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Why should I bother to learn this stuff ?

Convex vocabulary and results are needed throughout the course,
especially to obtain optimality conditions and duality relations.
Convex analysis tools like Fenchel transform appears in modern
machine learning theory
=⇒ fundamental for M2 in continuous optimization
=⇒ usefull for M2 in operation research, machine learning (and some
part of probability or mechanics)
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Affine sets ♥
Let X be a normed vector space (usually X = Rn), and C ⊂ X

C is affine if it contains any lines going through two distinct points of
C , i.e.

∀x , y ∈ C , ∀θ ∈ R, θx + (1 − θ)y ∈ C .

The affine hull of C is the set of affine combination of elements of C ,

aff(C) :=
{ K∑

i=1
θixi

∣∣∣ ∀xi ∈ C , ∀θi ∈ R,
K∑

i=1
θi = 1, ∀i ∈ [K ],∀K ∈ N

}
aff(C) is the smallest affine space containing C .
The affine dimension of C is the dimension of aff(C) (i.e.the
dimension of the vector space aff(C)− x0 for x0 ∈ C).
The relative interior of C is defined as

ri(C) :=
{

x ∈ C
∣∣∣ ∃r > 0, B(x , r) ∩ aff(C) ⊂ C

}
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Convex sets ♥

C is convex if for any two points x and y in C
the segment [x , y ] ⊂ C , i.e.

∀x , y ∈ C , ∀θ ∈ [0, 1], θx + (1 − θ)y ∈ C .

The convex hull of C as the set of convex
combination of elements of C , i.e.

conv(C) :=
{ K∑

i=1
θixi | ∀xi ∈ C ,

∀θi ∈ [0, 1],
K∑

i=1
θi = 1, ∀i ∈ [K ], ∀K ∈ N

}
conv(C) is the smallest convex set containing
C .

V. Leclère Convexity February, 24th 2022 4 / 39



Cones ♥

C is a cone if for all x ∈ C the ray R+x ⊂ C , i.e.

∀x ∈ C , ∀θ ∈ R+, θx ∈ C .

The (convex) conic hull of C is the set of all (convex) conic
combination of elements of C i.e.

cone(C) :=
{ K∑

i=1
θixi | ∀xi ∈ C , ∀θi ∈ R+, ∀i ∈ [K ], ∀K ∈ N

}
cone(C) is the smallest convex cone containing C .
A cone C is pointed if it does not contain any full line Rx for x 6= 0.
For C convex, cone(C) =

⋃
t>0 tC
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Examples

Let X = Rn.
Any affine space is convex.
Any hyperplane of X can be defined as H := {x ∈ X | a>x = b} for
well choosen a ∈ Rn and b ∈ R and is an affine space of dimension
n − 1.
H divide X into two half-spaces {x ∈ Rn | a>x ≤ b and
{x ∈ Rn | a>x ≥ b} which are (closed) convex sets.
For any norm ‖ · ‖ the ball B‖·‖(x0, r) := {x ∈ X | ‖x − x0‖ ≤ r} is a
(closed) convex set.
♣ Exercise: Prove it.
The set C = {(x , t) ∈ X × R | ‖x‖ ≤ t} is a cone.
The set C = {x ∈ X | Ax ≤ b} where A and b are given is a (closed)
convex set called polyhedron.
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Operations preserving convexity ♥

Assume that all set denoted by C (indexed or not) are convex.
C1 + C2 and C1 × C2 are convex sets.
For any arbitrary index set I the intersection

⋂
i∈I Ci is convex.

Let f be an affine function. Then f (C) and f −1(C) are convex.
In particular, C + x0, and tC are convex. The projection of C on any
affine space is convex.
The closure cl(C) and relative interior ri(C) are convex.

♣ Exercise: Prove these results.
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Perspective and linear-fractional function ♦

Let P : Rn × R → Rn be the perspective function defined as
P(x , t) = x/t, with dom(P) = Rn × R∗

+.

Theorem
If C ⊂ dom(P) is convex, then P(C) is convex.
If C ⊂ Rn is convex, then P−1(C) is convex.

♠ Exercise: Prove this result.

Let f : Rn → Rm be a linear-fractional function of the form
f (x) := (Ax + b)/(c>x + d), with dom(f ) = {x |c>x + d > 0}.

Theorem
If C ⊂ dom(f ) is convex, then f (C) and f −1(C) are convex.

♣ Exercise: prove this result.
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Cone ordering

Let K ⊂ Rn be a closed, convex, pointed cone with non empty interior.
We define the cone ordering according to K by

x �K y ⇐⇒ y − x ∈ K .

♣ Exercise: Prove that �K is a partial order (i.e.reflexive, antisymmetric,
transitive) compatible with scalar product, addition and limits.
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Separation ♦
Let X be a Banach space, and X∗ its topological dual (i.e. the set of all
continuous linear form on X).

Theorem (Simple separation)
Let A and B be convex non-empty, disjunct subsets of X. There exists a
separating hyperplane (x∗, α) ∈ X∗ × R such that

〈x∗, a〉 ≤ α ≤ 〈x∗, b〉 ∀a, b ∈ A × B.

Theorem (Strong separation)
Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is
closed, and B is compact (e.g. a point), then there exists a strict separating
hyperplane (x∗, α) ∈ X∗ × R such that, there exists ε > 0,

〈x∗, a〉+ ε ≤ α ≤ 〈x∗, b〉 − ε ∀a, b ∈ A × B.

Remark: these theorems require the Zorn Lemma which is equivalent to the
axiom of choice.
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Supporting hyperplane ♦

Theorem
Let x0 /∈ ri(C) and C convex. Then
there exists a 6= 0 such that

a>x ≥ a>x0, ∀x ∈ C

If x0 ∈ C, say that
H = {x | a>x = a>x0} is a supporting
hyperplane of C at x0.

♣ Exercise: prove this theorem
Remark : there can be more than one
supporting hyperplane at a given point.
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Convex set as intersection of half-spaces ♦

The closed convex hull of C ⊂ X , denoted conv(C) is the smallest
closed convex set containing C .
conv(C) is the intersection of all the half-spaces containing C .
A polyhedron is a finite intersection of half-spaces, a convex set is a
possibly non-finite intersection of half-spaces.
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Dual and normal cones

Let C ⊂ Rn be a set. We define
its dual cone by

C⊕ := {x | x>c ≥ 0, ∀c ∈ C}

For any set C , C⊕ is a closed
convex cone.
The normal cone of C at x0 is

NC(x0) := {λ ∈ E | λ>(x − x0) ≤ 0,
∀x ∈ C }
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Examples

The positive orthant K = Rn
+ is a self dual cone, that is K⊕ = K .

In the space of symetric matrices Sn(R), with the scalar product
〈A,B〉 = tr(AB), the set of positive semidefinite matrices K = S+

n (R)
is self dual.
Let ‖ · ‖ be a norm. The cone K = {(x , t) | ‖x‖ ≤ t} has for dual
K⊕ = {(λ, z) | ‖λ‖? ≤ z}, where ‖λ‖? := supx :‖x‖≤1 λ

>x .
♠ Exercise: prove these results
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Some basic properties

Let K ⊂ Rn be a cone.
K⊕ is closed convex.
K1 ⊂ K2 implies K⊕

2 ⊂ K⊕
1

K⊕⊕ = conv K
♣ Exercise: Prove these results
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Video ressources

https://www.youtube.com/watch?v=P3W_wFZ2kUo
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Functions with non finite values ♥
It is very usefull in optimization to allow functions to take non finite
values, that is to take values in R̄ := R ∪ {−∞,+∞}.
If both −∞ and +∞ are allowed be very careful of each addition !
Let f : X → R̄. We define

I the domain of f as

dom(f ) := {x ∈ X | f (x) < +∞}.

I The epigraph of f as

epi(f ) := {(x , t) ∈ X × R | f (x) ≤ t}

I The sublevel set of level α

levα(f ) := {x ∈ X | f (x) ≤ α}.

f is said to be lower semi continuous (l.s.c.) if epi(f ) is closed.
f is said to be proper if it never takes value −∞, has a non-empty
domain (at least one finite value).
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Convex function ♥

A function f : X → R̄ is
convex if its epigraph is
convex.
f : X → R ∪ {+∞} is
convex iff

∀t ∈ [0, 1], ∀x , y ∈ X ,

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y)

f is concave if −f is convex.
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Basic properties ♥

If f , g convex, t > 0, then tf + g is convex.
If f convex non-decreasing, g convex, then f ◦ g convex.
If f convex and a affine, then f ◦ a is convex.
If (fi)i∈I is a family of convex functions, then supi∈I fi is convex.
The domain and the sublevel sets of a convex function are convex.

♣ Exercise: Prove these results.

Theorem (Jensen inequality)
Let f be a convex function and X an integrable random variable. Then we
have

f (E
[
X
]
) ≤ E

[
f (X)

]
.
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Convex functions : strict and strong convexity ♥

f : X → R ∪ {+∞} is strictly convex iff

∀t ∈]0, 1[, ∀x , y ∈ X , f (tx + (1 − t)y) < tf (x) + (1 − t)f (y).

If f ∈ C1(Rn)

I 〈∇f (x)−∇f (y), x − y〉 ≥ 0 iff f convex
I if strict inequality holds, then f strictly convex
I f : X → R ∪ {+∞} is α-convex iff ∀x , y ∈ X

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ α

2 ‖y − x‖2.

If f ∈ C2(Rn),
I ∇2f < 0 iff f convex
I if ∇2f � 0 then f strictly convex
I if ∇2f < αI then f is α-convex
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Important examples

The indicator function of a set C ⊂ X ,

IC(x) :=
{

0 if x ∈ C
+∞ otherwise

is convex iff C is convex.
x 7→ eax is convex for any a ∈ R
x 7→ ‖x‖q is convex for q ≥ 1 and any norm
x 7→ ln(x) is concave
x 7→ x ln(x) is convex
x 7→ ln(

∑n
i=1 exi ) is convex
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Convex optimization problem ♥

min
x∈C

f (x)

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

If C is compact and f proper lsc, then there exists an optimal solution.
If f proper lsc and coercive, then there exists an optimal solution.
The set of optimal solutions is convex.
If f is strictly convex the minimum (if it exists) is unique.
If f is α-convex the minimum exists and is unique.

♣ Exercise: Prove these results.
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Optimality conditions ♥

Note that minimizing f over C or minimizing f + IC over X is the same
thing.
We consider the (unconstrained) optimization problem

Min
x∈X

f (x),

with x ] an optimal solution and f not necessarily convex.
If f is differentiable, then ∇f (x ]) = 0.
If f is twice differentiable, then ∇2f (x ]) � 0.
If f is twice differentiable and ∇2f (x0) � 0 then x0 is a local
minimum.

If in addition f is convex then ∇f (x) = 0 is a sufficient optimality
condition.
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Partial infimum ♥

Let f be a convex function and C a convex set. The function

g : x 7→ inf
y∈C

f (x , y)

is convex.
♠ Exercise: Prove this result.

♣ Exercise: Prove that the function distance to a convex set C defined by

dC(x) := inf
c∈C

‖c − x‖

is convex.

V. Leclère Convexity February, 24th 2022 24 / 39



Partial infimum ♥

Let f be a convex function and C a convex set. The function

g : x 7→ inf
y∈C

f (x , y)

is convex.
♠ Exercise: Prove this result.

♣ Exercise: Prove that the function distance to a convex set C defined by

dC(x) := inf
c∈C

‖c − x‖

is convex.

V. Leclère Convexity February, 24th 2022 24 / 39



Perspective function ♦

Let φ : E → R̄. The perspective
of φ is defined as
φ̃ : R∗

+ × E → R by

φ̃(η, y) := ηφ(y/η).

Theorem
φ is convex iff φ̃ is convex.

♠ Exercise: prove this result
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Inf-Convolution ♦

Let f and g be proper function from X to R ∪ {+∞}. We define

f �g : x 7→ inf
y∈X

f (y) + g(x − y)

♣ Exercise: Show that
f �g = g�f
If f and g are convex then so is f �g
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Subdifferential of convex function ♦

Let X be an Hilbert space, f : X → R̄ convex.
The subdifferential of f at x ∈ dom(f ) is the set of slopes of all affine
minorants of f exact at x :

∂f (x) :=
{
λ ∈ X | f (·) ≥ 〈λ, · − x〉+ f (x)

}
.

If f is derivable at x then

∂f (x) =
{
∇f (x)

}
.
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Examples ♦

If f : x 7→ |x |, then

∂f (x) =


−1 if x < 0
[−1, 1] if x = 0
1 if x > 0

If C is convex then, for x ∈ C , ∂(IC)(x) = NC(x)
♣ Exercise: Prove it.
If f1 and f2 are convex and differentiable. Define f = max(f1, f2).
Then

I if f1(x) > f2(x), ∂f (x) = {∇f1(x)}
I if f1(x) < f2(x), ∂f (x) = {∇f2(x)};
I if f1(x) = f2(x), ∂f (x) = conv({∇f1(x),∇f2(x)}).
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Subdifferential calculus ♦
Let f1 and f2 be proper convex functions.

Theorem
We have

∂(f1)(x) + ∂(f2)(x) ⊂ ∂(f1 + f2)(x), ∀x

Further if ri(dom(f1)) ∩ ri(dom(f2)) 6= ∅ then

∂(f1)(x) + ∂(f2)(x) = ∂(f1 + f2)(x), ∀x

When fi is polyhedral you can replace ri(dom(fi)) by dom(fi) in the
condition.

Theorem
If f is convex and a : x 7→ Ax + b with Im(a) ∩ ri(dom(f )) 6= ∅, then

∂(f ◦ a)(x) = A>∂f (Ax + b).
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First order condition of optimality ♦

Theorem
Let f : X 7→ R ∪ {+∞} be a convex function (not necessarily)
differentiable. x ] is a minimizer of f if and only if 0 ∈ ∂f (x ]).

Theorem
Let f be a proper convex function and C a closed non empty convex set
such that ri(C) ∩ ri(dom(f )) 6= ∅ then x ] is an optimal solution to

min
x∈C

f (x)

iff
0 ∈ ∂f (x ]) + NC(x ]),

iff
∃λ ∈ ∂f (x ]), λ ∈ −NC(x ]).
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Normal cone, Tangeant cone and optimality

Let C be a convex set. We define the tangeant cone of C ⊂ Rn at point
x ∈ C , as the set of direction in which you can move from x while staying
in C for some time, that is

TC(x) :=
{
λ(y − x)

∣∣∣ y ∈ C , λ ∈ R+
}

In particular, TC(x) = Rn iff x ∈ int(C).

♣ Exercise: Prove that [TC(x)]⊕ = −NC(x).

V. Leclère Convexity February, 24th 2022 31 / 39



Normal cone, Tangeant cone and optimality

Let C be a convex set. We define the tangeant cone of C ⊂ Rn at point
x ∈ C , as the set of direction in which you can move from x while staying
in C for some time, that is

TC(x) :=
{
λ(y − x)

∣∣∣ y ∈ C , λ ∈ R+
}

In particular, TC(x) = Rn iff x ∈ int(C).

♣ Exercise: Prove that [TC(x)]⊕ = −NC(x).

V. Leclère Convexity February, 24th 2022 31 / 39



Partial infimum ♦

Let f : X × Y → R̄ be a jointly convex and proper function, and define

v(x) = inf
y∈Y

f (x , y)

then v is convex.
If v is proper, and v(x) = f (x , y ](x)) then

∂v(x) =
{

g ∈ X | (g , 0) ∈ ∂f (x , y ](x))
}

proof:

g ∈ ∂v(x) ⇔ ∀x ′, v(x ′) ≥ v(x) + 〈g , x ′ − x〉

⇔ ∀x ′, y ′ f (x ′, y ′) ≥ f (x , y](x)) +
〈(

g
0

)
,

(
x ′

y ′

)
−

(
x

y](x)

)〉
⇔

(
g
0

)
∈ ∂f (x , y](x))
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Convex function : regularity ♦

Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.
A proper convex function is subdifferentiable on the relative interior of
its domain.
If f is convex, it is L-Lipschitz iff ∂f (x) ⊂ B(0, L), ∀x ∈ dom(f )
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Fenchel transform ♦

Let X be a Hilbert space, f : X → R̄ be a proper function.
The Fenchel transform of f , is f ∗ : X → R̄ with

f ∗(λ) := sup
x∈X

〈λ, x〉 − f (x).

f ∗ is convex lsc as the supremum of affine functions.
f ≤ g implies that f ∗ ≥ g∗.
If f is proper convex lsc, then f ∗∗ = f , otherwise f ∗∗ ≤ f .

♣ Exercise: Prove the first two points
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Fenchel transform and subdifferential ♦
By definition f ∗(λ) ≥ 〈λ, x〉 − f (x) for all x ,
thus we always have (Fenchel-Young) f (x) + f ∗(λ) ≥ 〈λ, x〉.
Recall that λ ∈ ∂f (x) iff for all x ′,

f (x ′) ≥ f (x) + 〈λ, x ′ − x〉

iff
〈λ, x〉 − f (x) ≥ 〈λ, x ′〉 − f (x ′) ∀x ′

that is

λ ∈ ∂f (x) ⇔ x ∈ argmax
x ′∈X

{
〈λ, x ′〉 − f (x ′)

}
⇔ f (x) + f ∗(λ) = 〈λ, x〉

From Fenchel-Young equality we have

∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x).

If f proper convex lsc

λ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(λ).
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What you have to know

What is a affine set, a convex set, a polyhedron, a (convex) cone
What is a convex function, that it is above its tangeants.
Jensen inequality
What is a convex optimization problem. That any local minimum is a
global minimum.
The necessary optimality condition ∇f (x ]) ∈ [TX (x ])]+
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What you really should know

That you can separate convex sets with a linear function
What is the positive dual of a cone
Basic manipulations preserving convexity (sum, cartesian product,
intersection, linear projection)
What is the domain, the sublevel of a function f
What is a lower semi continuous function, a proper convex function
Conditions of (strict, strong) convexity for differentiable functions
The partial minimum of a convex function is convex
The definition of the subdifferential.
The definition of the Fenchel transform.
The link between Fenchel transform and subdifferential.
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What you have to be able to do

Show that a set is convex
Show that a function is (strictly, strongly) convex
Go from constrained problem to unconstrained problem using the
indicator function IX
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What you should be able to do

Compute dual cones
Use advanced results (projection, partial infimum, perspective) to
show that a function or a set is convex
Compute the Fenchel transform of simple function
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