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Why should I bother to learn this stuff ?

Gradient algorithm is the easiest, most robust optimization algorithm.
It is not numerically efficient, but numerous more advanced algorithm
are built on it.
Conjugate gradient algorithm(s) are efficient methods for
(quasi)-quadratic function. They are in particular used for
approximately solving large linear systems.
=⇒ useful for comprehension of

I more advanced continuous optimization algorithms
I machine learning training methods
I numerical methods for solving discretized PDE
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A word on solution

In this lecture, we are going to address unconstrained, finite
dimensional, non-linear, smooth, optimization problem.
In continuous non-linear (and non-quadratic) optimization, we cannot
expect to obtain an exact solution. We are thus looking for
approximate solution.
By solution, we generally means local minimum.1

The speed of convergence of an algorithm is thus determining an
upper bound on the number of iterations required to get an
ε-solution, for ε > 0.

1Sometimes just stationary points. Equivalent to global minimum in the convex
setting.
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Black-box optimization ♥
We consider the following unconstrained optimization problem

Min
x∈Rn

f (x)

The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x .
Oracle gives local information on f . Oracles are generally a user
defined code.

I A zeroth order oracle only return the value f (x).
I A first order oracle return both f (x) and ∇f (x).
I A second order oracle return f (x), ∇f (x) and ∇2f (x).

By opposition, structured optimization leverage more knowledge on
the objective function f . Classical model are

I f (x) =
∑N

i=1 fi(x);
I f (x) = f0(x) + λg(x), where f0(x) is smooth and g is ”simple”,

typically g(x) = ‖x‖1;
I ...
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Descent methods
Consider the unconstrained optimization problem

v ] = min
x∈Rn

f (x).

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d(k)

where
x (0) is the initial point,
d(k) ∈ Rn is the descent direction,
t(k) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
‖∇f (x (k))‖ is small enough.

V. Leclère Descent direction algorithms March 26th, 2021 5 / 29



Descent methods
Consider the unconstrained optimization problem

v ] = min
x∈Rn

f (x).

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d(k)

where
x (0) is the initial point,
d(k) ∈ Rn is the descent direction,
t(k) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
‖∇f (x (k))‖ is small enough.

V. Leclère Descent direction algorithms March 26th, 2021 5 / 29



Descent methods
Consider the unconstrained optimization problem

v ] = min
x∈Rn

f (x).

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d(k)

where
x (0) is the initial point,
d(k) ∈ Rn is the descent direction,
t(k) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
‖∇f (x (k))‖ is small enough.

V. Leclère Descent direction algorithms March 26th, 2021 5 / 29



Descent methods
Consider the unconstrained optimization problem

v ] = min
x∈Rn

f (x).

A descent direction algorithm is an algorithm that constructs a sequence
of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d(k)

where
x (0) is the initial point,
d(k) ∈ Rn is the descent direction,
t(k) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
‖∇f (x (k))‖ is small enough.

V. Leclère Descent direction algorithms March 26th, 2021 5 / 29



Descent direction algorithms ♥

For a differentiable objective function f , d(k) will be a descent direction iff
∇f (x (k)) · d(k) < 0, which can be seen from a first order development:

f (x (k) + t(k)d(k)) = f (x (k)) + t
〈
∇f (x (k)) , d(k)〉+ o(t).

The most classical descent direction are
1 d(k) = −∇f (x (k)) (gradient)
2 d(k) = −∇f (x (k)) + β(k)d(k−1) (conjugate gradient)
3 d(k) = −α(k)∇f (x (k)) + β(k)(x (k) − x (k−1)) (heavy ball ♦)
4 d(k) = −

[
∇2f (x (k))

]−1∇f (x (k)) (Newton)
5 d(k) = −W (k)∇f (x (k)) (Quasi-Newton)

where W (k) ≈
[
∇2f (x (k))

]−1.

V. Leclère Descent direction algorithms March 26th, 2021 6 / 29



Descent direction algorithms ♥

For a differentiable objective function f , d(k) will be a descent direction iff
∇f (x (k)) · d(k) < 0, which can be seen from a first order development:

f (x (k) + t(k)d(k)) = f (x (k)) + t
〈
∇f (x (k)) , d(k)〉+ o(t).

The most classical descent direction are
1 d(k) = −∇f (x (k)) (gradient)
2 d(k) = −∇f (x (k)) + β(k)d(k−1) (conjugate gradient)
3 d(k) = −α(k)∇f (x (k)) + β(k)(x (k) − x (k−1)) (heavy ball ♦)
4 d(k) = −

[
∇2f (x (k))

]−1∇f (x (k)) (Newton)
5 d(k) = −W (k)∇f (x (k)) (Quasi-Newton)

where W (k) ≈
[
∇2f (x (k))

]−1.

V. Leclère Descent direction algorithms March 26th, 2021 6 / 29



Step-size choice ♥

The step-size t(k) can be:
fixed t(k) = t(0),

I too small and it will take forever
I too large and it won’t converge

optimal t(k) ∈ argminτ≥0 f (x (k) + τd(k)),
I computing it require solving an unidimensional problem
I might not be worth the computation

a backtracking step choice, for given τ0 > 0, α ∈]0, 0.5[, β ∈]0, 1[,
1 τ = τ 0

2 if f (x (k) + τd(k)) > f (x (k)) + ατ∇f (x (k))>d(k) : t(k) = τ , STOP
3 τ ← βτ , go back to 2.
I start with an ”optimist” step τ0
I automatically adapt to ensure convergence
I more complex procedure exists
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Strong convexity definition(s) ♥

Recall that f : Rn → R is m-convex2 iff

f (tx+(1−t)y) ≤ tf (x)+(1−t)f (y)−m
2 t(1−t)‖y−x‖2, ∀x , y , ∀t ∈]0, 1[

If f is differentiable, it is m-convex iff

f (y) ≥ f (x) +
〈
∇f (x) , y − x

〉
+

m
2 ‖y − x‖2, ∀y , x

If f is twice differentiable, it is m-convex iff

mI � ∇2f (x) ∀x

; this last characterization is the most usefull for our analysis.

2A strongly convex function is a m-convex function for some m > 0
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Bounding the Hessian

Consider a m-convex C2 function (on its domain), and x (0) ∈ dom f .
Denote S := levf (x0)(f ) =

{
x ∈ Rn | f (x) ≤ f (x0)

}
.

As f is a strongly convex function S is bounded.

As ∇2f is continuous, there exists M > 0 such that, ‖∇2f (x)‖ ≤ M, for
all x ∈ S.

Thus we have, for all x ∈ S,

mI � ∇2f (x) � MI
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Strongly convex suboptimality certificate ♦
Let f be a m-convex C2 function. We have

f (y) ≥ f (x) +
〈
∇f (x) , y − x

〉
+

m
2 ‖y − x‖2, ∀y , x

The under approximation is minimized, for a given x , for
y ] = x − 1

m∇f (x), yielding

f (y) ≥ f (x)− 1
2m‖∇f (x)‖2

v ] +
1

2m‖∇f (x)‖2 ≥ f (x)

Thus we obtain the following sub-optimality certificate

‖∇f (x)‖ ≤
√

2mε =⇒ f (x) ≤ v ] + ε
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Condition numbers ♦

For any A ∈ S++
n positive definite matrix, we define its condition number

κ(A) = λmax/λmin ≥ 1 the ratio between its largest and smallest
eigenvalue.

Consider a bounded convex set C . Let Dout be the diameter of the
smallest ball Bout containing C , and Din be the diameter of the largest ball
Bin contained in C .

Then the condition number of C is

cond(C) =
(Dout

Din

)2
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Condition number of sublevel set ♦
We have, for all x ∈ S,

mI � ∇2f (x) � MI

thus
κ(∇2f (x)) ≤ M/m

Further,
v ] +

m
2 ‖x − x ]‖2 ≤ f (x) ≤ v ] +

M
2 ‖x − x ]‖2

For any v ] ≤ α ≤ f (x0), we have

B(x ],
√

2(α− v ])/M) ⊂ lev
α

f ⊂ B(x ],
√

2(α− v ])/m)

and thus
cond(Cα) ≤ M/m
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Gradient descent ♥
The gradient descent algorithm is a first-order descent direction
algorithm with d(k) = −∇f (x (k)).
That is, with an initial point x0, we have

x (k+1) = x (k) − t(k)∇f (x (k)).

The three step-size choices (fixed, optimal and decreasing) leads to
variations of the algorithm.

This algorithm is slow, but robust in the sense that he often ends up
converging.
Most implementation of advanced algorithms have fail-safe procedure
that default to a gradient step when something goes wrong for
numerical reasons.
It is the basis of the stochastic-gradient algorithm, which is used (in
advanced form) to train ML models.
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Steepest descent algorithm ♦

Using the linear approximation
f (x (k) + h) = f (x (k) +∇f (x (k))>h + o(‖h‖), it is quite natural to
look for the steepest descent direction, that is

d(k) ∈ argmin
h

{
∇f (x (k))>h | ‖h‖ ≤ 1

}
Here ‖ · ‖ could be any norm on Rn.

I If ‖ · ‖ = ‖ · ‖2, the steepest descent is a gradient step, i.e. proportional
to −∇f (x (k)).

I If ‖ · ‖ = ‖ · ‖P , ‖x‖ = ‖P1/2x‖2 for some P ∈ Sn
++, then the steepest

descent is −P−1∇f (x (k)). In other words, a steepest descent step is a
gradient step done on a problem after a change of variable x̄ = P1/2x .

I If ‖ · ‖ = ‖ · ‖1, then the steepest descent can be chosen along a single
coordinate, leading to the coordinate descent algorithm.

♠ Exercise: Prove these results.
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Convergence results - convex case ♦

Assume that f is such that 0 � ∇2f � MI.

Theorem
The gradient algorithm with fixed step size t(k) = t ≤ 1

M satisfies

f (x (k))− v ] ≤ 2M‖x (0) − x ]‖
k = O(1/k)

; this is a sublinear rate of convergence.
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Convergence results - strongly convex case ♦

Assume that f is such that mI � ∇2f � MI, with m > 0. Define the
conditionning factor κ = M/m.

Theorem
If x (k) is obtained from the optimal step, we have

f (x (k))− v ] ≤ ck(f (x0)− v ]), c = 1− 1/κ

If x (k) is obtained by receeding step size we have

f (x (k))− v ] ≤ ck(f (x0)− v ]), c = 1−min
{

2mα, 2βα
}
/κ

; linear rate of convergence.
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Solving a linear system I

The gradient conjugate algorithm stem from looking for numerical solution
to the linear equation

Ax = b

Never, ever, compute A−1 to solve a linear system.
Classical algebraic method do a methodological factorisation of A to
obtain the (exact) value of x .
These methods are in O(n3) operations. They only yields a solution
at the end of the algorithm.
The solution would be exact if there was no rounding errors...
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Solving a linear system II

Alternatively, we can look to solve

Min
x∈Rn

f (x) := 1
2x>Ax − b>x

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.

We will assume that A ∈ Sn
++. If A is non symetric, but invertible, we

could consider A>Ax = A>b.
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Conjugate directions ♦
We say that u, v ∈ Rn are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.〈

u , v
〉

A := u>Av = 0

Let (d̃i)i∈[k] be a linearly independent family of vector. We can construct
a family of conjugate directions (di)i∈[k] through the Gram-Schmidt
procedure (without normalisation), i.e., d̃1 = d1, and

dκ = d̃κ −
κ−1∑
i=1

βi,κdi

where

βi,κ =

〈
d̃κ , di

〉
A〈

di , di
〉

A
=

d̃>
κ Adi

d>
i Adi
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Conjugate direction method for quadratic function I ♦
Consider, for A ∈ Sn

++

f (x) := 1
2x>Ax − b>x

A conjugate direction algorithm is a descent direction algorithm such that,

x (k+1) = argmin
x∈x1+E (k)

f (x)

where
E (k) = vect(d(1), . . . , d(k))

♠ Exercise: Denote g (k) = ∇f (x (k)). Show that
1 g (k)>di = 0 for i < k
2 g (k+1) = g (k) + t(k)Ad(k)

3 g (k)>d(i) + t(k)d(k)>Ad(i) = 0 for i ≤ k
4 Either

I g (k)>d(k) = 0 and t(k) = 0
I or g (k)>d(k) < 0 and t(k) = − g(k)>d(k)

t(k)d(k)>Ad(k)
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Conjugate direction method for quadratic function II ♦
Data: Linearly independent direction d̃(1), . . . , d̃(n), initial point x (1)

Matrix A and vector b
for k ∈ [n] do

d(k) = d̃(k) −
∑k−1

i=1

〈
d̃(k) ,d(i)

〉
A〈

d(i) ,d(i)
〉

A

d(i) ; // A-orthogonalisation

t(k) = ∇f (x (k))>d(k)〈
d(k) ,d(k)

〉
A

; // optimal step

x (k+1) = x (k) + t(k)d(k)

Algorithm 1: Conjugate direction algorithm

This algorithm is such that (for a quadratic function f )

x (k+1) = argmin
x∈x1+E (k)

f (x)

where
E (k) = vect(d(1), . . . , d(k))
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Conjugate gradient algorithm - quadratic function I ♦
If we choose d̃(k) = −∇f (x (k)) we obtain the conjugate gradient
algorithm.

In particular we obtain that E (k) = vect(g (1), . . . , (g (k))), and thus

g (k)>g (i) = 0

Note that

g (i+1) − g (i) = t(i)Ad(i), thus
〈
d̃(k) , d(i)〉

A〈
d(i) , d(i)

〉
A

=
(d̃(k))>(g (i+1) − g (i))

d(i)>(g (i+1) − g (i))

Thus, through orthogonality we have

d(k) = d̃(k) −
k−1∑
i=1

−g (k)>(g (i+1) − g (i))

d(i)>(g (i+1) − g (i))
d(i)

= −g (k) +
g (k)>(g (k) − g (k−1))

d(k−1)>(g (k) − g (k−1))
d(k−1) = −g (k) +

‖g (k)‖2

‖g (k−1)‖2
d(k−1)
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Conjugate gradient algorithm - quadratic function II ♦

Data: Initial point x (1), matrix A and vector b
g (1) = Ax (1) − b ;
d(1) = −g (1) for k = 2..n do

If ‖g (k)‖2
2 is small : STOP;

d(k) = −g (k) +
‖g(k)‖2

2
‖g(k−1)‖2

2
d(k−1) ;

t(k) = ‖g(k)‖2
2

d(k)>Ad(k) ; // optimal step
x (k+1) = x (k) + t(k)d(k) ;
g (k+1) = g (k) + t(k)Ad(k)

Algorithm 2: Conjugate gradient algorithm - quadratic function
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Conjugate gradient properties ♦

We can show the following properties, for a quadratic function,
The algorithm find an optimal solution in at most n iterations
If κ = λmax/λmin, we have

‖x (k+1) − x ]‖A ≤ 2
(√κ− 1√

κ+ 1

)k
‖x (1) − x ]‖A

By comparison, gradient descent with optimal step yields

‖x (k+1) − x ]‖A ≤ 2
(κ− 1
κ+ 1

)k
‖x (1) − x ]‖A
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Non-linear conjugate gradient ♦

Data: Initial point x (1), first order oracle
for k ∈ [n] do

g (k) = ∇f (x (k)) ;
If ‖g (k)‖2

2 is small : STOP;
d(k) = −g (k) + β(k)d(k−1) ;
t(k) obtained by receeding linear search ;
x (k+1) = x (k) + t(k)d(k) ;

Algorithm 3: Conjugate gradient algorithm - non-linear function
Two natural choices for the choice of β, equivalent for quadratic functions

β(k) =
‖g (k)‖22
‖g (k−1)‖22

(Fletcher-Reeves)

β(k) =
g (k)>(g (k) − g (k−1))

‖g (k−1)‖22
(Polak-Ribière)
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What you have to know

What is a descent direction method.
That there is a step-size choice to make.
That there exists multiple descent direction.
Gradient method is the slowest method, and in most case you should
used more advanced method through adapted library.
Conditionning of the problem is important for convergence speed.
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What you really should know

A problem can be pre-conditionned through change of variable to get
faster results.
Solving linear system can be done exactly through algebraic method,
or approximately (or exactly) through minimization method.
Conjugate gradient method are efficient tools for (approximately)
solving a linear equation.
Conjugate gradient works by exactly minimizing the quadratic
function on an affine subspace.
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What you have to be able to do

Implement a gradient method with receeding step-size.
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What you should be able to do

Implement a conjugate gradient method.
Use the strongly convex and/or Lipschitz gradient assumptions to
derive bounds.
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