Newton and Quasi-Newton algorithms

V. Leclère (ENPC)

April 16th, 2021

Why should I bother to learn this stuff?

- Newton algorithm is, in theory, the best black box algorithm for smooth strongly convex function. It is used in practice as well as a stepping step for more advanced algorithm.
- Quasi-Newton algorithms (in particular L-BFGS) are the actual by default algorithm for most smooth black-box optimization library.
 Used in large scale application (e.g. weather forecast) for decades.
- ⇒ useful for
 - understanding the optimization software you might use as an engineer
 - understanding more advanced methods (e.g. interior points methods)
 - getting an idea of why the convergence might behave strangely in practice

Contents

- Newton algorithm [BV 9.6]
 - Algorithm presentation, intuition and property
 - (Damped) Newton algorithm convergence

Quasi Newton

Contents

- Newton algorithm [BV 9.6]
 - Algorithm presentation, intuition and property
 - (Damped) Newton algorithm convergence

Quasi Newton

Newton algorithm

Let f be C^2 such that $\nabla^2 f(x) \succ 0$ for all x (so in particular strictly convex).

The Newton algorithm is a descent direction algorithm with :

- $d^{(k)} = -[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$
- $t^{(k)} = 1$

Note that

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} [\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)}) < 0$$

(unless $\nabla f(x^{(k)}) = 0$) $\rightsquigarrow d^{(k)}$ is a descent direction

We are now going to give multiple justifications to this direction choice.

Newton algorithm

Let f be C^2 such that $\nabla^2 f(x) \succ 0$ for all x (so in particular strictly convex).

The Newton algorithm is a descent direction algorithm with :

- $d^{(k)} = -[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$
- $t^{(k)} = 1$

Note that

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} [\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)}) < 0$$

(unless $\nabla f(x^{(k)}) = 0$) $\rightarrow d^{(k)}$ is a descent direction.

We are now going to give multiple justifications to this direction choice.

Newton algorithm

Let f be C^2 such that $\nabla^2 f(x) \succ 0$ for all x (so in particular strictly convex).

The Newton algorithm is a descent direction algorithm with :

- $d^{(k)} = -[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$
- $t^{(k)} = 1$

Note that

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} [\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)}) < 0$$

(unless $\nabla f(x^{(k)}) = 0$) $\rightarrow d^{(k)}$ is a descent direction.

We are now going to give multiple justifications to this direction choice.

Second-order approximation minimization

We have

$$f(x^{(k)} + d) = f(x^{(k)}) + \nabla f(x^{(k)})^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x^{(k)}) d + o(\|d\|^2)$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$\nabla f(x^{(k)}) + \nabla^2 f(x^{(k)}) d^{(k)} = 0$$

 \sim The Newton method can be seen as a model-based method, where the model at iteration k is simply the second orde approximation.

 \sim A trust region method with confidence radius $+\infty$ is simply the Newton method.

Second-order approximation minimization

We have

$$f(x^{(k)} + d) = f(x^{(k)}) + \nabla f(x^{(k)})^{\top} d + \frac{1}{2} d^{\top} \nabla^{2} f(x^{(k)}) d + o(\|d\|^{2})$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$\nabla f(x^{(k)}) + \nabla^2 f(x^{(k)}) d^{(k)} = 0$$

 \sim The Newton method can be seen as a model-based method, where the model at iteration k is simply the second orde approximation.

 \sim A trust region method with confidence radius $+\infty$ is simply the Newton method.

Second-order approximation minimization

We have

$$f(x^{(k)} + d) = f(x^{(k)}) + \nabla f(x^{(k)})^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x^{(k)}) d + o(\|d\|^2)$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$\nabla f(x^{(k)}) + \nabla^2 f(x^{(k)}) d^{(k)} = 0$$

 \sim The Newton method can be seen as a model-based method, where the model at iteration k is simply the second orde approximation.

 \sim A trust region method with confidence radius $+\infty$ is simply the Newton method.

Steepest descent with adaptative norm

• The Newton direction $d^{(k)}$ is the steepest descent direction for the quadratic norm associated to $\nabla^2 f(x^{(k)})$:

$$d^{(k)} = \operatorname*{arg\,min}_{d} \left\{ \nabla f(x^{(k)})^{\top} d \quad | \quad \|d\|_{\nabla f(x^{(k)})} \leq 1 \right\}$$

- Recall that the steepest gradient descent for a quadratic norm $\|\cdot\|_P$ converges rapidly if the condition number of the Hessian, after change of coordinate, is small.
- In particular a good choice near x^{\sharp} is $P = \nabla f(x^{\sharp})$.
- \sim fast around x^{\sharp}

Solution of linearized optimality condition

The optimality condition is given by

$$\nabla f(x^{\sharp})=0$$

We can linearize it as

$$\nabla f(x^{(k)} + d) \approx \nabla f(x^{(k)}) + \nabla^2 f(x^{(k)})d = 0$$

And the Newton step $d^{(k)}$ is the solution of this linearization.

Affine invariance

- Recall that gradient and conjugate gradient method can be accelarated through smart affine change of variables (pre-conditionning).
- It is not the same for the Newton method:
 - Let A be an invertible matrix, and denote y = Ax + b, and $\tilde{f}: x \mapsto f(Ax + b)$.
 - $ightharpoonup
 abla ilde{f}(y) = A \nabla f(x) \text{ and } \nabla^2 \tilde{f}(y) = A^\top \nabla^2 f(x) A$
 - ▶ The Newton step for \tilde{f} is thus

$$d_{y} = -(A^{\top} \nabla^{2} f(x) A)^{-1} A \nabla f(x) = -A^{-1} (\nabla^{2} f(x))^{-1} \nabla f(x) = A^{-1} d_{x}$$

Consequently

$$x^{(k+1)} - x^{(k)} = A(y^{(k+1)} - y^{(k)})$$

Contents

- Newton algorithm [BV 9.6]
 - Algorithm presentation, intuition and property
 - (Damped) Newton algorithm convergence

Quasi Newton

Damped Newton algorithm


```
Data: Initial point x^{(0)}, Second order oracle, error \varepsilon > 0. while \|\nabla f(x^{(k)})\| \ge \varepsilon do Solve for d^{(k)} \nabla^2 f(x^{(k)}) d^{(k)} = -\nabla f(x^{(k)}) Compute t^{(k)} by backtracking line-search, starting from t=1; x^{(k+1)} = x^{(k)} + t^{(k)} d^{(k)}
```

Algorithm 1: Damped Newton algorithm

- The Newton algorithm with fixed step size t=1 is too numerically unstable, and you should always use a backtracking line-search.
- If the function is not strictly convex the Newton direction is not necessarily a descent direction, and you should check for it (and default to a gradient step).

Convergence idea

Assume that f is strongly convex, such that $mI \leq \nabla^2 f(x) \leq MI$, and that the Hessian $\nabla^2 f$ is L-Lipschitz.

We can show that there exists $0 < \eta \le m^2/L$ and $\gamma > 0$ such that

• If $\|\nabla f(x^{(k)})\|_2 \ge \eta$, then

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• If $\|\nabla f(x^{(k)})\|_2 < \eta$, then $t^{(k)} = 1$ and

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

We have, if $\|\nabla f(x^{(k)})\|_2 < \eta$, then $t^{(k)} = 1$ and

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Let $k = k_0 + \ell$, $\ell \ge 1$, with k_0 such that $\|\nabla f(x^{(k_0)})\|_2 < \eta$. Then $\|\nabla f(x^{(k)})\|_2 < \eta$, and,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k-1)})\|_2\right)^2$$

Recursively

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k_0)})\|_2\right)^{2^{\ell}} \le \frac{1}{2^{2^{\ell}}}$$

And thus

$$f(x^{(k)}) - v^{\sharp} \le \frac{1}{2m} \|\nabla f(x^{(k)})\|_2^2 \le \frac{2m^3}{L^2} \frac{1}{2^{2^{\ell-1}}}$$

 \rightarrow in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

We have, if $\|\nabla f(x^{(k)})\|_2 < \eta$, then $t^{(k)} = 1$ and

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Let $k = k_0 + \ell$, $\ell \ge 1$, with k_0 such that $\|\nabla f(x^{(k_0)})\|_2 < \eta$. Then $\|\nabla f(x^{(k)})\|_2 < \eta$, and,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k-1)})\|_2\right)^2$$

Recursively

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k_0)})\|_2\right)^{2^{\ell}} \le \frac{1}{2^{2^{\ell}}}$$

And thus

$$f(x^{(k)}) - v^{\sharp} \le \frac{1}{2m} \|\nabla f(x^{(k)})\|_2^2 \le \frac{2m^3}{L^2} \frac{1}{2^{2\ell-1}}$$

 \sim in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

We have, if $\|\nabla f(x^{(k)})\|_2 < \eta$, then $t^{(k)} = 1$ and

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Let $k = k_0 + \ell$, $\ell \ge 1$, with k_0 such that $\|\nabla f(x^{(k_0)})\|_2 < \eta$. Then $\|\nabla f(x^{(k)})\|_2 < \eta$, and,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k-1)})\|_2\right)^2$$

Recursively,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k_0)})\|_2\right)^{2^{\ell}} \le \frac{1}{2^{2^{\ell}}}$$

And thus

$$f(x^{(k)}) - v^{\sharp} \le \frac{1}{2m} \|\nabla f(x^{(k)})\|_{2}^{2} \le \frac{2m^{3}}{L^{2}} \frac{1}{2^{2^{\ell-1}}}$$

 \sim in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

We have, if $\|\nabla f(x^{(k)})\|_2 < \eta$, then $t^{(k)} = 1$ and

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Let $k = k_0 + \ell$, $\ell \ge 1$, with k_0 such that $\|\nabla f(x^{(k_0)})\|_2 < \eta$. Then $\|\nabla f(x^{(k)})\|_2 < \eta$, and,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k-1)})\|_2\right)^2$$

Recursively,

$$\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k_0)})\|_2\right)^{2^{\ell}} \le \frac{1}{2^{2^{\ell}}}$$

And thus

$$f(x^{(k)}) - v^{\sharp} \le \frac{1}{2m} \|\nabla f(x^{(k)})\|_2^2 \le \frac{2m^3}{L^2} \frac{1}{2^{2^{\ell-1}}}$$

 \rightarrow in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

- The damped phase, where $t^{(k)}$ can be less than 1. Each iteration yield an absolute improvement of $-\gamma < 0$.
- The quadratic phase, where each step $t^{(k)} = 1$.

Thus the total number of iteration to get an arepsilon solution is bounded above by

$$\frac{f(x^{(0)}) - v^{\sharp}}{\gamma} + \underbrace{\log_2(\log_2(\varepsilon_0/\varepsilon))}_{\leq 6}$$

where $\varepsilon_0 = 2m^3/L^2$

Note that, in 6 iterations in the quadratic convergent phase we get an error $\varepsilon \approx 5.10^{-20} \varepsilon_0$.

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

- The damped phase, where $t^{(k)}$ can be less than 1. Each iteration yield an absolute improvement of $-\gamma < 0$.
- The quadratic phase, where each step $t^{(k)} = 1$.

Thus the total number of iteration to get an ε solution is bounded above by

$$\frac{f(x^{(0)}) - v^{\sharp}}{\gamma} + \underbrace{\log_2(\log_2(\varepsilon_0/\varepsilon))}_{\lesssim 6}$$

where $\varepsilon_0 = 2m^3/L^2$.

Note that, in 6 iterations in the quadratic convergent phase we get an error $\varepsilon \approx 5.10^{-20} \varepsilon_0$.

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

- The damped phase, where $t^{(k)}$ can be less than 1. Each iteration yield an absolute improvement of $-\gamma < 0$.
- The quadratic phase, where each step $t^{(k)} = 1$.

Thus the total number of iteration to get an ε solution is bounded above by

$$\frac{f(x^{(0)}) - v^{\sharp}}{\gamma} + \underbrace{\log_2(\log_2(\varepsilon_0/\varepsilon))}_{\lesssim 6}$$

where $\varepsilon_0 = 2m^3/L^2$.

Note that, in 6 iterations in the quadratic convergent phase we get an error $\varepsilon \approx 5.10^{-20} \varepsilon_0$.

Contents

- Newton algorithm [BV 9.6]
 - Algorithm presentation, intuition and property
 - (Damped) Newton algorithm convergence

Quasi Newton

The main idea

Newton's step is the very efficient (near optimality) but have three drawbacks:

- having a second order oracle to compute the Hessian
- storing the Hessian $(n^2 \text{ values})$
- solving a (dense) linear system : $\nabla^2 f(x^{(k)})d = -\nabla f(x^{(k)})$

The main idea of Quasi Newton method is to construct, from first order informations, a sequence of matrix $M^{(k)}$, if possible sparse, that approximate the (inverse of) the Hessian.

We want to construct $M^{(k)}$ an approximation of $\nabla^2 f(x^{(k)})$, leading to a quadratic model of f at iteration k

$$f^{(k)}(x) := f(x^{(k)}) + \left\langle \nabla f(x^{(k)}), x - x^{(k)} \right\rangle + \frac{1}{2} (x - x^{(k)})^{\top} M^{(k)}(x - x^{(k)})$$

$$\begin{cases} \nabla f^{(k)}(x^{(k)}) = \nabla f(x^{(k)}) \\ \nabla f^{(k)}(x^{(k-1)}) = \nabla f(x^{(k-1)}) \end{cases}$$

$$M^{(k)}\underbrace{(x^{(k)} - x^{(k-1)})}_{\delta_x^{(k-1)}} = \underbrace{\nabla f(x^{(k)}) - \nabla f(x^{(k-1)})}_{\delta_{\sigma}^{(k-1)}}$$

We want to construct $M^{(k)}$ an approximation of $\nabla^2 f(x^{(k)})$, leading to a quadratic model of f at iteration k

$$f^{(k)}(x) := f(x^{(k)}) + \left\langle \nabla f(x^{(k)}), x - x^{(k)} \right\rangle + \frac{1}{2} (x - x^{(k)})^{\top} M^{(k)}(x - x^{(k)})$$

We ask that the gradient of the model $f^{(k)}$ and the through function matches in current and last iterates:

$$\begin{cases} \nabla f^{(k)}(x^{(k)}) = \nabla f(x^{(k)}) \\ \nabla f^{(k)}(x^{(k-1)}) = \nabla f(x^{(k-1)}) \end{cases}$$

$$M^{(k)}\underbrace{(x^{(k)} - x^{(k-1)})}_{\delta_x^{(k-1)}} = \underbrace{\nabla f(x^{(k)}) - \nabla f(x^{(k-1)})}_{\delta_x^{(k-1)}}$$

13 / 23

We want to construct $M^{(k)}$ an approximation of $\nabla^2 f(x^{(k)})$, leading to a quadratic model of f at iteration k

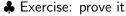
$$f^{(k)}(x) := f(x^{(k)}) + \left\langle \nabla f(x^{(k)}), x - x^{(k)} \right\rangle + \frac{1}{2} (x - x^{(k)})^{\top} M^{(k)}(x - x^{(k)})$$

We ask that the gradient of the model $f^{(k)}$ and the through function matches in current and last iterates:

$$\begin{cases} \nabla f^{(k)}(x^{(k)}) = \nabla f(x^{(k)}) \\ \nabla f^{(k)}(x^{(k-1)}) = \nabla f(x^{(k-1)}) \end{cases}$$

This simply write as the Quasi-Newton equation

$$M^{(k)}\underbrace{(x^{(k)} - x^{(k-1)})}_{\delta_x^{(k-1)}} = \underbrace{\nabla f(x^{(k)}) - \nabla f(x^{(k-1)})}_{\delta_{\sigma}^{(k-1)}}$$



We are looking for a matrix M such that

- $M \succ 0$
- $M\delta_{\mathbf{x}} = \delta_{\mathbf{g}}$ (only possible if $\delta_{\mathbf{g}}^{\top}\delta_{\mathbf{x}} > 0$

Exercise: prove it)

- $\bullet \ M^{\top} = M$
- M is constructed from first order informations only
- If possible, *M* is sparse

 \sim an infinite number of solutions as we have n(n+1)/2 variables and n constraints.

 \rightarrow a large number of quasi-Newton algorithms developped and tested between 1960-1980.

We are looking for a matrix M such that

- $M \succ 0$
- $\quad \bullet \ \ \textit{M} \delta_{\textit{x}} = \delta_{\textit{g}} \ \ \text{(only possible if} \ \delta_{\textit{g}}^{\top} \delta_{\textit{x}} > 0$

Exercise: prove it)

- $\bullet \ M^{\top} = M$
- M is constructed from first order informations only
- If possible, *M* is sparse

 \sim an infinite number of solutions as we have n(n+1)/2 variables and n constraints.

 \sim a large number of quasi-Newton algorithms developped and tested between 1960-1980.

We are looking for a matrix M such that

- $M \succ 0$
- $M\delta_{\mathsf{x}} = \delta_{\mathsf{g}}$ (only possible if $\delta_{\mathsf{g}}^{\top}\delta_{\mathsf{x}} > 0$
- Exercise: prove it)

- \bullet $M^{\top} = M$
- *M* is constructed from first order informations only
- If possible, *M* is sparse

 \rightarrow an infinite number of solutions as we have n(n+1)/2 variables and n constraints.

 \rightsquigarrow a large number of quasi-Newton algorithms developped and tested between 1960-1980.

Choosing the approximate Hessian $M^{(k)}$

At the end of iteration k we have determined

•
$$x^{(k+1)}$$
 and $\delta_x^{(k)} = x^{(k+1)} - x^{(k)}$

•
$$g^{(k+1)} = \nabla f(x^{(k)})$$
 and $\delta_g^{(k)} = g^{(k+1)} - g^{(k)}$

and we are looking for $M^{(k+1)} \approx \nabla^2 f(x^{(k+1)})$ satisfying the previous requirement.

The idea is to choose $M^{(k+1)}$ close to $M^{(k)}$, that is to solve (analytically)

for some distance d.

Choosing the approximate Hessian $M^{(k)}$

At the end of iteration k we have determined

•
$$x^{(k+1)}$$
 and $\delta_x^{(k)} = x^{(k+1)} - x^{(k)}$

•
$$g^{(k+1)} = \nabla f(x^{(k)})$$
 and $\delta_g^{(k)} = g^{(k+1)} - g^{(k)}$

and we are looking for $M^{(k+1)} \approx \nabla^2 f(x^{(k+1)})$ satisfying the previous requirement.

The idea is to choose $M^{(k+1)}$ close to $M^{(k)}$, that is to solve (analytically)

for some distance d.

BFGS

Broyden-Fletcher-Goldfarb-Shanno chose

$$d(A,B) := \operatorname{tr}(AB) - \operatorname{In} \det(AB)$$

A few remarks

- $\Psi: M \mapsto \operatorname{tr} M \operatorname{In} \operatorname{det}(M)$ is convex on S_{++}^n
- For $M \in S_{++}^n$, $\operatorname{tr} M \ln \det(M) = \sum_{i=1}^n \lambda_i \ln(\lambda_i)$
- ullet Ψ is minimized in the identity matrix
- d(A,B)-n is the Kullback-Lieber divergence between $\mathcal{N}(0,A)$ and $\mathcal{N}(0,B)$

BFGS update

One of the pragmatic reason for this choice of distance is that the optimal solution can be found analytically.

We have (to alleviate notation we drop the index k on $\delta_x^{(k)}$ and $\delta_g^{(k)}$)

$$M^{(k+1)} = M^{(k)} + \frac{\delta_{\mathbf{g}} \delta_{\mathbf{g}}^{\top}}{\delta_{\mathbf{g}}^{\top} \delta_{\mathbf{x}}} - \frac{M^{(k)} \delta_{\mathbf{x}} \delta_{\mathbf{x}}^{\top} M^{(k)}}{\delta_{\mathbf{x}}^{\top} M^{(k)} \delta_{\mathbf{x}}}$$

Even better, denoting $W=M^{-1}$,

$$W^{(k+1)} = \left(I - \frac{\delta_{x}\delta_{g}^{\top}}{\delta_{g}^{\top}\delta_{x}}\right)W^{(k)}\left(I - \frac{\delta_{g}\delta_{x}^{\top}}{\delta_{g}^{\top}\delta_{x}}\right) + \frac{\delta_{x}\delta_{x}^{\top}}{\delta_{g}^{\top}\delta_{x}}$$

BFGS update

One of the pragmatic reason for this choice of distance is that the optimal solution can be found analytically.

We have (to alleviate notation we drop the index k on $\delta_x^{(k)}$ and $\delta_g^{(k)}$)

$$M^{(k+1)} = M^{(k)} + \frac{\delta_{\mathbf{g}} \delta_{\mathbf{g}}^{\top}}{\delta_{\mathbf{g}}^{\top} \delta_{\mathbf{x}}} - \frac{M^{(k)} \delta_{\mathbf{x}} \delta_{\mathbf{x}}^{\top} M^{(k)}}{\delta_{\mathbf{x}}^{\top} M^{(k)} \delta_{\mathbf{x}}}$$

Even better, denoting $W = M^{-1}$,

$$W^{(k+1)} = \left(I - \frac{\delta_x \delta_g^\top}{\delta_g^\top \delta_x}\right) W^{(k)} \left(I - \frac{\delta_g \delta_x^\top}{\delta_g^\top \delta_x}\right) + \frac{\delta_x \delta_x^\top}{\delta_g^\top \delta_x}$$

BFGS algorithm

Algorithm 2: BFGS algorithm

- First order oracle only
- No need to solve a linear system
- Still large memory requirement

Limited-memory BFGS (L-BFGS)

- For $n \ge 10^3$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store (δ_x, δ_g) pairs.
- We can then compute $d^{(k)} = -W^{(k)}g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.

→ an algorithm with rougly the same storage requirement as gradient algorithm, and convergence almost equivalent to Newton method.

 \sim this is the "go to" algorithm when you want high level precision for strongly convex smooth problem. It is the default choice in a lot of optimization libraries.

Limited-memory BFGS (L-BFGS)

- For $n \ge 10^3$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store (δ_x, δ_g) pairs.
- We can then compute $d^{(k)} = -W^{(k)}g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.

 \sim an algorithm with rougly the same storage requirement as gradient algorithm, and convergence almost equivalent to Newton method.

 \sim this is the "go to" algorithm when you want high level precision for strongly convex smooth problem. It is the default choice in a lot of optimization libraries.

Limited-memory BFGS (L-BFGS)

- For $n \ge 10^3$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store (δ_x, δ_g) pairs.
- We can then compute $d^{(k)} = -W^{(k)}g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.
- \sim an algorithm with rougly the same storage requirement as gradient algorithm, and convergence almost equivalent to Newton method.
- \sim this is the "go to" algorithm when you want high level precision for strongly convex smooth problem. It is the default choice in a lot of optimization libraries.

What you have to know

- At least one idea behind Newton's algorithm.
- The Newton step.
- That quasi-Newton methods are almost as good as Newton, without requiring a second order oracle.

What you really should know

- Newton's algorithm default step is 1, but you should use backtracking step anyway.
- Newton's algorithm converges in two phases: a slow damped phase, and a very fast quadratically convergent phase close to the optimum (at most 6 iterations).
- BFGS is the by default quasi-Newton method. It work by updating an approximation of the inverse of the Hessian close to the precedent approximation and satisfying some natural requirement.
- L-BFGS limit the memory requirement by never storing the matrix but only the step and gradient updates.

What you have to be able to do

• Implement a damped Newton method.

What you should be able to do

Implement a BFGS method (with the update formula in front of your eyes)