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Today’s quick warm-up

Consider the following sequence:

un+1 =

{
n/2 if n ≡ 0[2]
3n + 1 if n ≡ 1[2]

♣ Exercise:
1 Show that, if u0 = 1, then un is

periodic.
2 Compute un trajectory starting

from u0 = 3.
3 Slightly harder1, show that, for

all initial point u0 ∈ N∗, there
exists N such that uN = 1.

1There is an elegant proof but it does not fit in this marginal footnote.
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Why should I bother to learn this stuff ?

Being able to recognize the type of problem is the first step toward
finding the right tool to adress it.
Having an idea of the tools available to you will help choose one.
=⇒ usefull for any engineer (or intern) that might have to model and
then solve a practical optimization problem.
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Why bother with classes of optimization problems ?
Consider a function f : X → R, and the following optimization problem

Min
x∈Rn

f (x)

s.t. x ∈ X

Solving this problem can be more or less hard depending on the class in
which f and X ⊂ Rn2 belongs.
Determining in which class a problem belongs is quite important:

some problem can be solved for n of order 10 at most, other for n of
order 106 or more;
the methodological approach to tackle different problems vary wildly;
the numerical tools (e.g. solvers) also...

It is important that you are able to (roughly) classify correctly the problem
you face, in order to know what can be done or not.

2There is also an important theory of optimization where X is not contained in a
finite dimensional space, which will not be discussed here.
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Classification with respect to the objective function f ♥

f linear is the simplest case
f quadratic is a very important case, simple if f is convex
f smooth (e.g. C2) allow to use first and second order information on
f
(f polynomial is a special case, with specific algorithms)
f convex imply that any local minimum is a global minimum

Finding the optimal solution is a reasonable goal only in the convex case.
Otherwise the algorithm aims at finding one or multiple local optimum.

The algorithm we present are mainly for smooth functions. Convergence
theory will be done in the convex case.
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Classification with respect to the constraint set ♥
X = Rn, is known as unconstrained optimization.
X =

{
x ∈ Rn | Ax = b

}
, can be cast, up to reparametrization, as

unconstrained optimization. It might be more efficient to directly deal
with the constraints.
X =

{
x ∈ Rn | x i ≤ xi ≤ x̄i , ∀i ∈ [n]

}
is the box constrained

optimization.
X =

{
x ∈ Rn | Ax ≤ b

}
is a polyhedron.

X convex, generally given as{
x ∈ Rn | Ax = b, hj(x) ≤ 0, ∀j ∈ [nI ]

}
with hj convex.

If X is a finite set we speak of combinatorial optimization.
X can also be non-convex but smooth (e.g. a manifold)

A few comments:
Unconstrained optimization is by far easier.
Box constraint, and sometimes spherical constraints, are easy.
Polyhedral constraint orient toward LP based methods.
Integrity constraints make the problem a lot harder and change the
nature of the optimization methods.
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Least-square problem (LS)

Min
x∈Rn

‖Ax − b‖2

equivalent (in which sense ?) to Min
x∈Rn

‖Ax − b‖2
2

; convex, smooth, unconstrained problem
explicit solution knwon through algebraic manipulation
sometimes easier to solve by optimization method than algebraic
manipulation
can be (approximately) solved for n ≥ 1011 (sparse case)
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Exercise : functional approximation

♣ Exercise: We consider a physical function Φ that is approximated as
the superposition of multiple simple phenomenon (e.g. waves). Each
simple phenomenon p ∈ [P ] is represented by a function Φp : Rd → R.

We have data points (xk , yk)k∈[n], and want to find the Φ that match at
best the data while being a linear combination of Φp .

Propose a least-square regression that answer this question.
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Linear optimization problem (LP) ♥

Min
x∈Rn

c>x

s.t. Ax = b
A′x ≤ b′

convex problem with linear objective and polyhedral constraint set
a rare case where exact solution can be obtained
easily solved through dedicated code, open-source (e.g. GLPK) or
proprietary3 (e.g. CPLEX, Gurobi)
can be solved for n ≥ 108

very important case in practice and as a subroutine for other problems
two main (class of) algorithms:

I simplex algorithm (seen in 1A)
I interior point method (discussed later in this course)

3Licences are expensives(!!) but free for students !
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Quadratic optimization problem (QP) ♥

Min
x∈Rn

1
2x>Qx + c>x

s.t. Ax = b
A′x ≤ b′

quadratic objective and polyhedral constraint set
exact solution can be obtained
easily solved if Q � 0, hard otherwise
can be solved for n ≥ 107 (convex case)
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Exercise : Lasso as QP

♣ Exercise: A classical extension of the least-square problem, which has
strong theoretical and practical intereset is the LASSO problem

Min
x∈Rp

‖Ax − y‖2 + λ‖x‖1

Show that this problem can be cast as a QP problem.
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Quadratically constrained quadratic problem (QCQP)

Min
x∈Rn

1
2x>Qx + c>x

s.t. 1
2x>Pix + q>

i x ≤ bi ∀i ∈ [k]

Ax = b
A′x ≤ b′

Reasonably easy if convex (i.e if Q and Pi are semi-defini positive)
can be solved for n ≥ 107

less important than previous examples

V. Leclère Optimization and algorithms April 1st, 2022 12 / 42



Exercise : binary optimization is equivalent to QCQP

♣ Exercise: Consider the following optimization problem.

Min
x∈Rn

c>x

s.t. Ax = b
xi ∈ {0, 1} ∀i ∈ I

Write this problem as a QCQP. Is it convex ?
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Second order cone problem (SOCP)

Min
x∈Rn

c>x

s.t. ‖Aix + bi‖2 ≤ c>i x + di ∀i ∈ [k]
Ax = b
A′x ≤ b′

convex problem
can be solved for n ≥ 107, through most ”linear” solver, relying on
interior points methods
equivalent to convex QCQP
extend the modeling power of LP
appears naturally in robust optimization
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Exercise : robust linear programming

♠ Exercise: Consider the following robust linear programm

Min
x∈Rn

c>x

s.t. (ai + Riδi)
>x ≤ bi ∀‖δi‖2 ≤ 1, ∀i ∈ [m]

Write this problem as an SOCP.
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Semi definite programming (SDP) ♦

Min
X∈Sn(R)

tr
(

CX
)

s.t. A(X) = b
X � 0

where X , and C are symmetric matrices, and A : Sn → Rm a linear
mapping.

convex problem
can be solved for n ≥ 103, through some ”linear” solver, relying on
interior points methods
contains SOCP
limited in size in part because the number of actual variables is n2
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Unconstrained convex-differentiable optimization ♥

Min
x

f (x)

where f is convex, finite, and differentiable.
Iterative algorithm yields ε-solution
Solution are global due to convexity
Complexity theory is well understood : maximum theoretical speed,
and algorithms matching this speed
Convergence speed is easier under strong convexity assumptions
Can be solved for n ≥ 105

; this is where we will spend most of our time
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Unconstrained convex non-differentiable optimization

Min
x

f (x)

where f is convex and finite.
Iterative algorithm yields ε-solution
Solution are global due to convexity
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Can be solved for n ≥ 104
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Unconstrained differentiable optimization

Min
x

f (x)

where f is differentiable.
Iterative algorithm yields ε local optimum
Algorithms are mostly the same as in convex differentiable setting,
but the theory is more involved
Can find a local optimum for n ≥ 105

; most algorithms presented in this course can be used to hopefully get
to a locally optimum point.
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Constrained convex optimization

Min
x

f (x)

s.t. x ∈ X

where X is convex set.
Easiest if X is a box or ball
Specific approach relying on LP if X is a polyhedron
Various methods in the generic case:

I projection
I feasible direction
I constraint penalization
I dualization
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Combinatorial problem

min
x∈X

f (x)

where X is a finite set.
This roughly represent the problem of combinatorial optimization.
X being finite you can, in theory, test all possibilities and choose the
best. However, this brute force approach is often unpractical due to
the size of X .
Even if an exact solution can be obtained, it is not often the case.
Finding lower bound is interesting to understand how far your current
solution is from the optimum.
Practical methods are often matheuristics or meta-heuristics adapted
to the specificity of the problem.
Problems are often very hard, and practical solvability depends on the
specific problem structure.
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Mixed Integer Linear Programming ♥

min
x∈Rn

c>x

s.t. Ax = b, x ≥ 0
x i ∈ N ∀i ∈ I ⊂ [n]

A very important class of problem, with huge modeling power.
By order of difficulty we distinguish : continuous variables, binary
variables and integer variables.
Exact solution methods rely on the idea of branch and cut.
(https://www.youtube.com/watch?v=2zKCQ03JzOY (13’))
Very powerful (commercial) solver (like Gurobi, Cplex, Mosek...) are
developped and improved every year to tackle these problems. They
use a mix of insightful mathematical ideas and heuristic knowledge.
Efficiency of the solver depend on the type of problem, and the
formulation of the problem.
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Mixed Integer Conic Programming ♦

min
x∈Rn

c>x

s.t. Ax = b
x ≥ 0
x ∈ C
x i ∈ N ∀i ∈ I ⊂ [n]

where C is a convex cone.
Harder than MILP
More recent development, thus the theory and heuristic experience is
less advanced than MILP
Numerical efficiency is quickly improving
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Exercise : stock optimization

♠ Exercise: Consider that you sell a given product over T days. The
demand for each day is dt . Having a quantity xt of items in stock have a
cost (per day) of cxt . You can order, each day, a quantity qt , and have to
satisfy the demand.

For each of the following variation : model the problem, explicit the class
to which it belongs, and give the optimal solution if easily found.

1 Without any further constraint / specifications.
2 There is an ”ordering cost”: each time you order, you have to pay a

fix cost κ.
3 Instead of an ”ordering cost” there is a maximum number of days at

which you can order a replenishment.
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”Ad Hoc” solution

A heuristic is an admissible, not necessarily optimal, solution to a given
optimisation problem. It gives upper-bound.

In a lot of applications, experience or good sense, can give reasonably
good heuristics.
Sometimes these heuristics can have a few parameters that can be
tuned by trial and error.

♣ Exercise: In the stock optimization example, with fixed ordering cost,
propose a simple heuristic.
♣ Exercise: Now assume that, in this same example, there is some
uncertainty on the demand, adapt your heuristic to offer a robustness
parameter.
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Random search

A good way of obtaining good solutions is to randomly test multiple
admissible solutions, and keep the best one.
Examples:

exhaustive search (combinatorial)
genetic algorithms
simulated annealing
swarm particles

Use case :
hard problems (combinatorial or continuous) where finding an
admissible solution is easy
when you just want an admissible solution, if possible better than
what you had
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Video ressources

https://www.youtube.com/watch?v=3QJjfeVrut8 (5’)
https://www.youtube.com/watch?v=NI3WllrvWoc (4’)
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Descent methods ♥

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (1)

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d(k) (2)

where
x (0) is the initial point,
d(k) ∈ Rn is the descent direction,
t(k) is the step length.

; most of this is discussed in next classes.
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Video explanation

https://www.youtube.com/watch?v=n-Y0SDSOfUI(5’)
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Descent direction

For a differentiable objective function f , d(k) will be a descent direction iff
∇f (x (k)) · d(k) ≤ 0, which can be seen from a first order development:

f (x (k) + t(k)d(k)) = f (x (k)) + t
〈
∇f (x (k)) , d(k)〉+ o(t).

The most classical descent direction is d(k) = −∇f (x (k)), which
correspond to the gradient algorithm.
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Step-size choice

The step-size t(k) can be:
fixed t(k) = t(0), for all iteration,
optimal t(k) ∈ argmint≥0 f (x (k) + td(k)),
a ”good” step, following some rules (e.g Armijo’s rules).

Finding the optimal step size is a special case of unidimensional
optimization (or linear search).
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Model based methods ♥

Another class of algorithm consists in constructing a simple model of the
objective function f that is optimized and then refined.
Generally speaking, model based algorithm goes as follow:

1 Solve minx∈X f k(x)
2 Update model f k into f k+1

This approach might work if
The model problem minx∈X f k(x) is simple
The model f k locally looks like the true function f around the
optimum
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Kelley algorithm

Data: Convex objective function f , Compact set X , Initial point
x0 ∈ X

Result: Admissible solution x (k), lower-bound v (k)

Set f (0) ≡ −∞ ;
for k ∈ N do

Compute a subgradient g (k) ∈ ∂f (x (k)) ;
Define a cut C(k) : x 7→ f (x (k)) + 〈g (k), x − x (k)〉;
Update the lower approximation f (k+1) = max{f (k), C(k)} ;
Solve (P(k)) : min

x∈X
f (k+1)(x);

Set v (k) = val(P(k));
Select x (k+1) ∈ sol(P(k));

end
Algorithm 1: Kelley’s cutting plane algorithm

V. Leclère Optimization and algorithms April 1st, 2022 34 / 42



Trust region method ♦

Consider an unconstrained, non-linear, smooth problem

Min
x∈Rn

f (x)

The idea of trust region is based on the following two facts:
f locally looks like it’s second order limited development

f (x + h) = f (x) +
〈
∇f (x) , h

〉
+

1
2h>∇2f (x)h + o(‖h‖2)

we know how to compute the minimum of a quadratic function on a
ball.
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Trust region method ♦
The trust region method goes as follows, given a current point xk and
trust radius ∆k

1 compute f k(xk + h) = f (xk) +
〈
∇f (xk) , h

〉
+ 1

2h>∇2f (xk)h
2 solve miny∈B(xk ,∆k) f k(y), with optimal solution yk

3 compute f (yk)

4 compute the concordance rk as the ratio actual decrease / model
decrease

rk =
f (xk)− f (yk)

f k(xk)− f k(yk)

I If rk is small, the model is bad and you decrease ∆k and restart the
iteration

I If rk is large (close to 1) update the current point xk+1 = yk .
5 If rk is close to one and yk is on the boundary, increase ∆k .

; there are full books on trust region methods.
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Video explanation

https://www.youtube.com/watch?v=G-QKRv1rgG0(30’)
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Some optimization problems in Python

https://www.youtube.com/watch?v=sJ5HTi70wXo(10’)
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What you have to know

Important elements defining an optimization problem :
continuous/discrete, smooth/non-differentiable, convex/non-convex,
linear/non-linear, constrained/unconstrained.
Main optimization classes: LP, MILP, differentiable unconstrained,
combinatorial.
The difference between heuristic and exact methods
Main classes of exact method : descent direction, approximation
method.
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What you really should know

Other important classes of optimization problem (LS, QP, SOCP,
SDP)
Some ideas of heuristic methods (simulated annealing, genetic
algorithms)
Kelley’s cutting plane algorithm
Principle of trust region method
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What you have to be able to do

Recognise a LP / MILP
Recognise a (convex) differentiable optimization problem, constrained
or not
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What you should be able to do

know how to use a ”lift” variable, e.g.

Min
x

max(f1(x), f2(x)) = Min
x ,z

z

s.t. f1(x) ≤ z
f2(x) ≤ z
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