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Why should | bother to learn this stuff 7

Duality allow a second representation of the same convex problem,
giving sometimes some interesting insights (e.g. principle of virtual
forces in mechanics)

Duality is a good way of getting lower bounds

Duality is a powerful tool for decomposition methods

= fundamental both for studying optimization (continuous and
operations research)

= usefull in other fields like mechanics and machine learning
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Min-Max duality @
Consider the following problem

Min su d(x,
xeX yeg)) ( y)

where, for the moment, X and ) are arbitrary sets, and ¢ an arbitrary
function.

By definition the dual of this problem is

M inf ®
Maxinf, (x,¥)

and we have weak duality, that is

sup inf ®(x,y) < inf sup ®(x, y)
yeyxex X€X yey

& Exercise: Prove this result.
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Dual representation of some characteristic functions
Recall that, if X C R”

T (x) 0 if xe X
X) =
X +o00  otherwise

0 if X
Ix = _
+o00  otherwise
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Dual representation of some characteristic functions
Recall that, if X C R”

T (x) 0 if xe X
X) =
X +o00  otherwise

and if X is an assertion,

0 if X
Ix = _
+o00  otherwise

Note that

I,()=0 = sup )\Tgx
g(x)=0 AER"E ( )

and

Tnxy<o = sup /' h(x)
,uGRi’
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From constrained to min-sup formulation @

)I(\éIiRg f(x) (P)
st. gi(x)=0 Vi € [ng]

hj(X) <0 Vj S [n,]

Is equivalent to

)E\QIIRQ’ f(X) + ]Ig(X):O + ]Ih(X)SO
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From constrained to min-sup formulation @

Min  £(x) (P)
st. gi(x)=0 Vi € [ng]

hj(X) <0 Vj S [n,]

Is equivalent to

)E\QIIRQ’ f(X) + Hg(x):O + ]Ih(x)SO

or

Min  f(x)+ sup A'g(x)+ sup p' h(x)
xER? AER"E peRry

which is usually written

Min  sup  f(x)+ A g(x)+ 1" h(x)
x€R" ) 1>0

=L(x A1)
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Lagrangian duality @

To a (primal) problem (no convexity or regularity assumptions here)

(P) Min £(x
st. gi(x)=0 Vi € [ng]
hj(X) <0 Vj S [n,]

we associate the Lagrangian

L0\ 1) = F(x) + \Tg(x) + 17 h(x)
such that

(P) Min  sup  L(x; A, 1)
xeRnM A,1>0
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Lagrangian duality @

To a (primal) problem (no convexity or regularity assumptions here)

(P) Min f(x)

xEeR"
st. gi(x)=0 Vi € [ng]
hj(x) <0 vj € [ni]

we associate the Lagrangian
L£0xi A\ 1) = £(x) + ATg(x) + 1T h(x)
such that

(P) Min  sup  L(x; A, 1)
xeRnM A,1>0

The dual problem is defined as

D M inf N,
(D) Max  inf, L(x; A, 1)
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Weak duality

By the min-max duality we easily see that

val(D) < val(P).
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Weak duality

By the min-max duality we easily see that

val(D) < val(P).

Further any admissible dual multipliers \ € R"E ;; € RY yields a lower
bound:
gl 1) = inﬂg L(x; A, 1) < val(D) < val(P)
x€eR"

V. Leclére Duality March 25th, 2022 7/22



Weak duality

By the min-max duality we easily see that
val(D) < val(P).
Further any admissible dual multipliers \ € R"E ;1 € RY yields a lower

bound:
gl 1) = inﬂg L(x; A, 1) < val(D) < val(P)
xeRnM

Obviously, any admissible solution x € R” (i.e. such that g(x) =0 and
h(x) < 0), yields an upper bound

val(P) < f(x) = sup L(x; )\, p)
A,pn>0
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Min-Max duality

Recall the generic primal problem of the form

*:=Min su d(x,
pri=Min sup (x,5)

with associated dual

d*:=M inf ® .
Maxcinf, (x,y)

Recall that the duality gap p* — d* > 0.
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Min-Max duality

Recall the generic primal problem of the form

*:=Min su d(x,
pri=Min sup (x,5)

with associated dual

d*:=M inf ® .
Maxcinf, (x,y)

Recall that the duality gap p* — d* > 0.
We say that we have strong duality if d* = p*.
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Saddle point

Definition
Let d : X x ¥ — R be any function. (x*, y") is a (local) saddle point of ®
on X x Y if

o ' is a (local) minimum of x — ®(x, ").

o ' is a (local) maximum of y > ®(x", y).
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Saddle point

Definition

Let d : X x Y — R be any function. (x*, y?) is a (local) saddle point of ®
on X x Y if

o ' is a (local) minimum of x — ®(x, ").

o ' is a (local) maximum of y > ®(x", y).

.

If there exists a Saddle Point (x*, /") of ®, then there is strong duality, x*
is an optimal primal solution and y* an optimal dual solution, i.e.

p*=d* = d(x", ).
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Sufficient conditions for saddle point %

Theorem

If
@ X and ) are convex, one of them is compact
e & s continuous
e ®(-, ) is convex for all y € Y

@ ®(x,-) is concave for all x € X

then there exists a saddle point (i.e. we can exchange "Min" and "Max").
v
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Slater’s conditions for convex optimization @

Consider the following convex optimization problem

(P) Min f(x

st. Ax=0b
hj(x) <0 vj € [n/]

We say that a point x° such that Ax® = b, x® € ri(dom(f)), and
hj(x*) < 0 for all j € [n], is a Slater’s point.
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Slater’s conditions for convex optimization @

Consider the following convex optimization problem

(P) Min f(x)

x€RnM
st. Ax=0b

hj(x) <0 vj € [n]

We say that a point x° such that Ax® = b, x® € ri(dom(f)), and
hj(x*) < 0 for all j € [n], is a Slater’s point.

Theorem

If (P) is convex (i.e. f and h; are convex), and there exists a Slater’s point
then there is strong (Lagrangian) duality.

Further if (P) admits an optimal solution x* then L admits a saddle point
(<", %), and \" is an optimal solution to (D).

v
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Pertubed problem %

We consider the following pertubed problem

vip,g)=  Min f(x)
st. g(x)=p
h(x) <gq

In particular we have v(0,0) = val(P).
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Pertubed problem

We consider the following pertubed problem

vip,g)=  Min f(x)

st. g(x) =

In particular we have v(0,0) = val(P).
By duality,

v(p,q) > d(p,q) = sup inff(x) + AT (g(x) — p) + n' (h(x) = q).

Apu=>0 X
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Pertubed problem

We consider the following pertubed problem

vip,g)=  Min f(x)
st. g(x) =
h(x) <

In particular we have v(0,0) = val(P).
By duality,

v(p,q) > d(p,q) = sup inff(x) + AT (g(x) — p) + n' (h(x) = q).

Apu=>0 X

In particular d is convex as a supremum of convex functions.
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfy the Slater’s qualification condition.
In particular v(0,0) = d(0,0).

Let (A, 1) be optimal multiplier of (P).
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfy the Slater’s qualification condition.
In particular v(0,0) = d(0,0).

Let (A, 1) be optimal multiplier of (P).

We have, for any x, 4 admissible for the perturbed problem, that is such
that g(xp,q) = . h(xp,q) < 4,

val(P) = v(0,0) = inf f(x) + A g(x) + 1" h(x)

< F(xpg) + A &(xp,q) + 11 h(Xp.q)
< f(Xp,q) + )‘TP + /LTCI
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfy the Slater’s qualification condition.
In particular v(0,0) = d(0,0).

Let (A, 1) be optimal multiplier of (P).

We have, for any x, 4 admissible for the perturbed problem, that is such
that g(xp,q) = . h(xp,q) < 4,

val(P) = v(0,0) = inf £(x) + AT g(x) + 11 h(x)

< F(xpg) + A &(xp,q) + 11 h(Xp.q)
< f(Xp,q) + )‘TP + /LTCI

In particular we have,

v(p, ) = inf f(xp,q) > v(0,0) = AT p—pn'qg
Xp,q

which reads
—(A, 1) € 9v(0,0)
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Exercise

& Exercise: Consider the following problem, for b € R,

Min x2
xeR
s.t. x<b

@ Does there exist an optimal multiplier ?

@ Without solving the dual, give the optimal multiplier pp.
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KKT conditions Q

Recall the first order KKT conditions for our problem (P)

ny
V) +ATA+Y 1 Vhi(x) =0
j=1
Ax=b, h(x)<0
AeR™, peRY
Ajgj(x) =0 vj € [n]
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KKT conditions Q

Recall the first order KKT conditions for our problem (P)

ny
V) +ATA+Y 1 Vhi(x) =0
j=1
Ax=b, h(x)<0
AeR™, peRY
Ajgj(x) =0 vj € [n]

Further, recall that

@ the existence of a Slater’s point in a convex problem ensure
constraints qualifications,

o first order conditions are sufficient for convex problem.
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KKT and duality %

If (P) is convex and there exists a Slater’s point. Then the following
assertions are equivalent:

@ x'is an optimal solution of (P),
@ (x*,\F) is a saddle point of L,
© (x!, \) satisfies the KKT conditions.
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Recovering KKT conditions from Lagrangian duality %

(P) Min £(x
st. A(x)=b
hj(x) <0 vj € [n]

with associated Lagrangian
L(x; A\, 1) = F(x) + AT (A(x) = b) + 11" h(x)

The KKT conditions can be seen has:

Q@ V. L(x;\,u)=0 (Lagrangian minimized in x)
@ g(x), h(x) <0 (x primal admissible, also obtained as V£ = 0)
Q@ 1>0 ((A\, i) dual admissible)

Q i =00r hj(x) =0, for all j € [n)]
(complementarity constraint ~» 2" possibilities).
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Complementarity condition and marginal value
interpretation %

Consider a convex problem satisfying Slater's condition.

Recall that —u# € dv(0) where v(p) is the value of the perturbed problem.
From this interpretation we can recover the complementarity condition

(=0 or gi(x)=0
Indeed, let x be an optimal solution.

o If constraint j is not saturated at x (i.e gi(x) < 0), we can marginally
move the constraint without affecting the optimal solution, and thus
the optimal value. In particular it means that ;; = 0.

o If ;i; # 0, it means that marginally moving the constraint change the
optimal value and thus the optimal solution. In particular constraint j
must be saturated, i.e gi(x) = 0.
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What you have to know

@ Weak duality: supinf ® < infsup ®
@ Definition of the Lagrangian £
@ Definition of primal and dual problem

Max inf L(x; A, u) <inf I\an L(x; A 1)
X X S

A

J/ J/

Dual Primal

@ Marginal interpretation of the optimal multipliers
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What you really should know

@ A saddle point of £ is a primal-dual optimal pair

e Sufficient condition of strong duality under convexity (Slater’s)
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What you have to be able to do

@ Turn a constrained optimization problem into an unconstrained
Min sup problem through the Lagrangian

@ Write the dual of a given problem

@ Heuristically recover the KKT conditions from the Lagrangian of a
problem
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What you should be able to do

@ Get lower bounds through duality
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