surely to the optimal solution as this make a noisy trajectory

# Noisy trajectory



- At optimality we should have  $\nabla F(x^{\sharp}) = 0$
- It doesnot mean that  $\frac{\partial f(x^{\sharp},\xi^{(k)})}{\partial x}$  equals 0 !
- In particular there is no reasong for  $\hat{g}^{(k)}$  to be eventually small, only its expectation should be small !
- $\rightsquigarrow$  we generally use either:
  - decreasing step e.g.  $\alpha^{(k)} = \frac{\alpha^{(0)}}{k}$

• average points 
$$\bar{x}^{(k)} = \frac{1}{k} \sum_{\kappa \leq k} x^{(\kappa)}$$

# Noisy trajectory



- At optimality we should have  $abla F(x^{\sharp}) = 0$
- It doesnot mean that  $\frac{\partial f(x^{\sharp},\xi^{(k)})}{\partial x}$  equals 0 !
- In particular there is no reasong for  $\hat{g}^{(k)}$  to be eventually small, only its expectation should be small !
- $\rightsquigarrow$  we generally use either:
  - decreasing step e.g.  $\alpha^{(k)} = \frac{\alpha^{(0)}}{k}$

• average points 
$$\bar{x}^{(k)} = \frac{1}{k} \sum_{\kappa \leq k} x^{(\kappa)}$$

#### Mini-batch version



- $\hat{g}^{(k)} = \frac{\partial f(x^{(k)},\xi^{(k)})}{\partial x}$  is an easy to compute but noisy estimator of the gradient
- $\hat{g}^{(k)} = \frac{1}{N} \sum_{i \in [N]} \frac{\partial f(x^{(k)}, \xi_i)}{\partial x}$  is a long (full batch) to compute but perfect estimator
- minibatch aims at a middle ground : randomly draw a sample S of realizations of  $\xi$ , and use  $\hat{g}^{(k)} = \frac{1}{|S|} \sum_{\xi \in S} \frac{\partial f(x^{(k)}, \xi)}{\partial x}$

# Video explanation

Videos by Andrew Ng (Former Standford professor)

- https://www.youtube.com/watch?v=W9iWNJNFzQI&list= PLWbSaOuhIdsa6wpq9s\_cKOP-PjeUOaIIu&index=24 (13')
- https://www.youtube.com/watch?v=l4lSUAcvHFs&list= PLWbSaOuhIdsa6wpq9s\_cKOP-PjeUOaIIu&index=25(6')

Another video with numericals tricks to improve the convergence

https://www.youtube.com/watch?v=kK8-jCCR4is&list= PLWbSaOuhIdsa6wpq9s\_cKOP-PjeUOaIIu&index=23(10')

#### Contents

Setting up the problem

- 2 Full batch method
- 3 Stochastic and minibatch version



## What you have to know

- That for a stochastic problem gradient step requires to compute an expectation
- That stochastic gradient do not compute the true gradient, but only an estimator of the gradient

# What you really should know

- gradient algorithm (or more advanced version) is faster in term of number of iterations
- stochastic gradient needs more iteration, but each is faster

#### What you have to be able to do

• dive in the scientific litterature on the subject if you need to implement this type of algorithm