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Why should I bother to learn this stuff ?

Optimality conditions enable to solve exactly some easy optimization
problems (e.g. in microeconomics, some mechanical problems...)
Optimality conditions are used to derive algorithms for complex
problem
=⇒ fundamental both for studying optimization as well as other
science

V. Leclère Optimality conditions March 18th, 2022 2 / 21



Contents

1 Optimization problem [BV 4.1]

2 Unconstrained case [BV 4.2]

3 First order optimality conditions [B.V 5.5]

4 Wrap-up

V. Leclère Optimality conditions March 18th, 2022 2 / 21



Optimization problem: vocabulary ♥

Generically speaking, an optimization problem is

Min
x∈X

f (x) (P)

where
f : Rn → R is the objective function (a.k.a. cost function),
X is the feasible set,
x ∈ X is an admissible decision variables or a solution,
x ] ∈ X such that val(P) = f (x ]) = infx∈X f (x) is an optimal solution,
if X = Rn the problem is unconstrained,
if X and f are convex, then the problem is convex,
if X is a polyhedron and f linear then the problem is linear,
if X is a convex cone and f linear then the problem is conic.
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Optimization problem: explicit formulation ♥
The previous optimization problem is often defined explicitely is the
following standard form

Min
x∈Rn

f (x) (P)

s.t. gi(x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

with

X :=
{

x ∈ Rn | ∀i ∈ [nE ], gi(x) = 0, ∀j ∈ [nI ], hj(x) ≤ 0
}
.

(P) is a differentiable optimization problem if f and {gi}i∈[nE ] and
{hj}j∈[nI ] are differentiable.
(P) is a convex differentiable optimization problem if f , and hj (for
j ∈ [nI ]) are convex differentiable and gi (for i ∈ [nE ]) are affine.
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A few remarks and tricks ♦

We can always write an abstract optimization problem in standard
form (exercise !)
For a given optimization problem there is an infinite number of
standard form possible (exercise !)
We can always find an equivalent problem in dimension Rn+1 with
linear cost (exercise !)
A minimization problem with X = ∅ has value +∞
A minimization problem has value −∞ iff there exists a sequence
xn ∈ X such that f (xn) → −∞
Maximizing f is just minimizing −f (beware of rechanging the sign of
the value).
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Differentiable case ♥

Theorem
Assume that f : Rn → R̄ is differentiable at x ].

1 If x ] is an unconstrained local minimum of f then ∇f (x ]) = 0.
2 If in addition f is convex, then ∇f (x ]) = 0 is a global minimum.

Proof:
1 Assume ∇f (x]) 6= 0. DL of order 1 at x] show that

f (x] − t∇f (x])) < f (x]) for t > 0 small enough.
2 f (y) ≥ f (x]) + 〈∇f (x]), y − x]〉.
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Convex case ♥

Theorem
Consider f : Rn → R̄. Then x ] is a global minimum iff

0 ∈ ∂f (x ])

Theorem
Consider a proper convex function f : Rn → R̄, and X a closed convex set,
such that ri(dom(f )) ∩ ri(X) 6= ∅.
Then x ] is a minimizer of f on X iff there exists g ∈ ∂f (x ]) such that
−g ∈ NX (x ]).

proof : The technical assumption ensure that ∂(f + IX ) = ∂f + ∂(IX ) = ∂f +NX .
Thus 0 ∈ ∂(f + IX )(x]) iff there exists g ∈ ∂f (x]) such that −g ∈ NX (x]).
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Tangeant cones ♦

For f : Rn → R, we consider an optimisation problem of the form

Min
x∈X

f (x).

Definition
We say that d ∈ Rn is tangeant to X at x ∈ X if there exists a sequence
xk ∈ X converging to x and a sequence tk ↘ 0 such that

d = lim
k

xk − x
tk

.

Let TX (x) be the tangeant cone of X at x , that is, the set of all tangeant
to X at x .

♣ Exercise: TX (x) is a closed cone.
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Optimality conditions - differentiable case
Consider a function f : Rn → R and the optimization problem

(P) Min
x∈X

f (x).

If x ] /∈ int(X) we do not necessarily need to have ∇f (x ]) = 0, indeed we
just to have 〈d ,∇f (x ])〉 for all ”admissible” direction d .

Theorem
Assume that f is differentiable at x ].

1 If x ] is a local minimum of (P) we have

∇f (x ]) ∈
[
TX (x ])

]⊕
. (∗)

2 If f and X are convex, and (∗) holds, then x ] is an optimal solution of
(P)

♠ Exercise: Prove this result.
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Convex case ♦

Let Kad
X (x) be the cone of admissible direction

Kad
X (x) :=

{
t(y − x) ∈ Rn | y ∈ X , t ≥ 0

}
Lemma
If X ⊂ Rn is convex, and x ∈ X, we have

TX (x) = Kad
X (x).

Recall that

TX (x) :=
{
lim

k

xk − x
tk

∈ Rn | tk ↘ 0, xk ∈ X , xk → x
}

♠ Exercise: Prove this lemma
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Differentiable constraints ♦
We consider the following set of admissible solution

X =
{

x ∈ Rn | gi(x) = 0, i ∈ [nE ] hj(x) ≤ 0, j ∈ [nj ]
}
,

where g and h are differentiable functions.

Recall that the tangeant cone is given by

TX (x) = {d ∈ Rn | ∃tk ↘ 0, ∃dk → d , g(x +tkdk) = 0, h(x +tkdk) ≤ 0}

We define the linearized tangeant cone

T `
X (x) := {d ∈ Rn |

〈
∇gi(x) , d

〉
= 0, ∀i ∈ [nE ]〈

∇hj(x) , d
〉
≤ 0, ∀j ∈ I0(x)}

where
I0(x) :=

{
j ∈ [nI ] | hj(x) = 0

}
.
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Constraint qualifications ♦

We always have
TX (x) ⊂ T `

X (x).

♣ Exercise: Prove it.
We say that the constraints are qualified at x if

TX (x) = T `
X (x).
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Sufficient qualification conditions ♥

Recall that g and h are assumed differentiable.
We denote the index set of active constraints at x

I0(x) :=
{

i ∈ [nI ] | hi(x) = 0
}
.

The following conditions are sufficient qualification conditions at x :
1 g and hi for i ∈ I0(x) are locally affine;
2 (Slater) g is affine, hj are convex, and there exists xS such that

g(xS) = 0 and hj(xS) < 0 ;
3 (Mangasarian-Fromowitz) For all α ∈ RnE and β ∈ RnI

+ ,∑
i∈[nE ]

αi∇gi(x) +
∑

i∈I0(x)
βi∇hi(x) = 0 =⇒ α = 0 and β = 0
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Expliciting the optimality condition I ♦

Under constraint qualification the optimality condition reads

∇f (x) ∈
[
T `

X (x)
]⊕

where

T `
X (x) = {d ∈ Rn |

〈
∇gi(x) , d

〉
= 0, i ∈ [nI ]

〈
∇hj(x) , d

〉
≤ 0, j ∈ I0(x)︸ ︷︷ ︸

Ax d∈C

}.

with Ax =

(
((∇gi(x))>)i∈[nI ]

((∇hj(x))>)j∈I0(x)

)
and C = {0}nE × (R−)

nI .

♣ Exercise: Show that C⊕ = RnE × (R−)
nI
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Expliciting the optimality condition II ♦
Recall that the dual cone of K is

K⊕ := {d ∈ Rn | 〈d , x〉 ≥ 0,∀x ∈ K}.

Let C be a closed convex set.

If K = A−1C :=
{

x ∈ Rn | Ax ∈ C
}

, then K⊕ =
{

A>λ | λ ∈ C⊕}.
♣ Exercise: prove it.
Hence,

∇f (x) ∈
[

T `
X (x)︸ ︷︷ ︸

A−1
x C

]⊕
reads

∃λ ∈ C⊕, ∇f (x) = A>
x λ

or

∃λ ∈ RnE , ∃µ ∈ RI0(x)
+ ∇f (x) +

nE∑
i=1

λi∇gi(x) +
∑

j∈I0(x)
µj∇hj(x) = 0.
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Karush Kuhn Tucker condition ♥

Theorem (KKT)
Assume that the objective function f and the constraint function gi and hj are
differentiable. Assume that the constraints are qualified at x.

Then if x is a local minimum of

min
x̃∈X0

{
f (x̃) | gi(x̃) = 0, ∀i ∈ [nE ] hj(x̃) ≤ 0, ∀j ∈ [nI ]

}
then there exists dual variables λ, µ such that

∇f (x) +
nE∑
i=1

λi∇gi(x) +
nI∑

j=1
µj∇hj(x) = 0 ∇xL = 0

g(x) = 0, h(x) ≤ 0 Primal feasibility
λ ∈ RnE , µ ∈ RnI

+ dual feasibility
µjhj(x) = 0 ∀j ∈ [nI ] complementarity constraint
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Exercise

Solve the following optimization problem

Min
x̃ ,y∈R2

(x − 1)2 + (y − 2)2

x ≤ y
x + 2y ≤ 2
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What you have to know

Basic vocabulary : objective, constraint, admissible solution,
differentiable optimization problem
First order necessary KKT conditions
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What you really should know

What is a tangeant cone
Sufficient qualification conditions (linear and Slater’s)
That KKT conditions are sufficient in the convex case
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What you have to be able to do

Write the KKT condition for a given explicit problem, and use them
to solve said problem
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What you should be able to do

Check that constraints are qualified
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