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Why should I bother to learn this stuff ?

Interior point methods are competitive with simplex method for linear
programm
Interior point methods are state of the art for most conic (convex)
problems
=⇒ useful for

I understanding what is used in numerical solvers
I specialization in optimization
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Convex differentiable optimization problem

We consider the following convex optimization problem

(P) min
x∈Rn

f (x)

s.t. Ax = b
gi(x) ≤ 0 ∀i ∈ J1, nIK

where A is a nE × n matrix, and all functions f and gi are assumed
convex, real valued and twice differentiable.
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Introducing the Lagrangian I ♥

(P) min
x∈Rn

f (x)

s.t. Ax = b
gi(x) ≤ 0 ∀i ∈ J1, nIK

is equivalent to

min
x∈Rn

f (x) + I{0}(Ax − b) +
nI∑

i=1
IR−(hi(x))

which we rewrite

min
x∈Rn

f (x) + sup
λ∈RnE

λ>(Ax − b) +
nI∑

i=1
sup
µi≥0

µihi(x)
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Introducing the Lagrangian II ♥

(P∞) min
x∈Rn

sup
λ∈RnE ,µ∈RnI

+

f (x) + λ>(Ax − b) +
nI∑

i=1
µigi(x)︸ ︷︷ ︸

:=L(x ;λ,µ)

(D) sup
λ∈RnE ,µ∈RnI

+

min
x∈Rn

f (x) + λ>(Ax − b) +
nI∑

i=1
µigi(x)

As for any function φ we always have

sup
y

inf
x
φ(x , y) ≤ inf

x
sup

y
φ(x , y)

we have that (weak duality)

val(D) ≤ val(P).
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Lower bounds from duality ♥

Define the dual function

d(λ, µ) := inf
x
L(x ;λ, µ)

Then we have val(D) = supλ∈RnE ,µ∈RnI
+

d(λ, µ).

Thus, we can compute a lower bound to val(D) ≤ val(P) by choosing an
any admissible dual points λ ∈ RnE , µ ∈ RnI

+ and solving the unconstrained
problem

d(λ, µ) = inf
x∈Rn

f (x) + λ>(Ax − b) +
nI∑

i=1
µihi(x)
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Constraint qualification

Recall that, for a convex differentiable optimization problem, the
constraints are qualified if Slater’s condition is satisfied :

∃x0 ∈ Rn, Ax0 = b, ∀i ∈ J1, nIK, gi(x0) < 0

i.e.there exists a strictly admissible feasable point
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Saddle point ♥

If (P) is a convex optimization
problem with qualified
constraints, then

val(D) = val(P)
any optimal solution x ] of
(P) is part of a saddle point
(x ];λ], µ]) of L
(λ], µ]) is an optimal
solution of (D)
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Karush Kuhn Tucker conditions ♥

If Slater’s condition is satisfied, then x ] is an optimal solution to (P) if and
only if there exists optimal multipliers λ] ∈ RnE and µ] ∈ RnI satisfying

∇f (x ]) + A>λ] +
∑nI

i=1 µ
]
i∇gi(x ]) = 0 first order condition

Ax ] = b primal admissibility
g(x ]) ≤ 0
µ] ≥ 0 dual admissibility
µ]

i gi(x ]) = 0, ∀i ∈ J1, nIK complementarity

The three last conditions are sometimes compactly written

0 ≥ g(x ]) ⊥ µ ≥ 0
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Intuition for Newton’s method : unconstrained case ♥

Newton’s method is an iterative optimization method that minimizes a
quadratic approximation of the objective function at the current point x (k).
Consider the following unconstrained optimization problem:

min
x∈Rn

f (x)

At x (k) we have

f (x (k) + d) = f (x (k)) +∇f (x (k))>d +
1
2d>∇2f (x (k))d + o(‖d‖2)

And the direction d(k) minimizing the quadratic approximation is given by
solving for d

∇f (x (k)) +∇2f (x (k))d = 0.
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Intuition for Newton’s method : eq. constrained case ♥
Approximate the linearly constrained optimization problem

min
x∈Rn

f (x)

s.t. Ax = b

by

min
d∈Rn

f (x (k)) +∇f (x (k))>d +
1
2d>∇2f (x (k))d

s.t. A(x (k) + d) = b

Which is equivalent to solving (for given admissible x (k))

min
d∈Rn

∇f (x (k))>d +
1
2d>∇2f (x (k))d

s.t. Ad = 0
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Finding Newton’s direction

min
d∈Rn

∇f (x (k))>d +
1
2d>∇2f (x (k))d

s.t. Ad = 0

By KKT the optimal d(k) is given by solving for (d , λ){
∇f (x (k)) +∇2f (x (k))d + A>λ = 0
Ad = 0

Or in a matricial form(
∇2f (x (k)) A>

A 0

)(
d
λ

)
=

(
−∇f (x (k))

0

)
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Newton’s algorithm: equality constrained case

Data: Initial admissible point x0
Result: quasi-optimal point
k = 0;
while |∇f (x (k))| ≥ ε do

Solve for d (
∇2f (x (k)) A>

A 0

)(
d
λ

)
=

(
−∇f (x (k))

0

)
Line-search for α ∈ [0, 1] on f (x (k) + αd(k))
x (k+1) = x (k) + αd(k)

k = k + 1
Algorithm 1: Newton’s algorithm
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Video explanation

A short video introduction to the content of this and the next section.
https://www.youtube.com/watch?v=MsgpSl5JRbI
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Constrained optimization problem
We now want to consider a convex differentiable optimization problem
with equality and inequality constraints.

(P∞) min
x∈Rn

f (x)

s.t. Ax = b
gi(x) ≤ 0 ∀i ∈ J1, nIK

where all functions f and gi are assumed convex, finite valued and twice
differentiable.
Which we rewrite

min
x∈Rn

f (x) +
nI∑

i=1
IR−(gi(x))

s.t. Ax = b
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The negative log function

The idea of barrier method
is to replace the indicator
function IR− by a smooth
function.
We choose the function
z 7→ −1/t log(−z)
Note that they also take
value +∞ on R+ −2 −1.5 −1 −0.5

2

4

6

8

Illustration of barrier functions

t = 0.5
t = 1
t = 2
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Calculus ♦

We define

φ : x 7→ −
nI∑

i=1
ln(−gi(x))

Thus we have 1
t φ(x) −−−−→t→+∞

I{gi (x)<0, ∀i∈[nI ]}

We have

∇φ(x) =

nI∑
i=1
− 1

gi(x)
∇gi(x)

∇2φ(x) =

nI∑
i=1

[
1

g2
i (x)
∇gi(x)∇gi(x)> −

1
gi(x)

∇2gi(x)
]

V. Leclère Interior Points Methods May 21st, 2021 17 / 37



Calculus ♦

We define

φ : x 7→ −
nI∑

i=1
ln(−gi(x))

Thus we have 1
t φ(x) −−−−→t→+∞

I{gi (x)<0, ∀i∈[nI ]}

We have

∇φ(x) =
nI∑

i=1
− 1

gi(x)
∇gi(x)

∇2φ(x) =

nI∑
i=1

[
1

g2
i (x)
∇gi(x)∇gi(x)> −

1
gi(x)

∇2gi(x)
]

V. Leclère Interior Points Methods May 21st, 2021 17 / 37



Calculus ♦

We define

φ : x 7→ −
nI∑

i=1
ln(−gi(x))

Thus we have 1
t φ(x) −−−−→t→+∞

I{gi (x)<0, ∀i∈[nI ]}

We have

∇φ(x) =
nI∑

i=1
− 1

gi(x)
∇gi(x)

∇2φ(x) =
nI∑

i=1

[
1

g2
i (x)
∇gi(x)∇gi(x)> −

1
gi(x)

∇2gi(x)
]

V. Leclère Interior Points Methods May 21st, 2021 17 / 37



Penalized problem ♥

We consider

(P∞) min
x∈Rn

t

f (x)

+

1
t

φ(x)

s.t. Ax = b

with optimal solution x ].

Letting t goes to +∞ get to
solution of (P) along the central
path.

−c
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Characterizing central path I ♦

xt is solution of

(Pt) min
x∈Rn

tf (x) + φ(x)

s.t. Ax = b

if and only if, there exists λt ∈ RnE , such that


Axt = b
gi(xt) < 0 ∀i ∈ [nI ]

t∇f (xt) +∇φ(xt) + A>λ = 0

V. Leclère Interior Points Methods May 21st, 2021 19 / 37



Characterizing central path I ♦

xt is solution of

(Pt) min
x∈Rn

tf (x) + φ(x)

s.t. Ax = b

if and only if, there exists λt ∈ RnE , such that
Axt = b
gi(xt) < 0 ∀i ∈ [nI ]

t∇f (xt) +∇φ(xt) + A>λ = 0

V. Leclère Interior Points Methods May 21st, 2021 19 / 37



Characterizing central path II ♦


Axt = b
g(xt) < 0
t∇f (xt) +∇φ(xt) + A>λ = 0

If A = 0 it means that ∇f (xt) is
orthogonal to the level lines of φ

−c
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Duality ♦
Recall the original optimization problem

(P∞) min
x∈Rn

f (x)

s.t. Ax = b
gi(x) ≤ 0 ∀i ∈ J1, nIK

with Lagrangian

L(x ;λ, µ) := f (x) + λ>(Ax − b) +
nI∑

i=1
µigi(x)

and dual function
d(λ, µ) := inf

x∈Rn
L(x ;λ, µ).

For any admissible dual point (λ, µ) ∈ RnE × RnI
+ , we have

d(λ, µ) ≤ val(P∞)
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Getting a lower bound

For given admissible dual point (λ, µ) ∈ RnE × RnI
+ , a point x ](λ, µ)

minimizing L(·, λ, µ), is characterized by first order conditions

∇f (x ](λ, µ)) + A>λ+

nI∑
i=1

µi∇gi(x ](λ, µ)) = 0

which gives
d(λ, µ) = L(x ](λ, µ);λ, µ) ≤ val(P∞)
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Dual point on the central path ♦
Now recall that xt , solution of (Pt), is characterized by{

Axt = b, g(xt) < 0
t∇f (xt) +∇φ(xt) + A>λ = 0

And we have seen that

∇φ(x) =
nI∑

i=1

1
−gi(x)

∇gi(x)

Thus,

∇f (xt) + A>λ/t +
nI∑

i=1

1
−tgi(xt)︸ ︷︷ ︸

(µt)i

∇gi(x) = 0

which means that xt = x ](λ/t, µt).
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Bounding the error ♦

Let xt be a primal point on the central path satisfying

∃λt ∈ RnE , t∇f (xt) +∇φ(xt) + A>λt = 0

We define a dual point (µt)i =
1

−tgi (xt)
> 0. We have

d(µt , λt/t) = L(xt , µt , λt/t)

= f (xt) +
1
t λ

>
t (Axt − b)︸ ︷︷ ︸

=0

+

nI∑
i=1

1
−tgi(xt)

gi(xt)

= f (xt)−
nI
t ≤ val(P∞)

And in particular xt is an nI/t-optimal solution of (P∞).
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Interpretation through KKT condition ♥

A point xt is on the central path iff it is strictly admissible and there exists
λ ∈ RnE such that

∇f (xt) + A>λ+

nI∑
i=1

1
−tgi(x)︸ ︷︷ ︸

(µt)i

∇gi(x) = 0

which can be rewritten
∇f (x) + A>λ+

∑ni
i=1 µi∇gi(x) = 0

Ax = b, gi(x) ≤ 0
µ ≥ 0
−µigi(x) = 1

t ∀i ∈ [nI ]
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Taking a step back ♥

We saw that we can extend Newton’s method to solve linearly
constrained optimization problem.
We saw that we can approximate inequality constraints through the
use of logarithmic barrier −1/t

∑
i ln(−gi(x)).

We proved that xt is an nI/t-optimal solution.
The trade-off with t is : larger t means xt closer to optimal solution
x∞ but the approximate problem (Pt) have worse conditionning.
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Barrier method ♥

Data: increase ρ > 1, error
ε > 0, initial t

Result: ε-optimal point
solve (Pt) and set x = xt ; 
while nI/t ≥ ε do

increase t: t = ρt
centering step: solve (Pt)
starting at x ;
update : x = xt

Question : why solve (Pt) to
optimality ?
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Solving (Pt) with Newton’s method

(Pt) min
x∈Rn

tf (x) + φ(x)

s.t. Ax = b

is a linearly constrained optimization problem that can be solved by
Newton’s method.
More precisely we have xk+1 = x (k) + d(k) with d(k) a solution of

(
t∇2f (x (k)) +∇2φ(x (k)) A>

A 0

)(
d(k)

λ

)
=

(
−t∇f (x (k))−∇φ(x (k))

0

)
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Path following interior point method

Data: increase ρ > 1, error ε > 0, initial t0
initial strictly feasible point x0
k = 0
for k ∈ N do // Outer step

x ← x0 , t ← t0
for κ ∈ [K ] do // Inner step

solve for d ; // Newton step for (Pt)(
tk∇2f (x) +∇2φ(x) A>

A 0

)(
d
λ

)
=

(
−tk∇f (x)−∇φ(x)

0

)
reduce α from 1 until f (x + αd) ≤ f (x);

x ← x + αd ;
t ← ρt;

Algorithm 2: Path following algorithm
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Path following algorithm
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Video explanation

A longer presentation to watch at a later time
https://www.youtube.com/watch?v=zm4mfr-QT1E
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A linear problem - inequality form

We consider the following LP

min
x∈Rn

c>x

s.t. a>i x ≤ bi ∀i ∈ [nI ]

Where a>i = A[:, i] is the row of matrix A, such that the constraints can
be written Ax ≤ b.
Thus, xt is the solution of

min
x∈Rn

tc>x + φ(x)

where

φ(x) :=

−
nI∑

i=1
ln(bi − a>i x)
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Calculus ♦

φ(x) = −
nI∑

i=1
ln(bi − a>i x)

∇φ(x) =

nI∑
i=1

1
bi − a>i x

ai

∇2φ(x) =

1
(bi − a>i x)2 aia>i

This can be written in matrix form, using the vector d ∈ RnI defined by
di =

1
bi−a>

i x

∇φ(x) =

A>d

∇2φ(x) =

A>diag(d)2A
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Newton step ♦

Starting from x , the Newton direction for (Pt) is

dirt(x) =

− (∇2φ(x))−1(tc +∇φ(x))

which, in algebraic form, yields

dirt(x) =

− [A>diag(d)2A]−1(tc + A>d)

with di = 1/(bi − a>i x).

Theory tell us to use a step-size of 1 for Newton’s method.

Practice teach us to use a smaller step-size (or linear-search).
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Interior Point Method for LP pseudo code
Data: Initial admissible point x0, initial penalization t0 > 0;
parameter: ρ > 1, Nin ≥ 1, Nout ≥ 1;
Result: quasi-optimal point
x = x0, t = t0;
for k = 1..Nout do

for κ = 1..Nin do
Compute d , with di = 1/(bi − aT

i x);
Solve for dir

A>diag(d)2Adir = −(tc + A>d)

reduce α from 1 untila f (x + αdir) ≤ f (x);
update x ← x + αdir ;

update t ← ρt;
Algorithm 3: Interior Point Method for LP

asimplest condition described here
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What you have to know

IPM are state of the art algorithms for LP and more generally conic
optimization problem
That logarithmic barrier are a useful inner penalization method
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What you really should know

That Newton’s algorithm can be applied with equality constraints
What is the central path
That IPM work with inner and outer optimization loop
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