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Why should | bother to learn this stuff 7

@ Convex vocabulary and results are needed throughout the course,
especially to obtain optimality conditions and duality relations.

@ Convex analysis tools like Fenchel transform appears in modern
machine learning theory

— fundamental for M2 in continuous optimization

— usefull for M2 in operation research, machine learning (and some
part of probability or mechanics)
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Affine sets @
Let X be a normed vector space (usually X =R"), and C C X

o C is affine if it contains any lines going through two distinct points of

C,ie.
Vx,y € C, V0 eR, Ox+(1—0)y € C.

@ The affine hull of C is the set of affine combination of elements of C,

aff(C) : {Z@x,

o aff(C) is the smallest affine space containing C.

Vxi € C, Vo; € R, Ze =1, Vi € [K], VKGN}
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Affine sets @
Let X be a normed vector space (usually X =R"), and C C X

o C is affine if it contains any lines going through two distinct points of
C,i.e.
Vx,y € C, V0 eR, Ox+(1—0)y € C.

The affine hull of C is the set of affine combination of elements of C,

aff(C) : {Z@x,

aff( C) is the smallest affine space containing C.

The affine dimension of C is the dimension of aff(C) (i.e.the
dimension of the vector space aff(C) — xp for xp € C).

Vxi € C, Vo; € R, Ze =1, Vi € [K], VKGN}

@ The relative interior of C is defined as

ri(C)::{XGC ’ dr >0, B(X,r)ﬂaff(C)CC}
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Convex sets QO

@ C is convex if for any two points x and y in C
the segment [x,y] C C, i.e. Convex set

Vx,y € C, ¥ €[0,1], Ox+ (1 — )y € C.

@ The convex hull of C as the set of convex
combination of elements of C, i.e.

K
conv((C) := {ZQ;X; | Vx; € C, Non - convex set
i=1
K
VO € (0.1, 360, =1, Vi € [K], VK € N}
i=1

@ conv(C) is the smallest convex set containing

C Beasycalculation.carm
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Cones Q

@ Cisaconeifforall xe Ctheray Ryx C C, i.e.

Vx e C, VOeRy, 0x € C.

The (convex) conic hull of C is the set of all (convex) conic
combination of elements of C i.e.

cone(C) : {Zex,yvx,ec Vo € R, Vi € [K], VKEN}
i=1

cone(C) is the smallest convex cone containing C.

A cone C is pointed if it does not contain any full line Rx for x # 0.

@ For C convex, cone(C) = [J;-qtC
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Examples

Let X = R".
@ Any affine space is convex.

o Any hyperplane of X can be defined as H := {x € X | a' x = b} for
well choosen a € R” and b € R and is an affine space of dimension
n—1.

o H divide X into two half-spaces {x € R" | a'x < b and
{x € R"| a'x > b} which are (closed) convex sets.
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Examples

Let X = R".
@ Any affine space is convex.

o Any hyperplane of X can be defined as H := {x € X | a' x = b} for
well choosen a € R” and b € R and is an affine space of dimension
n—1.

o H divide X into two half-spaces {x € R" | a'x < b and
{x € R" | a'x > b} which are (closed) convex sets.

@ For any norm | - || the ball By j(x0,7) :={x € X | ||x = x| < r} isa
(closed) convex set.

& Exercise: Prove it.
@ Theset C = {(x,t) € X xR | ||x]| < t} is a cone.

@ The set C = {x € X | Ax < b} where A and b are given is a (closed)
convex set called polyhedron.
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Operations preserving convexity @

Assume that all set denoted by C (indexed or not) are convex.
o (G + G and (G x G, are convex sets.
e For any arbitrary index set Z the intersection [);.7 G; is convex.
o Let f be an affine function. Then f(C) and f~1(C) are convex.
@ In particular, C + xg, and tC are convex. The projection of C on any
affine space is convex.
@ The closure cl(C) and relative interior ri(C) are convex.

& Exercise: Prove these results.
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Perspective and linear-fractional function %
Let P:R" x R — R” be the perspective function defined as
P(x,t) = x/t, with dom(P) = R" x R%..

Theorem

If C C dom(P) is convex, then P(C) is convex.
If C C R" is convex, then P~1(C) is convex.

& Exercise: Prove this result.
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Perspective and linear-fractional function %
Let P:R" x R — R” be the perspective function defined as
P(x,t) = x/t, with dom(P) = R" x R%..

Theorem

If C C dom(P) is convex, then P(C) is convex.
If C C R™ is convex, then P~1(C) is convex.

& Exercise: Prove this result.

Let f : R™ — R™ be a linear-fractional function of the form
f(x) := (Ax + b)/(c"x + d), with dom(f) = {x |c"x + d > 0}.

Theorem
If C C dom(f) is convex, then f(C) and f~1(C) are convex. J

& Exercise: prove this result.

V. Leclére Convexity February, 24th 2022 8/39



Cone ordering

Let K C R" be a closed, convex, pointed cone with non empty interior.
We define the cone ordering according to K by

x=2ky <= y—xeKkK.

& Exercise: Prove that <k is a partial order (i.e.reflexive, antisymmetric,
transitive) compatible with scalar product, addition and limits.
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Separation %

Let X be a Banach space, and X* its topological dual (i.e. the set of all
continuous linear form on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. There exists a
separating hyperplane (x*,a) € X* x R such that

(x*,a) < a < (x*,b) Va,b e Ax B.

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is
closed, and B is compact (e.g. a point), then there exists a strict separating
hyperplane (x*,a) € X* x R such that, there exists € > 0,

(x;a)+e<a<(x",b)—e Vabe AxB.

Remark: these theorems require the Zorn Lemma which is equivalent to the
axiom of choice.
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Supporting hyperplane %

Theorem

Let <y ¢ 1i(C) and C convex. Then
there exists a # 0 such that

a'x>ax, Vx e C

If xo € C, say that
H={x|a'x=a'xy} is a supporting
hyperplane of C at xg.

& Exercise: prove this theorem
Remark : there can be more than one
supporting hyperplane at a given point.
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Convex set as intersection of half-spaces %

@ The closed convex hull of C C X, denoted conv(C) is the smallest
closed convex set containing C.

e conv(C) is the intersection of all the half-spaces containing C.

@ A polyhedron is a finite intersection of half-spaces, a convex set is a
possibly non-finite intersection of half-spaces.
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Dual and normal cones

o Let C C R" be a set. We define
its dual cone by

(P:={x|x"c>0, Vce (}

@ For any set C, C? is a closed
convex cone.
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Dual and normal cones

o Let C C R" be a set. We define
its dual cone by

(P:={x|x"c>0, Vce (}

@ For any set C, C? is a closed
convex cone.

@ The normal cone of C at xp is

Ne(xo) = {N € E| AT (x - x) <0,
Vxe C}
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Examples

@ The positive orthant K = R/, is a self dual cone, that is K% = K.

@ In the space of symetric matrices S,(R), with the scalar product
(A, B) = tr(AB), the set of positive semidefinite matrices K = S, (R)
is self dual.

o Let | - || be a norm. The cone K = {(x,t) | ||x|]| < t} has for dual
K® = {(\, 2) | |\llx < z}, where || All, := SUP:|Ix||<1 AT x.

& Exercise: prove these results
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Some basic properties

Let K C R" be a cone.
e K% is closed convex.
o Ki C Kz implies Ky C K{
o K% =convK

& Exercise: Prove these results
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Video ressources

https://www.youtube.com/watch?v=P3W_wFZ2kUo
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https://www.youtube.com/watch?v=P3W_wFZ2kUo
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Functions with non finite values Q

o It is very usefull in optimization to allow functions to take non finite
values, that is to take values in R := R U {—o00, +00}.

@ If both —oo and 4o are allowed be very careful of each addition !
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Functions with non finite values Q

o It is very usefull in optimization to allow functions to take non finite
values, that is to take values in R := R U {—o00, +00}.

@ If both —oo and 4o are allowed be very careful of each addition !
o Let f: X — R. We define

> the domain of f as
dom(f) :={xe X | f(x)<+oo}.
» The epigraph of f as
epi(f) == {(x,t) e X xR | f(x) <t}
» The sublevel set of level «

levo(f) :={xe X | f(x)<a}.
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Functions with non finite values Q

o It is very usefull in optimization to allow functions to take non finite
values, that is to take values in R := R U {—o00, +00}.

@ If both —oo and +oo are allowed be very careful of each addition !
o Let f: X — R. We define

> the domain of f as
dom(f) :={xe X | f(x)<+oo}.
» The epigraph of f as
epi(f) == {(x,t) e X xR | f(x) <t}
» The sublevel set of level «
levo(f) :={xe X | f(x)<a}.

o f is said to be lower semi continuous (l.s.c.) if epi(f) is closed.

@ f is said to be proper if it never takes value —oo, has a non-empty
domain (at least one finite value).
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Convex function Q

e A function f: X — R is
convex if its epigraph is
convex.

o f: X —=RU{+o0}is
convex iff

vVt € [0,1], Vx,y € X,
f(tx + (1 —t)y) < tf(x)+ (1 — t)f(y)

@ f is concave if —f is convex.
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Basic properties @

If f, g convex, t > 0, then tf + g is convex.
If f convex non-decreasing, g convex, then f o g convex.

If f convex and a affine, then f o a is convex.

°
o

o

o If (f)ies is a family of convex functions, then sup;¢ f; is convex.

@ The domain and the sublevel sets of a convex function are convex.
E

xercise: Prove these results.

[ )
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Basic properties @

If f, g convex, t > 0, then tf + g is convex.
If f convex non-decreasing, g convex, then f o g convex.

If f convex and a affine, then f o a is convex.

If (fi)ics is a family of convex functions, then sup;¢, f; is convex.
@ The domain and the sublevel sets of a convex function are convex.

& Exercise: Prove these results.

Theorem (Jensen inequality)

Let f be a convex function and X an integrable random variable. Then we
have
f(E [X]) < E[f(X)].
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Convex functions : strict and strong convexity @

@ f: X — RU{+oc} is strictly convex iff

vVt €]0,1[, Vx,y € X, f(tx + (1 —t)y) < tf(x) + (1 — t)f(y).
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Convex functions : strict and strong convexity @

@ f: X — RU{+oc} is strictly convex iff
vVt €]0,1[, Vx,y € X, f(tx 4+ (1 —t)y) < tf(x) + (1 — t)f(y).

o If f € CL(R")

» (Vf(x) — Vif(y),x —y) > 0iff f convex
» if strict inequality holds, then f strictly convex
» f: X = RU{+o00} is a-convex iff Vx,y € X

F(y) = F() + (VEC)y =) + Sy = <.
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Convex functions : strict and strong convexity @

@ f: X — RU{+oc} is strictly convex iff
vVt €]0,1[, Vx,y € X, f(tx 4+ (1 —t)y) < tf(x) + (1 — t)f(y).

o If f € CL(R")

» (Vf(x) — Vif(y),x —y) > 0iff f convex
» if strict inequality holds, then f strictly convex
» f: X = RU{+o00} is a-convex iff Vx,y € X

F(y) = F() + (VEC)y =) + Sy = <.

o If f € C2(RM),

» V2f = 0 iff f convex
» if V2f = 0 then f strictly convex
» if V2f %= al then f is a-convex
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Important examples

@ The indicator function of a set C C X,

0 if xeC
Ie(x) == ,
400 otherwise
is convex iff C is convex.

@ x — e is convex for any a € R

@ x — ||x||9 is convex for ¢ > 1 and any norm

@ x — In(x) is concave

@ x — xIn(x) is convex

o x — In(327 €9) is convex
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Convex optimization problem @

e )

Where C is closed convex and f convex finite valued, is a convex
optimization problem.
o If Cis compact and f proper Isc, then there exists an optimal solution.
o If f proper Isc and coercive, then there exists an optimal solution.
@ The set of optimal solutions is convex.
o If f is strictly convex the minimum (if it exists) is unique.
@ If f is a-convex the minimum exists and is unique.

& Exercise: Prove these results.
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Optimality conditions @

Note that minimizing f over C or minimizing f 4 I over X is the same
thing.
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Optimality conditions @

Note that minimizing f over C or minimizing f 4 I over X is the same
thing.

We consider the (unconstrained) optimization problem

Mi f
Mg 10

with x? an optimal solution and f not necessarily convex.
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Optimality conditions @

Note that minimizing f over C or minimizing f 4 I over X is the same
thing.
We consider the (unconstrained) optimization problem

Mi f

Mig T,

with x? an optimal solution and f not necessarily convex.
o If f is differentiable, then Vf(x*) = 0.
o If f is twice differentiable, then V2f(x#) > 0.

o If f is twice differentiable and V2f(xp) = 0 then xg is a local
minimum.
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Optimality conditions

Note that minimizing f over C or minimizing f 4 I over X is the same

thing.

We consider the (unconstrained) optimization problem
Mi f
Xex (x),

with x* an optimal solution and f not necessarily convex.
o If f is differentiable, then Vf(x*) = 0.
o If f is twice differentiable, then V2f(x*) = 0.
o If f is twice differentiable and V2f(xp) = 0 then xg is a local

minimum.
If in addition f is convex then Vf(x) = 0 is a sufficient optimality

condition.
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Partial infimum Q

Let f be a convex function and C a convex set. The function
g x+— inf f(x,y)
yeC

is convex.
& Exercise: Prove this result.
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Partial infimum Q

Let f be a convex function and C a convex set. The function
g x+— inf f(x,y)
yeC

is convex.
& Exercise: Prove this result.

& Exercise: Prove that the function distance to a convex set C defined by
de(x) :== inf |[c — ]|
ceC

is convex.
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Perspective function %

Let ¢ : E — R. The perspective
of ¢ is defined as
¢:RY x E—R by

d(n.y) :==no(y/n).

Theorem J

¢ is convex iff ¢ is convex.

# Exercise: prove this result
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Inf-Convolution &

Let f and g be proper function from X to R U {+o0}. We define
fOg : x— inf f(y)+g(x—y)
yeX

& Exercise: Show that
o flg = gldf

o If f and g are convex then so is flg
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Subdifferential of convex function &

Let X be an Hilbert space, f : X — R convex.

@ The subdifferential of f at x € dom(f) is the set of slopes of all affine
minorants of f exact at x:

OF(x) = {A eX | ()= — )+ f(x)}.
@ If f is derivable at x then

of(x) = {Vf(x)}.
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Examples %

o If f: x> |x]|, then

-1 if x<0
of(x) =< [-1,1] ifx=0
1 if x>0

e If Cis convex then, for x € C, 9(I¢)(x) = N¢(x)
& Exercise: Prove it.

e If f; and f, are convex and differentiable. Define f = max(fi, f2).
Then
s i A(x) > h(x), DF(x) = {VA(x)}
> if A(x) < K(x), 0f(x) = {Vh(x)}
> if A(x) = f(x), 0f(x) = conv({Vi(x), VH(x)}).

V. Leclére Convexity February, 24th 2022 28/39



Subdifferential calculus &
Let f; and f, be proper convex functions.

Theorem
We have

I(f)(x) + 0(h)(x) C I(A + H)(x), Vx
Further if ri(dom(f)) Nri(dom(f)) # 0 then

A(A)(x) + 0(hL)(x) = (A + H)(x), Vx

When f; is polyhedral you can replace ri(dom(f;)) by dom(f;) in the
condition.
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Subdifferential calculus
Let f; and £, be proper convex functions.

Theorem

We have
I(f)(x) + 9(R)(x) C o(h + R)(x),  Vx

Further if ri(dom(f)) Nri(dom(f)) # 0 then
I(f)(x) + 0(h)(x) = (A + f)(x), Vx

When f; is polyhedral you can replace ri(dom(f;)) by dom(f;) in the
condition.

Theorem
If f is convex and a : x — Ax + b with Im(a) Nri(dom(f)) # 0, then

O(f o a)(x) = ATOf(Ax + b).

v
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First order condition of optimality

Theorem

Let f: X — RU {400} be a convex function (not necessarily)
differentiable. <" is a minimizer of f if and only if 0 € Of(x").
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First order condition of optimality

Theorem

Let f: X — RU {400} be a convex function (not necessarily)
differentiable. < is a minimizer of f if and only if 0 € Of ().

Theorem

Let f be a proper convex function and C a closed non empty convex set
such that ri(C) Nri(dom(f)) # 0 then x* is an optimal solution to

min f(x)
iff
0 € OF (") + Nc (),
iff

3N € AF(xF), Ae —Nc(x).
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Normal cone, Tangeant cone and optimality

Let C be a convex set. We define the tangeant cone of C C R" at point

x € C, as the set of direction in which you can move from x while staying
in C for some time, that is

Tc(x) = {)\(y—X) ‘y €C, \¢ R*}

In particular, T¢(x) = R"iff x € int(C).
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Normal cone, Tangeant cone and optimality

Let C be a convex set. We define the tangeant cone of C C R" at point
x € C, as the set of direction in which you can move from x while staying
in C for some time, that is

Te(x) = {)\(y — ) ‘ yeC, Xe R+}
In particular, T¢(x) = R"iff x € int(C).

& Exercise: Prove that [T¢(x)]® = —N¢(x).
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Partial infimum &

Let f: X x Y — IR be a jointly convex and proper function, and define

V() = inf F(x.y)

then v is convex.
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Partial infimum &

Let f: X x Y — IR be a jointly convex and proper function, and define

V() = inf F(x.y)

then v is convex.
If v is proper, and v(x) = f(x, y#(x)) then

ov(x)={geX | (g0)€df(xy*(x)}
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Partial infimum &

Let f: X x Y — IR be a jointly convex and proper function, and define

V() = inf F(x.y)

then v is convex.
If v is proper, and v(x) = f(x, y#(x)) then

v(x)={geX | (g0)€df(xy ()}
proof:

geiv(x) <« VX, v(x') > v(x) + (g, x" — x)

& Wy F(LY) > FayH)) + <(§> ! (;i) - <yﬁ?x>>>

& (g) € 9f(x, yH(x))
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Convex function : regularity %

@ Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.

@ A proper convex function is subdifferentiable on the relative interior of
its domain.

e If f is convex, it is L-Lipschitz iff 9f(x) C B(0,L), Vx € dom(f)
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Fenchel transform &

Let X be a Hilbert space, f : X — IR be a proper function.
@ The Fenchel transform of f, is f* : X — R with

r(N) = )s(.g)(()\,x> — f(x).
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Fenchel transform &

Let X be a Hilbert space, f : X — IR be a proper function.
@ The Fenchel transform of f, is f* : X — R with
() := sup(\, x) — f(x).

xeX

@ f* is convex Isc as the supremum of affine functions.
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Fenchel transform &

Let X be a Hilbert space, f : X — IR be a proper function.
@ The Fenchel transform of f, is f* : X — R with

r(N) = )s:g)(()\,x> — f(x).

@ f* is convex Isc as the supremum of affine functions.
o f < g implies that f* > g*.
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Fenchel transform &

Let X be a Hilbert space, f : X — IR be a proper function.
@ The Fenchel transform of f, is f* : X — R with

() = )s:g)(()\,x> — f(x).

@ f* is convex Isc as the supremum of affine functions.
o f < g implies that f* > g*.
o If f is proper convex Isc, then f** = f, otherwise f** < f.

& Exercise: Prove the first two points
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Fenchel transform and subdifferential &
e By definition f*(\) > (), x) — f(x) for all x,
e thus we always have (Fenchel-Young) f(x) + f*(\) > (), x).
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Fenchel transform and subdifferential &
e By definition f*(\) > (), x) — f(x) for all x,
e thus we always have (Fenchel-Young) f(x) + f*(\) > (), x).
@ Recall that A € 9f(x) iff for all X/,

f(xX") > f(x)+ O\, x' —x)

iff
(A, x) = F(x) > (0, X)) — £(X) VX
that is
A€ 0f(x) & x € argmax {(\,X) — F(x')} & (=) + F(\) = (), x)

x'eX
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Fenchel transform and subdifferential &
e By definition f*(\) > (), x) — f(x) for all x,
e thus we always have (Fenchel-Young) f(x) + f*(\) > (), x).
@ Recall that A € 9f(x) iff for all X/,
f(xX") > f(x)+ O\, x' —x)
iff
<)\aX> - f(X) > <)‘7X/> - f(X,) Vx'
that is

A€ 0f(x) & x € argmax {(\,X) — F(x')} & (=) + F(\) = (), x)
x'eX

@ From Fenchel-Young equality we have

V() #A0D = Ov*™(x) =09dv(x) and v*™*(x) = v(x).
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Fenchel transform and subdifferential &
e By definition f*(\) > (), x) — f(x) for all x,
e thus we always have (Fenchel-Young) f(x) + f*(\) > (), x).
@ Recall that A € 9f(x) iff for all X/,

F(x) = () + (k' — )
iff
(A, x) = F(x) > (0, X)) = F(X) VX
that is

A€ 0f(x) & x € argmax {(\,X) — F(x')} & (=) + F(\) = (), x)
x'eX

@ From Fenchel-Young equality we have
V() #A0D = Ov*™(x) =09dv(x) and v*™*(x) = v(x).
o If f proper convex Isc
A€ 0f(x) <= xedff(N).
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What you have to know

What is a affine set, a convex set, a polyhedron, a (convex) cone
What is a convex function, that it is above its tangeants.

Jensen inequality

What is a convex optimization problem. That any local minimum is a
global minimum.

The necessary optimality condition V£(x*) € [Tx(x®)]*
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What you really should know

@ That you can separate convex sets with a linear function

@ What is the positive dual of a cone

Basic manipulations preserving convexity (sum, cartesian product,
intersection, linear projection)

What is the domain, the sublevel of a function f

What is a lower semi continuous function, a proper convex function
Conditions of (strict, strong) convexity for differentiable functions
The partial minimum of a convex function is convex

The definition of the subdifferential.

The definition of the Fenchel transform.

The link between Fenchel transform and subdifferential.
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What you have to be able to do

@ Show that a set is convex
@ Show that a function is (strictly, strongly) convex

@ Go from constrained problem to unconstrained problem using the
indicator function Ix
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What you should be able to do

@ Compute dual cones

@ Use advanced results (projection, partial infimum, perspective) to
show that a function or a set is convex

@ Compute the Fenchel transform of simple function
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