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Why should I bother to learn this stuff ?

Duality allow a second representation of the same convex problem,
giving sometimes some interesting insights (e.g. principle of virtual
forces in mechanics)
Duality is a good way of getting lower bounds
Duality is a powerful tool for decomposition methods
=⇒ fundamental both for studying optimization (continuous and
operations research)
=⇒ usefull in other fields like mechanics and machine learning
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Min-Max duality ♥

Consider the following problem

Min
x∈X

sup
y∈Y

Φ(x , y)

where, for the moment, X and Y are arbitrary sets, and Φ an arbitrary
function.
By definition the dual of this problem is

Max
y∈Y

inf
x∈X

Φ(x , y)

and we have weak duality, that is

sup
y∈Y

inf
x∈X

Φ(x , y) ≤ inf
x∈X

sup
y∈Y

Φ(x , y)

♣ Exercise: Prove this result.

V. Leclère Duality March 25th, 2022 3 / 22



Dual representation of some characteristic functions
Recall that, if X ⊂ Rn

IX (x) =
{

0 if x ∈ X
+∞ otherwise

and if X is an assertion,

IX =

{
0 if X
+∞ otherwise

Note that
Ig(x)=0 = sup

λ∈RnE
λ>g(x)

and
Ih(x)≤0 = sup

µ∈RnI
+

µ>h(x)
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From constrained to min-sup formulation ♥

Min
x∈Rn

f (x) (P)

s.t. gi(x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

Is equivalent to
Min
x∈Rn

f (x) + Ig(x)=0 + Ih(x)≤0

or
Min
x∈Rn

f (x) + sup
λ∈RnE

λ>g(x) + sup
µ∈RnI

+

µ>h(x)

which is usually written

Min
x∈Rn

sup
λ,µ≥0

f (x) + λ>g(x) + µ>h(x)︸ ︷︷ ︸
:=L(x ;λ,µ)
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Lagrangian duality ♥
To a (primal) problem (no convexity or regularity assumptions here)

(P) Min
x∈Rn

f (x)

s.t. gi(x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

we associate the Lagrangian

L(x ;λ, µ) := f (x) + λ>g(x) + µ>h(x)

such that
(P) Min

x∈Rn
sup
λ,µ≥0

L(x ;λ, µ)

The dual problem is defined as

(D) Max
λ,µ≥0

inf
x∈Rn

L(x ;λ, µ)
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Weak duality

By the min-max duality we easily see that

val(D) ≤ val(P).

Further any admissible dual multipliers λ ∈ RnE µ ∈ RnI
+ yields a lower

bound:
g(λ, µ) := inf

x∈Rn
L(x ;λ, µ) ≤ val(D) ≤ val(P)

Obviously, any admissible solution x ∈ Rn (i.e. such that g(x) = 0 and
h(x) ≤ 0), yields an upper bound

val(P) ≤ f (x) = sup
λ,µ≥0

L(x ;λ, µ)
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Min-Max duality

Recall the generic primal problem of the form

p? := Min
x∈X

sup
y∈Y

Φ(x , y)

with associated dual

d? := Max
y∈Y

inf
x∈X

Φ(x , y).

Recall that the duality gap p? − d? ≥ 0.
We say that we have strong duality if d? = p?.
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Saddle point

Definition
Let Φ : X ×Y → R̄ be any function. (x ], y ]) is a (local) saddle point of Φ
on X × Y if

x ] is a (local) minimum of x 7→ Φ(x , y ]).
y ] is a (local) maximum of y 7→ Φ(x ], y).

If there exists a Saddle Point (x ], y ]) of Φ, then there is strong duality, x ]

is an optimal primal solution and y ] an optimal dual solution, i.e.

p? = d? = Φ(x ], y ]).
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Sufficient conditions for saddle point ♦

Theorem
If

X and Y are convex, one of them is compact
Φ is continuous
Φ(·, y) is convex for all y ∈ Y
Φ(x , ·) is concave for all x ∈ X

then there exists a saddle point (i.e. we can exchange ”Min” and ”Max”).

V. Leclère Duality March 25th, 2022 10 / 22



Slater’s conditions for convex optimization ♥
Consider the following convex optimization problem

(P) Min
x∈Rn

f (x)

s.t. Ax = b
hj(x) ≤ 0 ∀j ∈ [nI ]

We say that a point x s such that Ax s = b, x s ∈ ri(dom(f )), and
hj(x s) < 0 for all j ∈ [nI ], is a Slater’s point.

Theorem
If (P) is convex (i.e. f and hj are convex), and there exists a Slater’s point
then there is strong (Lagrangian) duality.

Further if (P) admits an optimal solution x ] then L admits a saddle point
(x ], λ]), and λ] is an optimal solution to (D).
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Pertubed problem ♦

We consider the following pertubed problem

v(p, q) = Min
x∈Rn

f (x)

s.t. g(x) = p
h(x) ≤ q

In particular we have v(0, 0) = val(P).
By duality,

v(p, q) ≥ d(p, q) = sup
λ,µ≥0

inf
x

f (x) + λ>(g(x)− p) + µ>(h(x)− q).

In particular d is convex as a supremum of convex functions.
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Marginal interpretation of the dual multiplier ♥
Assume that (P) is convex, and satisfy the Slater’s qualification condition.
In particular v(0, 0) = d(0, 0).
Let (λ, µ) be optimal multiplier of (P).
We have, for any xp,q admissible for the perturbed problem, that is such
that g(xp,q) = p, h(xp,q) ≤ q,

val(P) = v(0, 0) = inf
x

f (x) + λ>g(x) + µ>h(x)

≤ f (xp,q) + λ>g(xp,q) + µ>h(xp,q)

≤ f (xp,q) + λ>p + µ>q

In particular we have,

v(p, q) = inf
xp,q

f (xp,q) ≥ v(0, 0)− λ>p − µ>q

which reads
−(λ, µ) ∈ ∂v(0, 0)
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Exercise

♣ Exercise: Consider the following problem, for b ∈ R,

Min
x∈R

x2

s.t. x ≤ b

1 Does there exist an optimal multiplier ?
2 Without solving the dual, give the optimal multiplier µb .
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KKT conditions ♥

Recall the first order KKT conditions for our problem (P)

∇f (x) + λ>A +

nI∑
j=1

µj∇hj(x) = 0

Ax = b, h(x) ≤ 0
λ ∈ RnE , µ ∈ RnI

+

λjgj(x) = 0 ∀j ∈ [nI ]

Further, recall that
the existence of a Slater’s point in a convex problem ensure
constraints qualifications,
first order conditions are sufficient for convex problem.
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KKT and duality ♦

If (P) is convex and there exists a Slater’s point. Then the following
assertions are equivalent:

1 x ] is an optimal solution of (P),
2 (x ], λ]) is a saddle point of L,
3 (x ], λ]) satisfies the KKT conditions.
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Recovering KKT conditions from Lagrangian duality ♦

(P) Min
x∈Rn

f (x)

s.t. A(x) = b
hj(x) ≤ 0 ∀j ∈ [nI ]

with associated Lagrangian

L(x ;λ, µ) := f (x) + λ>(A(x)− b) + µ>h(x)

The KKT conditions can be seen has:
1 ∇xL(x ;λ, µ) = 0 (Lagrangian minimized in x)
2 g(x), h(x) ≤ 0 (x primal admissible, also obtained as ∇λL = 0)
3 µ ≥ 0 ((λ, µ) dual admissible)
4 µj = 0 or hj(x) = 0, for all j ∈ [nI ]

(complementarity constraint ; 2nI possibilities).
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Complementarity condition and marginal value
interpretation ♦

Consider a convex problem satisfying Slater’s condition.
Recall that −µ] ∈ ∂v(0) where v(p) is the value of the perturbed problem.
From this interpretation we can recover the complementarity condition

µj = 0 or gj(x) = 0

Indeed, let x be an optimal solution.
If constraint j is not saturated at x (i.e gi(x) < 0), we can marginally
move the constraint without affecting the optimal solution, and thus
the optimal value. In particular it means that µj = 0.
If µj 6= 0, it means that marginally moving the constraint change the
optimal value and thus the optimal solution. In particular constraint j
must be saturated, i.e gi(x) = 0.
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What you have to know

Weak duality: sup inf Φ ≤ inf supΦ

Definition of the Lagrangian L
Definition of primal and dual problem

Max
λ,µ

inf
x

L(x ;λ, µ)︸ ︷︷ ︸
Dual

≤ inf
x

Max
λ,µ

L(x ;λ, µ)︸ ︷︷ ︸
Primal

Marginal interpretation of the optimal multipliers
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What you really should know

A saddle point of L is a primal-dual optimal pair
Sufficient condition of strong duality under convexity (Slater’s)
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What you have to be able to do

Turn a constrained optimization problem into an unconstrained
Min sup problem through the Lagrangian
Write the dual of a given problem
Heuristically recover the KKT conditions from the Lagrangian of a
problem
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What you should be able to do

Get lower bounds through duality
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