Interior Points Methods

V. Leclère (ENPC)

May 21st, 2021

Why should I bother to learn this stuff ?

- Interior point methods are competitive with simplex method for linear programm
- Interior point methods are state of the art for most conic (convex) problems
- ullet \Longrightarrow useful for
 - understanding what is used in numerical solvers
 - specialization in optimization

Contents

Recalls on convex differentiable optimization problems

- 2 Equality constrained optimization
- 3 Barrier methods [BV 11.2-11.3]
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- 🗿 Wrap-up

Convex differentiable optimization problem

We consider the following convex optimization problem

$$\begin{array}{ll} (\mathcal{P}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 \end{array} \qquad \quad \forall i \in \llbracket 1, n_I \rrbracket$$

where A is a $n_E \times n$ matrix, and all functions f and g_i are assumed convex, real valued and twice differentiable.

$$\begin{array}{ll} (\mathcal{P}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 \end{array} \qquad \quad \forall i \in \llbracket 1, n_I \rrbracket$$

is equivalent to

$$\min_{\mathbf{x}\in\mathbb{R}^n} \quad f(\mathbf{x}) + \mathbb{I}_{\{0\}}(A\mathbf{x} - b) + \sum_{i=1}^{n_i} \mathbb{I}_{\mathbb{R}^-}(h_i(\mathbf{x}))$$

which we rewrite

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \sup_{\lambda \in \mathbb{R}^{n_E}} \lambda^\top (Ax - b) + \sum_{i=1}^{n_i} \sup_{\mu_i \ge 0} \mu_i h_i(x)$$

$$\begin{array}{ll} (\mathcal{P}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 \end{array} \qquad \quad \forall i \in \llbracket 1, n_I \rrbracket$$

is equivalent to

$$\min_{x\in\mathbb{R}^n} \quad f(x)+\mathbb{I}_{\{0\}}(Ax-b)+\sum_{i=1}^{n_i}\mathbb{I}_{\mathbb{R}^-}(h_i(x))$$

which we rewrite

$$\min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} \quad f(x) + \lambda^\top (Ax - b) + \sum_{i=1}^{n_I} \mu_i h_i(x)$$

 $(\mathcal{P}_{\infty}) \min_{x \in \mathbb{R}^{n}} \sup_{\lambda \in \mathbb{R}^{n_{E}}, \mu \in \mathbb{R}^{n_{I}}_{+}} \underbrace{f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{I}} \mu_{i} g_{i}(x)}_{:=\mathcal{L}(x;\lambda,\mu)}$ $(\mathcal{D}) \sup_{\lambda \in \mathbb{R}^{n_{E}}, \mu \in \mathbb{R}^{n_{I}}_{+}} \min_{x \in \mathbb{R}^{n}} f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{I}} \mu_{i} g_{i}(x)$

As for any function ϕ we always have

$$\sup_{y} \inf_{x} \phi(x, y) \leq \inf_{x} \sup_{y} \phi(x, y)$$

we have that (weak duality)

$$val(\mathcal{D}) \leq val(\mathcal{P}).$$

 $\square \heartsuit$

n,

$$(\mathcal{P}_{\infty}) \min_{x \in \mathbb{R}^{n}} \sup_{\lambda \in \mathbb{R}^{n_{E}}, \mu \in \mathbb{R}^{n_{I}}_{+}} \underbrace{f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{I}} \mu_{i} g_{i}(x)}_{:=\mathcal{L}(x;\lambda,\mu)}$$
$$(\mathcal{D}) \sup_{\lambda \in \mathbb{R}^{n_{E}}, \mu \in \mathbb{R}^{n_{I}}_{+}} \min_{x \in \mathbb{R}^{n}} f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_{I}} \mu_{i} g_{i}(x)$$

As for any function ϕ we always have

$$\sup_{\mathbf{y}} \inf_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{y}) \leq \inf_{\mathbf{x}} \sup_{\mathbf{y}} \phi(\mathbf{x}, \mathbf{y})$$

we have that (weak duality)

$$\mathit{val}(\mathcal{D}) \leq \mathit{val}(\mathcal{P}).$$

Lower bounds from duality

 \heartsuit

Define the dual function

$$d(\lambda,\mu) := \inf_{x} \mathcal{L}(x;\lambda,\mu)$$

Then we have
$$val(\mathcal{D}) = \sup_{\lambda \in \mathbb{R}^{n_{\mathcal{E}}}, \mu \in \mathbb{R}^{n_{l}}_{+}} d(\lambda, \mu).$$

Thus, we can compute a lower bound to $val(\mathcal{D}) \leq val(\mathcal{P})$ by choosing an any admissible dual points $\lambda \in \mathbb{R}^{n_{\mathcal{E}}}, \mu \in \mathbb{R}^{n_l}_+$ and solving the unconstrained problem

$$d(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} f(x) + \lambda^{\top} (Ax - b) + \sum_{i=1}^{n_i} \mu_i h_i(x)$$

Lower bounds from duality

 \heartsuit

Define the dual function

$$d(\lambda,\mu) := \inf_{x} \mathcal{L}(x;\lambda,\mu)$$

Then we have $val(\mathcal{D}) = \sup_{\lambda \in \mathbb{R}^{n_{E}}, \mu \in \mathbb{R}^{n_{I}}_{+}} d(\lambda, \mu).$

Thus, we can compute a lower bound to $val(\mathcal{D}) \leq val(\mathcal{P})$ by choosing an any admissible dual points $\lambda \in \mathbb{R}^{n_E}$, $\mu \in \mathbb{R}^{n_I}_+$ and solving the unconstrained problem

$$d(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} f(x) + \lambda^\top (Ax - b) + \sum_{i=1}^m \mu_i h_i(x)$$

Constraint qualification

Recall that, for a convex differentiable optimization problem, the constraints are qualified if *Slater's condition* is satisfied :

$$\exists x_0 \in \mathbb{R}^n$$
, $Ax_0 = b$, $\forall i \in \llbracket 1, n_I \rrbracket$, $g_i(x_0) < 0$

i.e.there exists a strictly admissible feasable point

Saddle point

If (\mathcal{P}) is a convex optimization problem with qualified constraints, then

- $val(\mathcal{D}) = val(\mathcal{P})$
- any optimal solution x[#] of
 (P) is part of a saddle point
 (x[#]; λ[#], μ[#]) of L
- $(\lambda^{\sharp}, \mu^{\sharp})$ is an optimal solution of (\mathcal{D})

Karush Kuhn Tucker conditions

If Slater's condition is satisfied, then x^{\sharp} is an optimal solution to (P) if and only if there exists optimal multipliers $\lambda^{\sharp} \in \mathbb{R}^{n_{E}}$ and $\mu^{\sharp} \in \mathbb{R}^{n_{l}}$ satisfying

$$\begin{cases} \nabla f(x^{\sharp}) + A^{\top} \lambda^{\sharp} + \sum_{i=1}^{n_{i}} \mu_{i}^{\sharp} \nabla g_{i}(x^{\sharp}) = 0 & \text{first order condition} \\ Ax^{\sharp} = b & \text{primal admissibility} \\ g(x^{\sharp}) \leq 0 & \\ \mu^{\sharp} \geq 0 & \text{dual admissibility} \\ \mu_{i}^{\sharp} g_{i}(x^{\sharp}) = 0, \quad \forall i \in [\![1, n_{i}]\!] & \text{complementarity} \end{cases}$$

The three last conditions are sometimes compactly written

 $0 \geq g(x^{\sharp}) \perp \mu \geq 0$

Karush Kuhn Tucker conditions

If Slater's condition is satisfied, then x^{\sharp} is an optimal solution to (P) if and only if there exists optimal multipliers $\lambda^{\sharp} \in \mathbb{R}^{n_{E}}$ and $\mu^{\sharp} \in \mathbb{R}^{n_{l}}$ satisfying

$$\begin{cases} \nabla f(x^{\sharp}) + A^{\top} \lambda^{\sharp} + \sum_{i=1}^{n_{l}} \mu_{i}^{\sharp} \nabla g_{i}(x^{\sharp}) = 0 & \text{first order condition} \\ Ax^{\sharp} = b & \text{primal admissibility} \\ g(x^{\sharp}) \leq 0 & \\ \mu^{\sharp} \geq 0 & \text{dual admissibility} \\ \mu_{i}^{\sharp} g_{i}(x^{\sharp}) = 0, \quad \forall i \in [\![1, n_{l}]\!] & \text{complementarity} \end{cases}$$

The three last conditions are sometimes compactly written

 $0 \ge g(\mathbf{x}^{\sharp}) \perp \mu \ge 0$

Contents

Recalls on convex differentiable optimization problems

2 Equality constrained optimization

3 Barrier methods [BV 11.2-11.3]

- Interior penalization
- Duality
- Interpretation through KKT condition

4 Interior Point Method

5 Application to linear problem

6) Wrap-up

Intuition for Newton's method : unconstrained case

Newton's method is an iterative optimization method that minimizes a quadratic approximation of the objective function at the current point $x^{(k)}$. Consider the following unconstrained optimization problem:

 $\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$

At $x^{(k)}$ we have

$$f(\mathbf{x}^{(k)} + d) = f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(\mathbf{x}^{(k)}) d + o(||d||^2)$$

And the direction $d^{(k)}$ minimizing the quadratic approximation is given by solving for d

$$\nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{d} = 0.$$

Intuition for Newton's method : eq. constrained case

Approximate the linearly constrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}) \\ \text{s.t.} \quad A\mathbf{x} = b$$

by

$$\min_{d \in \mathbb{R}^n} f(x^{(k)}) + \nabla f(x^{(k)})^\top d + \frac{1}{2} d^\top \nabla^2 f(x^{(k)}) d$$

s.t. $A(x^{(k)} + d) = b$

Which is equivalent to solving (for given admissible $x^{(k)}$)

$$\min_{d \in \mathbb{R}^n} \nabla f(\mathbf{x}^{(k)})^\top d + \frac{1}{2} d^\top \nabla^2 f(\mathbf{x}^{(k)}) d$$

s.t. $Ad = 0$

Finding Newton's direction

$$\min_{d \in \mathbb{R}^n} \nabla f(\mathbf{x}^{(k)})^\top d + \frac{1}{2} d^\top \nabla^2 f(\mathbf{x}^{(k)}) d$$

s.t. $Ad = 0$

By KKT the optimal $d^{(k)}$ is given by solving for (d, λ)

$$\begin{cases} \nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)}) d + A^\top \lambda = 0\\ Ad = 0 \end{cases}$$

Or in a matricial form

$$egin{pmatrix}
abla^2 f(oldsymbol{x}^{(k)}) & A^{ op} \ A & 0 \end{pmatrix} egin{pmatrix} d \ \lambda \end{pmatrix} = egin{pmatrix} -
abla f(oldsymbol{x}^{(k)}) \ 0 \end{pmatrix}$$

Finding Newton's direction

$$\min_{d \in \mathbb{R}^n} \nabla f(\mathbf{x}^{(k)})^\top d + \frac{1}{2} d^\top \nabla^2 f(\mathbf{x}^{(k)}) d$$

s.t. $Ad = 0$

By KKT the optimal $d^{(k)}$ is given by solving for (d, λ)

$$\begin{cases} \nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{d} + \mathbf{A}^\top \lambda = \mathbf{0} \\ \mathbf{A}\mathbf{d} = \mathbf{0} \end{cases}$$

Or in a matricial form

$$\begin{pmatrix} \nabla^2 f(\mathbf{x}^{(k)}) & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(\mathbf{x}^{(k)}) \\ 0 \end{pmatrix}$$

Newton's algorithm: equality constrained case

```
Data: Initial admissible point x_0
Result: quasi-optimal point
k = 0:
while |\nabla f(x^{(k)})| \geq \varepsilon do
      Solve for d
                              \begin{pmatrix} \nabla^2 f(x^{(k)}) & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(x^{(k)}) \\ 0 \end{pmatrix}
      Line-search for \alpha \in [0, 1] on f(x^{(k)} + \alpha d^{(k)})
      x^{(k+1)} = x^{(k)} + \alpha d^{(k)}
      k = k + 1
```

Algorithm 1: Newton's algorithm

Contents

Recalls on convex differentiable optimization problems

2 Equality constrained optimization

Barrier methods [BV 11.2-11.3]

- Interior penalization
- Duality
- Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- 🗿 Wrap-up

A short video introduction to the content of this and the next section. https://www.youtube.com/watch?v=MsgpSl5JRbI

Contents

Recalls on convex differentiable optimization problems

2 Equality constrained optimization

Barrier methods [BV 11.2-11.3]

- Interior penalization
- Duality
- Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- Wrap-up

Constrained optimization problem

We now want to consider a convex differentiable optimization problem with equality and inequality constraints.

$$\begin{array}{ll} (\mathcal{P}_{\infty}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 & \quad \forall i \in \llbracket 1, n_I \rrbracket \end{array}$$

where all functions f and g_i are assumed convex, finite valued and twice differentiable.

Which we rewrite

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \sum_{i=1}^{n_i} \mathbb{I}_{\mathbb{R}^-}(g_i(x))$$

s.t. $Ax = b$

Constrained optimization problem

We now want to consider a convex differentiable optimization problem with equality and inequality constraints.

$$\begin{array}{ll} (\mathcal{P}_{\infty}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 & \quad \forall i \in \llbracket 1, n_I \rrbracket \end{array}$$

where all functions f and g_i are assumed convex, finite valued and twice differentiable.

Which we rewrite

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \sum_{i=1}^{n_i} \mathbb{I}_{\mathbb{R}^-}(g_i(x))$$

s.t. $Ax = b$

The negative log function

- The idea of barrier method is to replace the indicator function $\mathbb{I}_{\mathbb{R}^-}$ by a smooth function.
- We choose the function $z \mapsto -1/t \log(-z)$
- Note that they also take value $+\infty$ on \mathbb{R}^+

Illustration of barrier functions

Calculus

 \diamond

• We define

$$\phi: \mathsf{x} \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(\mathsf{x}))$$

• Thus we have
$$\frac{1}{t}\phi(x) \xrightarrow[t \to +\infty]{} \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_l]\}}$$

• We have

$$abla \phi(\mathbf{x}) =$$
 $abla^2 \phi(\mathbf{x}) =$

Calculus

 \diamond

• We define

$$\phi: \mathsf{x} \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(\mathsf{x}))$$

• Thus we have
$$\frac{1}{t}\phi(x) \xrightarrow[t \to +\infty]{} \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_l]\}}$$

• We have

$$abla \phi(\mathbf{x}) = \sum_{i=1}^{n_l} -\frac{1}{g_i(\mathbf{x})}
abla g_i(\mathbf{x})$$
 $abla^2 \phi(\mathbf{x}) =$

Calculus

 \diamond

• We define

$$\phi: \mathbf{x} \mapsto -\sum_{i=1}^{n_l} \ln(-g_i(\mathbf{x}))$$

• Thus we have
$$\frac{1}{t}\phi(x) \xrightarrow[t \to +\infty]{} \mathbb{I}_{\{g_i(x) < 0, \forall i \in [n_i]\}}$$

• We have

$$egin{aligned}
abla \phi(\mathbf{x}) &= \sum_{i=1}^{n_l} -rac{1}{g_i(\mathbf{x})}
abla g_i(\mathbf{x}) \
abla^2 \phi(\mathbf{x}) &= \sum_{i=1}^{n_l} \left[rac{1}{g_i^2(\mathbf{x})}
abla g_i(\mathbf{x})
abla g_i(\mathbf{x})^\top - rac{1}{g_i(\mathbf{x})}
abla^2 g_i(\mathbf{x})
ight] \end{aligned}$$

We consider

$$(\mathcal{P}_{\infty}) \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x)$$

with optimal solution x^{\sharp} .

We consider

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} f(x) + \frac{1}{t}\phi(x)$$

s.t. $Ax = b$

with optimal solution x_t .

We consider

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

with optimal solution x_t .

Letting t goes to $+\infty$ get to solution of (\mathcal{P}) along the central path.

We consider

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

with optimal solution x_t .

Letting t goes to $+\infty$ get to solution of (\mathcal{P}) along the central path.

Characterizing central path

 x_t is solution of

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

if and only if, there exists $\lambda_t \in \mathbb{R}^{n_E}$, such that

Characterizing central path

 x_t is solution of

$$(\mathcal{P}_t) \quad \min_{x \in \mathbb{R}^n} tf(x) + \phi(x)$$

s.t. $Ax = b$

if and only if, there exists $\lambda_t \in \mathbb{R}^{n_E}$, such that

$$\begin{cases} Ax_t = b \\ g_i(x_t) < 0 \\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases} \quad \forall i \in [n_l] \end{cases}$$

Characterizing central path

$$\begin{cases} Ax_t = b\\ g(x_t) < 0\\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases}$$

If A = 0 it means that $\nabla f(x_t)$ is orthogonal to the level lines of ϕ

Ш
Contents

Recalls on convex differentiable optimization problems

2 Equality constrained optimization

Barrier methods [BV 11.2-11.3]

- Interior penalization
- Duality
- Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- Wrap-up

Duality

Recall the original optimization problem

$$\begin{array}{ll} (\mathcal{P}_{\infty}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 & \quad \forall i \in \llbracket 1, n_I \rrbracket$$

with Lagrangian

$$\mathcal{L}(x; \boldsymbol{\lambda}, \mu) := f(x) + \boldsymbol{\lambda}^{\top} (Ax - b) + \sum_{i=1}^{n_i} \mu_i g_i(x)$$

and dual function

$$d(\lambda,\mu) := \inf_{\mathsf{x}\in\mathbb{R}^n} \mathcal{L}(\mathsf{x};\lambda,\mu).$$

For any admissible dual point $(\lambda,\mu)\in \mathbb{R}^{n_E} imes \mathbb{R}^{n_I}_+$, we have

 $d(\lambda,\mu) \leq val(\mathcal{P}_{\infty})$

Duality

Recall the original optimization problem

$$\begin{array}{ll} (\mathcal{P}_{\infty}) & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & Ax = b \\ & g_i(x) \leq 0 & \quad \forall i \in \llbracket 1, n_i \rrbracket$$

with Lagrangian

$$\mathcal{L}(x; \boldsymbol{\lambda}, \mu) := f(x) + \boldsymbol{\lambda}^{\top} (Ax - b) + \sum_{i=1}^{n_i} \mu_i g_i(x)$$

and dual function

$$d(\lambda,\mu) := \inf_{x\in\mathbb{R}^n} \mathcal{L}(x;\lambda,\mu).$$

For any admissible dual point $(\lambda,\mu)\in\mathbb{R}^{n_E} imes\mathbb{R}^{n_l}_+$, we have

$$d(\lambda,\mu) \leq val(\mathcal{P}_{\infty})$$

Getting a lower bound

For given admissible dual point $(\lambda, \mu) \in \mathbb{R}^{n_{E}} \times \mathbb{R}^{n_{I}}_{+}$, a point $x^{\sharp}(\lambda, \mu)$ minimizing $\mathcal{L}(\cdot, \lambda, \mu)$, is characterized by first order conditions

$$abla f(x^{\sharp}(\lambda,\mu)) + A^{\top}\lambda + \sum_{i=1}^{n_{l}} \mu_{i} \nabla g_{i}(x^{\sharp}(\lambda,\mu)) = 0$$

which gives

$$d(\lambda,\mu) = \mathcal{L}(x^{\sharp}(\lambda,\mu);\lambda,\mu) \leq \mathsf{val}(\mathcal{P}_{\infty})$$

Dual point on the central path

Now recall that x_t , solution of (\mathcal{P}_t) , is characterized by

$$\begin{cases} Ax_t = b, g(x_t) < 0\\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases}$$

And we have seen that

$$abla \phi(x) = \sum_{i=1}^{n_l} rac{1}{-g_i(x)}
abla g_i(x)$$

Thus,

$$\nabla f(\mathbf{x}_t) + A^{\top} \lambda / t + \sum_{i=1}^{n_l} \underbrace{\frac{1}{-tg_i(\mathbf{x}_t)}}_{(\mu_t)_i} \nabla g_i(\mathbf{x}) = 0$$

which means that $x_t = x^{\sharp}(\lambda/t, \mu_t)$.

Dual point on the central path

Now recall that x_t , solution of (\mathcal{P}_t) , is characterized by

$$\begin{cases} Ax_t = b, g(x_t) < 0\\ t\nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda = 0 \end{cases}$$

And we have seen that

$$abla \phi(x) = \sum_{i=1}^{n_l} rac{1}{-g_i(x)}
abla g_i(x)$$

Thus,

$$\nabla f(\mathbf{x}_t) + A^{\top} \lambda / t + \sum_{i=1}^{n_l} \underbrace{\frac{1}{-tg_i(\mathbf{x}_t)}}_{(\mu_t)_i} \nabla g_i(\mathbf{x}) = 0$$

which means that $x_t = x^{\sharp}(\lambda/t, \mu_t)$.

Bounding the error

 \diamond

Let x_t be a primal point on the central path satisfying

$$\exists \lambda_t \in \mathbb{R}^{n_E}, \qquad t \nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda_t = 0$$

We define a dual point $(\mu_t)_i = \frac{1}{-tg_i(x_t)} > 0$. We have

$$\begin{aligned} d(\mu_t, \lambda_t/t) &= \mathcal{L}(x_t, \mu_t, \lambda_t/t) \\ &= f(x_t) + \frac{1}{t} \lambda_t^\top \underbrace{(Ax_t - b)}_{=0} + \sum_{i=1}^{n_l} \frac{1}{-tg_i(x_t)} g_i(x_t) \\ &= f(x_t) - \frac{n_l}{t} \leq val(\mathcal{P}_\infty) \end{aligned}$$

And in particular x_t is an n_l/t -optimal solution of (\mathcal{P}_{∞}) .

Bounding the error

 \diamond

Let x_t be a primal point on the central path satisfying

$$\exists \lambda_t \in \mathbb{R}^{n_E}, \qquad t \nabla f(x_t) + \nabla \phi(x_t) + A^{\top} \lambda_t = 0$$

We define a dual point $(\mu_t)_i = \frac{1}{-tg_i(x_t)} > 0$. We have

$$\begin{aligned} d(\mu_t, \lambda_t/t) &= \mathcal{L}(x_t, \mu_t, \lambda_t/t) \\ &= f(x_t) + \frac{1}{t} \lambda_t^\top \underbrace{(Ax_t - b)}_{=0} + \sum_{i=1}^{n_l} \frac{1}{-tg_i(x_t)} g_i(x_t) \\ &= f(x_t) - \frac{n_l}{t} \leq \mathsf{val}(\mathcal{P}_\infty) \end{aligned}$$

And in particular x_t is an n_l/t -optimal solution of (\mathcal{P}_{∞}) .

Contents

Recalls on convex differentiable optimization problems

2 Equality constrained optimization

Barrier methods [BV 11.2-11.3]

- Interior penalization
- Duality
- Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- 🗿 Wrap-up

Interpretation through KKT condition

A point x_t is on the central path iff it is strictly admissible and there exists $\lambda \in \mathbb{R}^{n_E}$ such that

$$abla f(x_t) + A^{ op} \lambda + \sum_{i=1}^{n_l} \underbrace{\frac{1}{-tg_i(x)}}_{(\mu_t)_i}
abla g_i(x) = 0$$

which can be rewritten

$$\begin{cases} \nabla f(x) + A^{\top} \lambda + \sum_{i=1}^{n_i} \mu_i \nabla g_i(x) = 0\\ Ax = b, g_i(x) \le 0\\ \mu \ge 0\\ -\mu_i g_i(x) = \frac{1}{t} \qquad \forall i \in [n_i] \end{cases}$$

Contents

Recalls on convex differentiable optimization problems

- 2 Equality constrained optimization
- 3 Barrier methods [BV 11.2-11.3]
 - Interior penalization
 - Duality
 - Interpretation through KKT condition

Interior Point Method

- 5 Application to linear problem
- 6 Wrap-up

- We saw that we can extend Newton's method to solve linearly constrained optimization problem.
- We saw that we can approximate inequality constraints through the use of logarithmic barrier $-1/t \sum_{i} \ln(-g_i(x))$.
- We proved that x_t is an n_l/t -optimal solution.
- The trade-off with t is : larger t means x_t closer to optimal solution x_{∞} but the approximate problem (\mathcal{P}_t) have worse conditionning.

Barrier method

Data: increase $\rho > 1$, error $\varepsilon > 0$, initial t **Result:** ε -optimal point solve (\mathcal{P}_t) and set $x = x_t$; while $n_l/t \ge \varepsilon$ do *increase t:* $t = \rho t$ *centering step:* solve (\mathcal{P}_t) starting at x; *update :* $x = x_t$

Barrier method

Data: increase $\rho > 1$, error $\varepsilon > 0$, initial t **Result:** ε -optimal point solve (\mathcal{P}_t) and set $x = x_t$; **while** $n_l/t \ge \varepsilon$ **do** *increase t:* $t = \rho t$ *centering step:* solve (\mathcal{P}_t) starting at x; *update :* $x = x_t$

Question : why solve (\mathcal{P}_t) to optimality ?

Solving (\mathcal{P}_t) with Newton's method

$$\begin{array}{ll} (\mathcal{P}_t) & \min_{x \in \mathbb{R}^n} & tf(x) + \phi(x) \\ & \text{s.t.} & Ax = b \end{array}$$

is a linearly constrained optimization problem that can be solved by Newton's method.

More precisely we have $x_{k+1} = x^{(k)} + d^{(k)}$ with $d^{(k)}$ a solution of

$$egin{pmatrix} t
abla^2 f(x^{(k)}) +
abla^2 \phi(x^{(k)}) & A^{ op} \ A & 0 \end{pmatrix} egin{pmatrix} d^{(k)} \ \lambda \end{pmatrix} = egin{pmatrix} -t
abla f(x^{(k)}) -
abla \phi(x^{(k)}) \ 0 \end{pmatrix}$$

Path following interior point method

```
Data: increase \rho > 1, error \varepsilon > 0, initial t_0
initial strictly feasible point x_0
k = 0
for k \in \mathbb{N} do
                                                                                                 // Outer step
      x \leftarrow x_0, t \leftarrow t_0
      for \kappa \in [K] do
                                                                                                 // Inner step
            solve for d:
                                                                           // Newton step for (\mathcal{P}_t)
                         \begin{pmatrix} t_k \nabla^2 f(x) + \nabla^2 \phi(x) & A^\top \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \lambda \end{pmatrix} = \begin{pmatrix} -t_k \nabla f(x) - \nabla \phi(x) \\ 0 \end{pmatrix}
                reduce \alpha from 1 until f(x + \alpha d) \leq f(x);
          x \leftarrow x + \alpha d;
       t \leftarrow \rho t:
```

Algorithm 2: Path following algorithm

Path following algorithm

Video explanation

A longer presentation to watch at a later time https://www.youtube.com/watch?v=zm4mfr-QT1E

Contents

Recalls on convex differentiable optimization problems

- 2 Equality constrained optimization
- 3 Barrier methods [BV 11.2-11.3]
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- Interior Point Method
- 5 Application to linear problem
 - Wrap-up

A linear problem - inequality form

We consider the following LP

$$\min_{x \in \mathbb{R}^n} c^\top x \\ \text{s.t.} \quad a_i^\top x \le b_i \qquad \forall i \in [n_i]$$

Where $a_i^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \leq b$.

Thus, x_t is the solution of

A linear problem - inequality form

We consider the following LP

$$\min_{x \in \mathbb{R}^n} c^\top x \\ \text{s.t.} a_i^\top x \le b_i \qquad \forall i \in [n_i]$$

Where $a_i^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \le b$.

Thus, x_t is the solution of

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \quad \boldsymbol{t}\boldsymbol{c}^\top\boldsymbol{x} + \boldsymbol{\phi}(\boldsymbol{x})$$

where

$$\phi(x) :=$$

>

A linear problem - inequality form

We consider the following LP

$$\min_{x \in \mathbb{R}^n} c^\top x \\ \text{s.t.} a_i^\top x \le b_i \qquad \forall i \in [n_i]$$

Where $a_i^{\top} = A[:, i]$ is the row of matrix A, such that the constraints can be written $Ax \leq b$.

Thus, x_t is the solution of

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \quad \boldsymbol{t}\boldsymbol{c}^\top\boldsymbol{x} + \phi(\boldsymbol{x})$$

>

where

$$\phi(x) := -\sum_{i=1}^{n_l} \ln(b_i - a_i^\top x)$$

 $\phi(x) = -\sum_{i=1}^{n_l} \ln(b_i - a_i^\top x)$

$$\nabla \phi(\mathbf{x}) =$$

$$\nabla^2 \phi(x) =$$

 $\phi(x) = -\sum_{i=1}^{n_l} \ln(b_i - a_i^\top x)$ $\nabla \phi(x) = \sum_{i=1}^{n_l} \frac{1}{b_i - a_i^\top x} a_i$ $\nabla^2 \phi(x) =$

 $\phi(x) = -\sum_{i=1}^{n_l} \ln(b_i - a_i^{ op} x)$ $abla \phi(x) = \sum_{i=1}^{n_l} rac{1}{b_i - a_i^{ op} x} a_i$ $abla^2 \phi(x) = rac{1}{(b_i - a_i^{ op} x)^2} a_i a_i^{ op}$

 $egin{aligned} \phi(x) &= -\sum_{i=1}^{n_l} \ln(b_i - a_i^ op x) \
abla \phi(x) &= \sum_{i=1}^{n_l} rac{1}{b_i - a_i^ op x} a_i \
abla \nabla^2 \phi(x) &= rac{1}{(b_i - a_i^ op x)^2} a_i a_i^ op \end{aligned}$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^\top \times}$

$$abla \phi(x) =$$
 $abla^2 \phi(x) =$

 $\phi(x) = -\sum_{i=1}^{n_l} \ln(b_i - a_i^{ op} x)$ $abla \phi(x) = \sum_{i=1}^{n_l} rac{1}{b_i - a_i^{ op} x} a_i$ $abla^2 \phi(x) = rac{1}{(b_i - a_i^{ op} x)^2} a_i a_i^{ op}$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^\top \times}$

$$abla \phi(\mathbf{x}) = \mathbf{A}^{ op} \mathbf{a}$$
 $abla^2 \phi(\mathbf{x}) =$

 $\phi(x) = -\sum_{i=1}^{n_l} \ln(b_i - a_i^{ op} x)$ $abla \phi(x) = \sum_{i=1}^{n_l} rac{1}{b_i - a_i^{ op} x} a_i$ $abla^2 \phi(x) = rac{1}{(b_i - a_i^{ op} x)^2} a_i a_i^{ op}$

This can be written in matrix form, using the vector $d \in \mathbb{R}^{n_l}$ defined by $d_i = \frac{1}{b_i - a_i^\top \times}$

$$abla \phi(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{d}$$
 $abla^2 \phi(\mathbf{x}) = \mathbf{A}^{\top} \operatorname{diag}(\mathbf{d})^2 \mathbf{A}$

 \diamond

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) =$$

which, in algebraic form, yields

$$dir_t(x) =$$

with $d_i = 1/(b_i - a_i^{\top} x)$.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1}(tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) =$$

with $d_i = 1/(b_i - a_i^{\top} x)$.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1}(tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^{ op}diag(d)^2A]^{-1}(tc + A^{ op}d)$$

with $d_i = 1/(b_i - a_i^{\top} x)$.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1}(tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^ op diag(d)^2 A]^{-1}(tc + A^ op d)$$

with $d_i = 1/(b_i - a_i^{\top} x)$.

Theory tell us to use a step-size of 1 for Newton's method.

Starting from x, the Newton direction for (\mathcal{P}_t) is

$$dir_t(x) = -(\nabla^2 \phi(x))^{-1}(tc + \nabla \phi(x))$$

which, in algebraic form, yields

$$dir_t(x) = -[A^ op diag(d)^2 A]^{-1}(tc + A^ op d)$$

with $d_i = 1/(b_i - a_i^\top x)$.

Theory tell us to use a step-size of 1 for Newton's method.

Practice teach us to use a smaller step-size (or linear-search).

Interior Point Method for LP pseudo code

```
Data: Initial admissible point x_0, initial penalization t_0 > 0;
parameter: \rho > 1, N_{in} \ge 1, N_{out} \ge 1;
Result: quasi-optimal point
x = x0, t = t_0
for k = 1..N_{out} do
    for \kappa = 1..N_{in} do
          Compute d, with d_i = 1/(b_i - a_i^T x);
          Solve for dir
                                 A^{\top} \operatorname{diag}(d)^2 A \operatorname{dir} = -(tc + A^{\top} d)
            reduce \alpha from 1 until<sup>a</sup> f(x + \alpha \operatorname{dir}) \leq f(x);
          update x \leftarrow x + \alpha \operatorname{dir};
     update t \leftarrow \rho t;
```

Algorithm 3: Interior Point Method for LP

^asimplest condition described here

Contents

Recalls on convex differentiable optimization problems

- 2 Equality constrained optimization
- 3 Barrier methods [BV 11.2-11.3]
 - Interior penalization
 - Duality
 - Interpretation through KKT condition
- 4 Interior Point Method
- 5 Application to linear problem
- 🗿 Wrap-up

What you have to know

- IPM are state of the art algorithms for LP and more generally conic optimization problem
- That logarithmic barrier are a useful inner penalization method
What you really should know

- That Newton's algorithm can be applied with equality constraints
- What is the central path
- That IPM work with inner and outer optimization loop