Descent direction algorithms

V. Leclère (ENPC)

March 26th, 2021

Why should I bother to learn this stuff?

- Gradient algorithm is the easiest, most robust optimization algorithm. It is not numerically efficient, but numerous more advanced algorithm are built on it.
- Conjugate gradient algorithm(s) are efficient methods for (quasi)-quadratic function. They are in particular used for approximately solving large linear systems.
- \Longrightarrow useful for comprehension of
- more advanced continuous optimization algorithms
- machine learning training methods
- numerical methods for solving discretized PDE

Contents

(1) Introduction [BV 9.1]

- Some general thoughts and definition
- Descent methods
(2) Strong convexity consequences [B․ 9.2]
(3) Gradient descent

Contents

(1) Introduction

- Some general thoughts and definition
- Descent methods
(2) Strong convexity consequences [B․ 9.2]
(3) Gradient descent [BV 9.3-9.4]

4 Conjugate gradient

A word on solution

- In this lecture, we are going to address unconstrained, finite dimensional, non-linear, smooth, optimization problem.
- In continuous non-linear (and non-quadratic) optimization, we cannot expect to obtain an exact solution. We are thus looking for approximate solution.
- By solution, we generally means local minimum. ${ }^{1}$
- The speed of convergence of an algorithm is thus determining an upper bound on the number of iterations required to get an ε-solution, for $\varepsilon>0$.

[^0]
Black-box optimization

We consider the following unconstrained optimization problem

$$
\operatorname{Min}_{x \in \mathbb{R}^{n}} \quad f(x)
$$

- The black-box model consists in considering that we only know the function f through an oracle, that is a way of computing information on f at a given point x.
- Oracle gives local information on f. Oracles are generally a user defined code.
- A zeroth order oracle only return the value $f(x)$.
- A first order oracle return both $f(x)$ and $\nabla f(x)$.
- A second order oracle return $f(x), \nabla f(x)$ and $\nabla^{2} f(x)$.
- By the objective function f
\square where $f_{0}(x)$ is smooth and g is "simple"

Black-box optimization

We consider the following unconstrained optimization problem

$$
\operatorname{Min}_{x \in \mathbb{R}^{n}} \quad f(x)
$$

- The black-box model consists in considering that we only know the function f through an oracle, that is a way of computing information on f at a given point x.
- Oracle gives local information on f. Oracles are generally a user defined code.
- A zeroth order oracle only return the value $f(x)$.
- A first order oracle return both $f(x)$ and $\nabla f(x)$.
- A second order oracle return $f(x), \nabla f(x)$ and $\nabla^{2} f(x)$.
- By opposition, structured optimization leverage more knowledge on the objective function f. Classical model are
- $f(x)=\sum_{i=1}^{N} f_{i}(x)$;
- $f(x)=f_{0}(x)+\lambda g(x)$, where $f_{0}(x)$ is smooth and g is "simple", typically $g(x)=\|x\|_{1}$;

Contents

(1) Introduction

- Some general thoughts and definition
- Descent methods
(2) Strong convexity consequences

(3) Gradient descent [BV 9.3-9.4]

4 Conjugate gradient

Descent methods

Consider the unconstrained optimization problem

$$
v^{\sharp}=\min _{x \in \mathbb{R}^{n}} f(x) .
$$

A descent direction algorithm is an algorithm that constructs a sequence of points $\left(x^{(k)}\right)_{k \in \mathbb{N}}$, that are recursively defined with:

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^{n}$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\left\|\nabla f\left(x^{(k)}\right)\right\|$ is small enough.

Descent methods

Consider the unconstrained optimization problem

$$
v^{\sharp}=\min _{x \in \mathbb{R}^{n}} f(x) .
$$

A descent direction algorithm is an algorithm that constructs a sequence of points $\left(x^{(k)}\right)_{k \in \mathbb{N}}$, that are recursively defined with:

$$
x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}
$$

where

Descent methods

Consider the unconstrained optimization problem

$$
v^{\sharp}=\min _{x \in \mathbb{R}^{n}} f(x) .
$$

A descent direction algorithm is an algorithm that constructs a sequence of points $\left(x^{(k)}\right)_{k \in \mathbb{N}}$, that are recursively defined with:

$$
x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}
$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^{n}$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that

Descent methods

Consider the unconstrained optimization problem

$$
v^{\sharp}=\min _{x \in \mathbb{R}^{n}} f(x) .
$$

A descent direction algorithm is an algorithm that constructs a sequence of points $\left(x^{(k)}\right)_{k \in \mathbb{N}}$, that are recursively defined with:

$$
x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}
$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^{n}$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\left\|\nabla f\left(x^{(k)}\right)\right\|$ is small enough.

Descent direction algorithms

For a differentiable objective function $f, d^{(k)}$ will be a descent direction iff $\nabla f\left(x^{(k)}\right) \cdot d^{(k)}<0$, which can be seen from a first order development:

$$
f\left(x^{(k)}+t^{(k)} d^{(k)}\right)=f\left(x^{(k)}\right)+t\left\langle\nabla f\left(x^{(k)}\right), d^{(k)}\right\rangle+o(t) .
$$

The most classical descent direction are

Descent direction algorithms

For a differentiable objective function $f, d^{(k)}$ will be a descent direction iff $\nabla f\left(x^{(k)}\right) \cdot d^{(k)}<0$, which can be seen from a first order development:

$$
f\left(x^{(k)}+t^{(k)} d^{(k)}\right)=f\left(x^{(k)}\right)+t\left\langle\nabla f\left(x^{(k)}\right), d^{(k)}\right\rangle+o(t) .
$$

The most classical descent direction are
(1) $d^{(k)}=-\nabla f\left(x^{(k)}\right)$
(gradient)
(2) $d^{(k)}=-\nabla f\left(x^{(k)}\right)+\beta^{(k)} d^{(k-1)}$
(3) $d^{(k)}=-\alpha^{(k)} \nabla f\left(x^{(k)}\right)+\beta^{(k)}\left(x^{(k)}-x^{(k-1)}\right)$
(9) $d^{(k)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
(5) $d^{(k)}=-W^{(k)} \nabla f\left(x^{(k)}\right)$ (conjugate gradient)
(heavy ball \diamond)
(Newton)
where $W^{(k)} \approx\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1}$.
(Quasi-Newton)

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)}=t^{(0)}$,
- too small and it will take forever
- too large and it won't converge
- optimal $t^{(k)} \in \arg \min _{\tau \geq 0} f\left(x^{(k)}+\tau d^{(k)}\right)$,
- computing it require solving an unidimensional problem
- might not be worth the computation
- a backtracking step choice, for given $\left.\tau_{0}>0, \alpha \in\right] 0,0.5[, \beta \in] 0,1[$,
(1) $\tau=\tau^{0}$
(2) if $f\left(x^{(k)}+\tau d^{(k)}\right)>f\left(x^{(k)}\right)+\alpha \tau \nabla f\left(x^{(k)}\right)^{\top} d^{(k)}: t^{(k)}=\tau$, STOP
(3) $\tau \leftarrow \beta \tau$, go back to 2 .
- start with an "optimist" step τ_{0}
- automatically adapt to ensure convergence
- more complex procedure exists

Contents

(1) Introduction

[BV 9.1]

- Some general thoughts and definition
- Descent methods
(2) Strong convexity consequences
[BV 9.2]
(3) Gradient descent

Strong convexity definitions)

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is m-convex ${ }^{2}$ if
$\left.f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{m}{2} t(1-t)\|y-x\|^{2}, \quad \forall x, y, \quad \forall t \in\right] 0,1[$
If f is differentiable, it is m-convex iff

If f is twice differentiable, it is m-convex of

\leadsto this last characterization is the most usefull for our analysis.
${ }^{2} \mathrm{~A}$ strongly convex function is a m-convex function for some $m>0$

Strong convexity definitions)

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is m-convex ${ }^{2}$ iff
$\left.f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{m}{2} t(1-t)\|y-x\|^{2}, \quad \forall x, y, \quad \forall t \in\right] 0,1[$
If f is differentiable, it is m-convex iff

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}, \quad \forall y, x
$$

If f is twice differentiable, it is m-convex iff

\leadsto this last characterization is the most usefull for our analysis.
${ }^{2} \mathrm{~A}$ strongly convex function is a m-convex function for some $m>0$

Strong convexity definition(s)

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is m-convex ${ }^{2}$ iff
$\left.f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{m}{2} t(1-t)\|y-x\|^{2}, \quad \forall x, y, \quad \forall t \in\right] 0,1[$
If f is differentiable, it is m-convex iff

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}, \quad \forall y, x
$$

If f is twice differentiable, it is m-convex iff

$$
m l \preceq \nabla^{2} f(x) \quad \forall x
$$

\leadsto this last characterization is the most usefull for our analysis.

[^1]
Bounding the Hessian

Consider a m-convex \mathcal{C}^{2} function (on its domain), and $x^{(0)} \in \operatorname{dom} f$. Denote $S:=\operatorname{lev}_{f\left(x_{0}\right)}(f)=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq f\left(x_{0}\right)\right\}$.

As f is a strongly convex function S is bounded.
As $\nabla^{2} f$ is continuous, there exists $M>0$ such that, $\left\|\nabla^{2} f(x)\right\| \leq M$, for all $x \in S$.

Thus we have, for all $x \in S$,
$m l \preceq \nabla^{2} f(x) \preceq M I$

Bounding the Hessian

Consider a m-convex \mathcal{C}^{2} function (on its domain), and $x^{(0)} \in \operatorname{dom} f$. Denote $S:=\operatorname{lev}_{f\left(x_{0}\right)}(f)=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq f\left(x_{0}\right)\right\}$.

As f is a strongly convex function S is bounded.
As $\nabla^{2} f$ is continuous, there exists $M>0$ such that, $\left\|\nabla^{2} f(x)\right\| \leq M$, for all $x \in S$.

Thus we have, for all $x \in S$,

$$
m I \preceq \nabla^{2} f(x) \preceq M I
$$

Strongly convex suboptimality certificate

Let f be a m-convex \mathcal{C}^{2} function. We have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}, \quad \forall y, x
$$

The under approximation is minimized, for a given x, for $y^{\sharp}=x-\frac{1}{m} \nabla f(x)$, yielding

$$
f(y) \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|^{2}
$$

Thus we obtain the following sub-optimality certificate

Strongly convex suboptimality certificate

Let f be a m-convex \mathcal{C}^{2} function. We have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}, \quad \forall y, x
$$

The under approximation is minimized, for a given x, for $y^{\sharp}=x-\frac{1}{m} \nabla f(x)$, yielding

$$
\begin{aligned}
& f(y) \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|^{2} \\
& v^{\sharp}+\frac{1}{2 m}\|\nabla f(x)\|^{2} \geq f(x)
\end{aligned}
$$

Thus we obtain the following sub-optimality certificate

Strongly convex suboptimality certificate

Let f be a m-convex \mathcal{C}^{2} function. We have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}, \quad \forall y, x
$$

The under approximation is minimized, for a given x, for $y^{\sharp}=x-\frac{1}{m} \nabla f(x)$, yielding

$$
\begin{gathered}
f(y) \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|^{2} \\
v^{\sharp}+\frac{1}{2 m}\|\nabla f(x)\|^{2} \geq f(x)
\end{gathered}
$$

Thus we obtain the following sub-optimality certificate

$$
\|\nabla f(x)\| \leq \sqrt{2 m \varepsilon} \quad \Longrightarrow \quad f(x) \leq v^{\sharp}+\varepsilon
$$

Condition numbers

For any $A \in S_{n}^{++}$positive definite matrix, we define its condition number $\kappa(A)=\lambda_{\text {max }} / \lambda_{\text {min }} \geq 1$ the ratio between its largest and smallest eigenvalue.

Consider a bounded convex set C. Let $D_{\text {out }}$ be the diameter of the smallest ball $B_{\text {out }}$ containing C, and $D_{\text {in }}$ be the diameter of the largest ball $B_{\text {in }}$ contained in C.

Then the condition number of C is

Condition numbers

For any $A \in S_{n}^{++}$positive definite matrix, we define its condition number $\kappa(A)=\lambda_{\text {max }} / \lambda_{\text {min }} \geq 1$ the ratio between its largest and smallest eigenvalue.

Consider a bounded convex set C. Let $D_{\text {out }}$ be the diameter of the smallest ball $B_{\text {out }}$ containing C, and $D_{\text {in }}$ be the diameter of the largest ball $B_{\text {in }}$ contained in C.

Then the condition number of C is

Condition numbers

For any $A \in S_{n}^{++}$positive definite matrix, we define its condition number $\kappa(A)=\lambda_{\text {max }} / \lambda_{\text {min }} \geq 1$ the ratio between its largest and smallest eigenvalue.

Consider a bounded convex set C. Let $D_{\text {out }}$ be the diameter of the smallest ball $B_{\text {out }}$ containing C, and $D_{\text {in }}$ be the diameter of the largest ball $B_{\text {in }}$ contained in C.

Then the condition number of C is

$$
\operatorname{cond}(C)=\left(\frac{D_{\text {out }}}{D_{\text {in }}}\right)^{2}
$$

Condition number of sublevel set

We have, for all $x \in S$,

$$
m I \preceq \nabla^{2} f(x) \preceq M I
$$

thus

$$
\kappa\left(\nabla^{2} f(x)\right) \leq M / m
$$

Further,

For any $v^{\sharp} \leq \alpha \leq f\left(x_{0}\right)$, we have

and thus
$\operatorname{cond}\left(C_{\alpha}\right) \leq M / m$

Condition number of sublevel set

We have, for all $x \in S$,

$$
m I \preceq \nabla^{2} f(x) \preceq M I
$$

thus

$$
\kappa\left(\nabla^{2} f(x)\right) \leq M / m
$$

Further,

$$
v^{\sharp}+\frac{m}{2}\left\|x-x^{\sharp}\right\|^{2} \leq f(x) \leq v^{\sharp}+\frac{M}{2}\left\|x-x^{\sharp}\right\|^{2}
$$

For any $v^{\sharp} \leq \alpha \leq f\left(x_{0}\right)$, we have

and thus
$\operatorname{cond}\left(C_{\alpha}\right) \leq M / m$

Condition number of sublevel set

We have, for all $x \in S$,

$$
m I \preceq \nabla^{2} f(x) \preceq M I
$$

thus

$$
\kappa\left(\nabla^{2} f(x)\right) \leq M / m
$$

Further,

$$
v^{\sharp}+\frac{m}{2}\left\|x-x^{\sharp}\right\|^{2} \leq f(x) \leq v^{\sharp}+\frac{M}{2}\left\|x-x^{\sharp}\right\|^{2}
$$

For any $v^{\sharp} \leq \alpha \leq f\left(x_{0}\right)$, we have

$$
B\left(x^{\sharp}, \sqrt{2\left(\alpha-v^{\sharp}\right) / M}\right) \subset \operatorname{lev}_{\alpha} f \subset B\left(x^{\sharp}, \sqrt{2\left(\alpha-v^{\sharp}\right) / m}\right)
$$

and thus

$$
\operatorname{cond}\left(C_{\alpha}\right) \leq M / m
$$

Contents

(1) Introduction

- Some general thoughts and definition
- Descent methods

2) Strong convexity consequences [B․ 9.2]
(3) Gradient descent [BV 9.3-9.4]

Gradient descent

- The gradient descent algorithm is a first-order descent direction algorithm with $d^{(k)}=-\nabla f\left(x^{(k)}\right)$.
- That is, with an initial point x_{0}, we have

$$
x^{(k+1)}=x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right)
$$

- The three step-size choices (fixed, optimal and decreasing) leads to variations of the algorithm.
- This algorithm is slow, but robust in the sense that he often ends up converging.
- Most implementation of advanced algorithms have fail-safe procedure that default to a gradient step when something goes wrong for numerical reasons.
- It is the basis of the stochastic-gradient algorithm, which is used (in advanced form) to train ML models.

Gradient descent

- The gradient descent algorithm is a first-order descent direction algorithm with $d^{(k)}=-\nabla f\left(x^{(k)}\right)$.
- That is, with an initial point x_{0}, we have

$$
x^{(k+1)}=x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right) .
$$

- The three step-size choices (fixed, optimal and decreasing) leads to variations of the algorithm.
- This algorithm is slow, but robust in the sense that he often ends up converging.
- Most implementation of advanced algorithms have fail-safe procedure that default to a gradient step when something goes wrong for numerical reasons.
- It is the basis of the stochastic-gradient algorithm, which is used (in advanced form) to train ML models.

Steepest descent algorithm

- Using the linear approximation
$f\left(x^{(k)}+h\right)=f\left(x^{(k)}+\nabla f\left(x^{(k)}\right)^{\top} h+o(\|h\|)\right.$, it is quite natural to look for the steepest descent direction, that is

$$
d^{(k)} \in \underset{h}{\arg \min } \quad\left\{\nabla f\left(x^{(k)}\right)^{\top} h \quad \mid \quad\|h\| \leq 1\right\}
$$

- Here $\|\cdot\|$ could be any norm on \mathbb{R}^{n}.
- If $\|\cdot\|=\|\cdot\|_{2}$, the steepest descent is a gradient step, i.e. proportional to $-\nabla f\left(x^{(k)}\right)$.
- If $\|\cdot\|=\|\cdot\|_{P},\|x\|=\left\|P^{1 / 2} x\right\|_{2}$ for some $P \in S_{++}^{n}$, then the steepest descent is $-P^{-1} \nabla f\left(x^{(k)}\right)$. In other words, a steepest descent step is a gradient step done on a problem after a change of variable $\bar{x}=P^{1 / 2} x$.
- If $\|\cdot\|=\|\cdot\|_{1}$, then the steepest descent can be chosen along a single coordinate, leading to the coordinate descent algorithm.
A Exercise: Prove these results.

Convergence results - convex case

Assume that f is such that $0 \preceq \nabla^{2} f \preceq M I$.

Theorem

The gradient algorithm with fixed step size $t^{(k)}=t \leq \frac{1}{M}$ satisfies

$$
f\left(x^{(k)}\right)-v^{\sharp} \leq \frac{2 M\left\|x^{(0)}-x^{\sharp}\right\|}{k}=O(1 / k)
$$

\leadsto this is a sublinear rate of convergence.

Convergence results - strongly convex case

Assume that f is such that $m I \preceq \nabla^{2} f \preceq M I$, with $m>0$. Define the conditionning factor $\kappa=\mathrm{M} / \mathrm{m}$.

Theorem

If $x^{(k)}$ is obtained from the optimal step, we have

$$
f\left(x^{(k)}\right)-v^{\sharp} \leq c^{k}\left(f\left(x_{0}\right)-v^{\sharp}\right), \quad c=1-1 / \kappa
$$

If $x^{(k)}$ is obtained by receeding step size we have

$$
f\left(x^{(k)}\right)-v^{\sharp} \leq c^{k}\left(f\left(x_{0}\right)-v^{\sharp}\right), \quad c=1-\min \{2 m \alpha, 2 \beta \alpha\} / \kappa
$$

\leadsto linear rate of convergence.

Contents

(1) Introduction

- Some general thoughts and definition
- Descent methods
(2) Strong convexity consequences
(3) Gradient descent

4 Conjugate gradient

Solving a linear system

The gradient conjugate algorithm stem from looking for numerical solution to the linear equation

$$
A x=b
$$

- Never, ever, compute A^{-1} to solve a linear system.
- Classical algebraic method do a methodological factorisation of A to obtain the (exact) value of x.
- These methods are in $O\left(n^{3}\right)$ operations. They only yields a solution at the end of the algorithm.
- The solution would be exact if there was no rounding errors...

Solving a linear system

Alternatively, we can look to solve

$$
\operatorname{Min}_{x \in \mathbb{R}^{n}} \quad f(x):=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

which is a smooth, unconstrained, convex optimization problem, whose optimal solution is given by $A x=b$.

We will assume that $A \in S_{++}^{n}$. If A is non symetric, but invertible, we could consider $A^{\top} A x=A^{\top} b$.

Solving a linear system

Alternatively, we can look to solve

$$
\operatorname{Min}_{x \in \mathbb{R}^{n}} \quad f(x):=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

which is a smooth, unconstrained, convex optimization problem, whose optimal solution is given by $A x=b$.

We will assume that $A \in S_{++}^{n}$. If A is non symetric, but invertible, we could consider $A^{\top} A x=A^{\top} b$.

Conjugate directions

We say that $u, v \in \mathbb{R}^{n}$ are A-conjugate if they are orthogonal for the scalar product associated to A, i.e.

$$
\langle u, v\rangle_{A}:=u^{\top} A v=0
$$

Let $\left(\tilde{d}_{i}\right)_{i \in[k]}$ be a linearly independent family of vector. We can construct a family of conjugate directions $\left(d_{i}\right)_{i \in[k]}$ through the Gram-Schmidt procedure (without normalisation), i.e., $\tilde{d}_{1}=d_{1}$, and

where

Conjugate directions

We say that $u, v \in \mathbb{R}^{n}$ are A-conjugate if they are orthogonal for the scalar product associated to A, i.e.

$$
\langle u, v\rangle_{A}:=u^{\top} A v=0
$$

Let $\left(\tilde{d}_{i}\right)_{i \in[k]}$ be a linearly independent family of vector. We can construct a family of conjugate directions $\left(d_{i}\right)_{i \in[k]}$ through the Gram-Schmidt procedure (without normalisation), i.e., $\tilde{d}_{1}=d_{1}$, and

$$
d_{\kappa}=\tilde{d}_{\kappa}-\sum_{i=1}^{\kappa-1} \beta_{i, \kappa} d_{i}
$$

where

$$
\beta_{i, \kappa}=\frac{\left\langle\tilde{d}_{\kappa}, d_{i}\right\rangle_{A}}{\left\langle d_{i}, d_{i}\right\rangle_{A}}=\frac{\tilde{d}_{\kappa}^{\top} A d_{i}}{d_{i}^{\top} A d_{i}}
$$

Conjugate direction method for quadratic function
Consider, for $A \in S_{++}^{n}$

$$
f(x):=\frac{1}{2} x^{\top} A x-b^{\top} x
$$

A conjugate direction algorithm is a descent direction algorithm such that,

$$
x^{(k+1)}=\underset{x \in x_{1}+E^{(k)}}{\arg \min } f(x)
$$

where

$$
E^{(k)}=\operatorname{vect}\left(d^{(1)}, \ldots, d^{(k)}\right)
$$

© Exercise: Denote $g^{(k)}=\nabla f\left(x^{(k)}\right)$. Show that
(1) $g^{(k)^{\top}} d_{i}=0$ for $i<k$
(2) $g^{(k+1)}=g^{(k)}+t^{(k)} A d^{(k)}$
(3) $g^{(k)^{\top}} d^{(i)}+t^{(k)} d^{(k)^{\top}} A d^{(i)}=0$ for $i \leq k$
(9) Either

- $g^{(k)^{\top}} d^{(k)}=0$ and $t^{(k)}=0$
- or $g^{(k)^{\top}} d^{(k)}<0$ and $t^{(k)}=-\frac{g^{(k)} \boldsymbol{T}^{\top} d^{(k)}}{t^{(k)} d^{(k)} A d^{(k)}}$

Conjugate direction method for quadratic function

Data: Linearly independent direction $\tilde{d}^{(1)}, \ldots, \tilde{d}^{(n)}$, initial point $x^{(1)}$
Matrix A and vector b
for $k \in[n]$ do

$$
\begin{aligned}
& d^{(k)}=\tilde{d}^{(k)}-\sum_{i=1}^{k-1} \frac{\left\langle\tilde{d}^{(k)}, d^{(i)}\right\rangle_{A}}{\left\langle d^{(i)}, d^{(i)}\right\rangle_{A}} d^{(i)} ; \\
& t^{(k)}=\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left\langle d^{(k)}, d^{(k)}\right\rangle_{A}} ; \\
& x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}
\end{aligned}
$$

// A-orthogonalisation
// optimal step

Algorithm 1: Conjugate direction algorithm
This algorithm is such that (for a quadratic function f)

$$
x^{(k+1)}=\underset{x \in x_{1}+E^{(k)}}{\arg \min } f(x)
$$

where

$$
E^{(k)}=\operatorname{vect}\left(d^{(1)}, \ldots, d^{(k)}\right)
$$

Conjugate gradient algorithm - quadratic function
If we choose $\tilde{d}^{(k)}=-\nabla f\left(x^{(k)}\right)$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)}=\operatorname{vect}\left(g^{(1)}, \ldots,\left(g^{(k)}\right)\right)$, and thus

Note that

Thus, through orthogonality we have

Conjugate gradient algorithm - quadratic function
If we choose $\tilde{d}^{(k)}=-\nabla f\left(x^{(k)}\right)$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)}=\operatorname{vect}\left(g^{(1)}, \ldots,\left(g^{(k)}\right)\right)$, and thus

$$
g^{(k)^{\top}} g^{(i)}=0
$$

Note that

Thus, through orthogonality we have

Conjugate gradient algorithm - quadratic function If we choose $\tilde{d}^{(k)}=-\nabla f\left(x^{(k)}\right)$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)}=\operatorname{vect}\left(g^{(1)}, \ldots,\left(g^{(k)}\right)\right)$, and thus

$$
g^{(k)^{\top}} g^{(i)}=0
$$

Note that

$$
g^{(i+1)}-g^{(i)}=t^{(i)} A d^{(i)}, \quad \text { thus } \frac{\left\langle\tilde{d}^{(k)}, d^{(i)}\right\rangle_{A}}{\left\langle d^{(i)}, d^{(i)}\right\rangle_{A}}=\frac{\left(\tilde{d}^{(k)}\right)^{\top}\left(g^{(i+1)}-g^{(i)}\right)}{\left.d^{(i)}\right)^{\top}\left(g^{(i+1)}-g^{(i)}\right)}
$$

Thus, through orthogonality we have

Conjugate gradient algorithm - quadratic function If we choose $\tilde{d}^{(k)}=-\nabla f\left(x^{(k)}\right)$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)}=\operatorname{vect}\left(g^{(1)}, \ldots,\left(g^{(k)}\right)\right)$, and thus

$$
g^{(k)^{\top}} g^{(i)}=0
$$

Note that

$$
g^{(i+1)}-g^{(i)}=t^{(i)} A d^{(i)}, \quad \text { thus } \frac{\left\langle\tilde{d}^{(k)}, d^{(i)}\right\rangle_{A}}{\left\langle d^{(i)}, d^{(i)}\right\rangle_{A}}=\frac{\left(\tilde{d}^{(k)}\right)^{\top}\left(g^{(i+1)}-g^{(i)}\right)}{\left.d^{(i)}\right)^{\top}\left(g^{(i+1)}-g^{(i)}\right)}
$$

Thus, through orthogonality we have

$$
\begin{aligned}
d^{(k)} & =\tilde{d}^{(k)}-\sum_{i=1}^{k-1} \frac{-g^{(k)^{\top}}\left(g^{(i+1)}-g^{(i)}\right)}{d^{(i)^{\top}}\left(g^{(i+1)}-g^{(i)}\right)} d^{(i)} \\
& =-g^{(k)}+\frac{g^{(k)^{\top}}\left(g^{(k)}-g^{(k-1)}\right)}{d^{(k-1)^{\top}}\left(g^{(k)}-g^{(k-1)}\right)} d^{(k-1)}=-g^{(k)}+\frac{\left\|g^{(k)}\right\|^{2}}{\left\|g^{(k-1)}\right\|^{2}} d^{(k-1)}
\end{aligned}
$$

Conjugate gradient algorithm - quadratic function

Data: Initial point $x^{(1)}$, matrix A and vector b

$$
\begin{aligned}
& g^{(1)}=A x^{(1)}-b ; \\
& d^{(1)}=-g^{(1)} \text { for } k=2 . . n \text { do } \\
& \qquad \begin{array}{l}
\text { If }\left\|g^{(k)}\right\|_{2}^{2} \text { is small : STOP; } \\
d^{(k)}=-g^{(k)}+\frac{\left\|g^{(k)}\right\|_{2}^{2}}{\left\|g^{(k-1)}\right\|_{2}^{2}} d^{(k-1)} ; \\
t^{(k)}=\frac{\left\|g^{(k)}\right\|_{2}^{2}}{d^{(k)^{\top}} A d^{(k)}} ; \\
x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)} ; \\
g^{(k+1)}=g^{(k)}+t^{(k)} A d^{(k)}
\end{array}
\end{aligned}
$$

// optimal step

Algorithm 2: Conjugate gradient algorithm - quadratic function

Conjugate gradient properties

We can show the following properties, for a quadratic function,

- The algorithm find an optimal solution in at most n iterations
- If $\kappa=\lambda_{\text {max }} / \lambda_{\text {min }}$, we have

$$
\left\|x^{(k+1)}-x^{\sharp}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x^{(1)}-x^{\sharp}\right\|_{A}
$$

- By comparison, gradient descent with optimal step yields

$$
\left\|x^{(k+1)}-x^{\sharp}\right\|_{A} \leq 2\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|x^{(1)}-x^{\sharp}\right\|_{A}
$$

Non-linear conjugate gradient

Data: Initial point $x^{(1)}$, first order oracle for $k \in[n]$ do

$$
g^{(k)}=\nabla f\left(x^{(k)}\right) ;
$$

If $\left\|g^{(k)}\right\|_{2}^{2}$ is small : STOP; $d^{(k)}=-g^{(k)}+\beta^{(k)} d^{(k-1)}$;
$t^{(k)}$ obtained by receeding linear search ;
$x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$;
Algorithm 3: Conjugate gradient algorithm - non-linear function Two natural choices for the choice of β, equivalent for quadratic functions

- $\beta^{(k)}=\frac{\left\|g^{(k)}\right\|_{2}^{2}}{\left\|g^{(k-1)}\right\|_{2}^{2}}$
(Fletcher-Reeves)
- $\beta^{(k)}=\frac{g^{(k)^{\top}}\left(g^{(k)}-g^{(k-1)}\right)}{\left\|g^{(k-1)}\right\|_{2}^{2}}$
(Polak-Ribière)

What you have to know

- What is a descent direction method.
- That there is a step-size choice to make.
- That there exists multiple descent direction.
- Gradient method is the slowest method, and in most case you should used more advanced method through adapted library.
- Conditionning of the problem is important for convergence speed.

What you really should know

- A problem can be pre-conditionned through change of variable to get faster results.
- Solving linear system can be done exactly through algebraic method, or approximately (or exactly) through minimization method.
- Conjugate gradient method are efficient tools for (approximately) solving a linear equation.
- Conjugate gradient works by exactly minimizing the quadratic function on an affine subspace.

What you have to be able to do

- Implement a gradient method with receeding step-size.

What you should be able to do

- Implement a conjugate gradient method.
- Use the strongly convex and/or Lipschitz gradient assumptions to derive bounds.

[^0]: ${ }^{1}$ Sometimes just stationary points. Equivalent to global minimum in the convex setting.

[^1]: ${ }^{2} \mathrm{~A}$ strongly convex function is a m-convex function for some $m>0$

