Stochastic Optimization Recalls on convex analysis

V. Leclère

November 24 2021

Presentation Outline

Overview of the course

- 2 Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Objective of the course

- Uncertainty is present in most optimization problem, sometimes taken into account.
- Two major way of taking uncertainty into account :
 - Robust approach: assuming that uncertainty belongs in some set *C*, and will be chosen adversarily.
 - Stochastic approach: assuming that uncertainty is a random variable with known law.
- We will take the stochastic approach, considering the multi-stage approach : a first decision is taken, then part of the uncertainty is revealed, before taking a second decision and so on.

Syllabus

- 1st course: Convex toolbox
- 2nd course: Probability toolbox
- 3rd course: two-stage stochastic programm
- 4th course: Bellman operators and Dynamic Programming
- 5th course: Decomposition methods for two stage SP
- 6th course: Stochastic Dual Dynamic Programming

Validation

- The stochastic optimization course is in two part
- Evaluation have 2 components :
 - Practical works to be done in between classes and sent to vincent.leclere@enpc.fr
 - Written exam ith theoretical and modelling questions
- Practical work will be done in Julia (www.julialang.com)using jupyter notebook
- Instructions for installing julia / jupyter and using the library can be found at https://github.com/leclere/TP-Saclay
- Practical work will be posted there

Fundamental definitions and results

Presentation Outline

Overview of the course

2 Convex sets and functions

- Fundamental definitions and results
- Convex function and minimization
- Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

• C is a convex set iff

$\forall x_1, x_2 \in C, \quad [x_1, x_2] \subset C.$

- If for all $i \in I$, C_i is convex, then so is $\bigcap_{i \in I} C_i$
- $C_1 + C_2$, and $C_1 \times C_2$ are convex
- For any set X the convex hull of X is the smallest convex set containing X,

$$\operatorname{conv}(X) := \Big\{ tx_1 + (1-t)x_2 \mid x_1, x_2 \in C, \quad t \in [0,1] \Big\}.$$

• The closed convex hull of X is the intersection of all half-spaces containing X.

Separation

Let X be a Banach space, and X^* its topological dual (i.e. the set of all continuous linear form on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, $int(A) \neq \emptyset$, then there exists a separating hyperplane $(x^*, \alpha) \in X^* \times \mathbb{R}$ such that

 $\langle x^*, a \rangle \leq \alpha \leq \langle x^*, b \rangle \qquad \forall a, b \in A \times B.$

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is closed, and B is compact (e.g. a point), then there exists a strict separating hyperplane $(x^*, \alpha) \in X^* \times \mathbb{R}$ such that, there exists $\varepsilon > 0$,

 $\langle x^*, a \rangle + \varepsilon \leq \alpha \leq \langle x^*, b \rangle - \varepsilon \qquad \forall a, b \in A \times B.$

Convex functions : basic properties

- A function $f : X \to \overline{\mathbb{R}}$ is convex if its epigraph is convex.
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is convex iff

 $\forall t \in [0,1], \quad \forall x, y \in X, \qquad f(tx+(1-t)y) \leq tf(x)+(1-t)f(y).$

- If f, g convex, $\lambda > 0$, then $\lambda f + g$ is convex.
- If f convex non-decreasing, g convex, then $f \circ g$ convex.
- If f convex and a affine, then $f \circ a$ is convex.
- If $(f_i)_{i \in I}$ is a family of convex functions, then $\sup_{i \in I} f_i$ is convex.

Convex functions : further definitions and properties

- The domain of a convex function is $dom(f) = \{x \in X \mid f(x) < +\infty\}.$
- The level set of a convex function is $lev_{\alpha}(f) = \{x \in X \mid f(x) \le \alpha\}$
- A function is lower semi continuous (lsc) iff for all α ∈ ℝ, lev_α is closed.
- The domain and the level sets of a convex function are convex.
- A convex function is proper if it never takes $-\infty$, and $\operatorname{dom}(f) \neq \emptyset$.
- A function is coercive if $\lim_{\|x\|\to\infty} f(x) = +\infty$.

Convex functions : polyhedral functions

- A polyhedra is a finite intersection of half-spaces, thus convex.
- A polyhedral function is a function whose epigraph is a polyhedra.
- Finite intersection, cartesian product and sum of polyhedra is polyhedra.
- In particular a polyhedral function is convex lsc, with polyhedral domain and level sets.
- If $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is polyhedral, then it can be written as

$$\begin{split} T(x) &= \min_{ heta} \quad heta \ s.t. \quad lpha_{\kappa}^{ op} x + eta_{\kappa} \leq heta \qquad \quad orall \kappa \leq k \ \gamma_{\kappa} op x + \delta_{\kappa} \leq 0 \qquad \quad orall \kappa \leq k' \end{split}$$

Fundamental definitions and results

Convex functions : polyhedral approximations

• f is convex iff it is above all its tangeant.

• Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, \cdot - x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathrm{f}}_k: x\mapsto \max_{\kappa\leq k} \langle g_\kappa, x-x_\kappa
angle + f(x_\kappa)$$

is a polyhedral outer-approximation of f.

• Let $\{x_{\kappa}\}_{\kappa \leq k}$ be a collection of point in dom(f). Then,

$$ar{f}_k: x\mapsto \min_{\sigma\in\Delta_k}\left\{\sum_{\kappa=1}^k\sigma_\kappa f(x_\kappa) \mid \sum_{\kappa=1}^k\sigma_\kappa x_\kappa=x
ight\}$$

is a polyhedral inner-approximation of f.

Fundamental definitions and results

Convex functions : polyhedral approximations

- f is convex iff it is above all its tangeant.
- Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, \cdot x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathbf{f}}_k: \mathbf{x} \mapsto \max_{\kappa \leq k} \langle \mathbf{g}_{\kappa}, \mathbf{x} - \mathbf{x}_{\kappa} \rangle + f(\mathbf{x}_{\kappa})$$

- is a polyhedral outer-approximation of f.
- Let $\{x_{\kappa}\}_{\kappa \leq k}$ be a collection of point in dom(f). Then,

$$ar{f}_k: x\mapsto \min_{\sigma\in\Delta_k}\Big\{\sum_{\kappa=1}^k\sigma_\kappa f(x_\kappa) \mid \sum_{\kappa=1}^k\sigma_\kappa x_\kappa=x\Big\}$$

is a polyhedral inner-approximation of f.

Fundamental definitions and results

Convex functions : polyhedral approximations

- f is convex iff it is above all its tangeant.
- Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, \cdot x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathbf{f}}_k: \mathbf{x} \mapsto \max_{\kappa \leq k} \langle \mathbf{g}_{\kappa}, \mathbf{x} - \mathbf{x}_{\kappa} \rangle + f(\mathbf{x}_{\kappa})$$

is a polyhedral outer-approximation of f.

• Let $\{x_{\kappa}\}_{\kappa \leq k}$ be a collection of point in dom(f). Then,

$$ar{f}_k: x\mapsto \min_{\sigma\in\Delta_k}\left\{\sum_{\kappa=1}^k\sigma_\kappa f(x_\kappa) \mid \sum_{\kappa=1}^k\sigma_\kappa x_\kappa=x
ight\}$$

is a polyhedral inner-approximation of f.

Fundamental definitions and results

Convex functions : strict and strong convexity

- $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff $\forall t \in]0, 1[, \forall x, y \in X, f(tx + (1-t)y) < tf(x) + (1-t)f(y).$
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$ $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2.$
- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then f strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \succeq 0$ iff f convex
 - if $\nabla^2 f \succ 0$ then f strictly convex
 - if $\nabla^2 f \succcurlyeq \alpha I$ then f is α -convex

Fundamental definitions and results

Convex functions : strict and strong convexity

• $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff

 $\forall t \in]0,1[, \quad \forall x,y \in X, \qquad f(tx+(1-t)y) < tf(x)+(1-t)f(y).$

- $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$ $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2.$
- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then *f* strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \succeq 0$ iff f convex
 - if $\nabla^2 f \succ 0$ then f strictly convex
 - if $\nabla^2 f \succcurlyeq \alpha I$ then f is α -convex

Fundamental definitions and results

Convex functions : strict and strong convexity

• $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff

 $\forall t \in]0,1[, \quad \forall x,y \in X, \qquad f(tx+(1-t)y) < tf(x)+(1-t)f(y).$

• $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2.$$

- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then *f* strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \succeq 0$ iff f convex
 - if $\nabla^2 f \succ 0$ then f strictly convex
 - if $\nabla^2 f \succcurlyeq \alpha I$ then f is α -convex

Convex function and minimization

Presentation Outline

Overview of the course

2 Convex sets and functions

• Fundamental definitions and results

• Convex function and minimization

• Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Convex function and minimization

Convex optimization problem

$\min_{x\in C} f(x)$

Where C is closed convex and f convex finite valued, is a convex optimization problem.

- If C is compact and f proper lsc, then there exists an optimal solution.
- If *f* proper lsc and coercive, then there exists an optimal solution.
- The set of optimal solutions is convex.
- If *f* is strictly convex the minimum (if it exists) is unique.
- If f is α -convex the minimum exists and is unique.

Convex function and minimization

Constraints and infinite values

A very standard trick in optimization consists in replacing constraints by infinite value of the cost function.

$$\min_{x\in C\subset X} f(x) = \min_{x\in X} f(x) + \mathbb{I}_C(x).$$

where

$$\mathbb{I}_C(x) = egin{cases} 0 & ext{if } x \in C \ +\infty & ext{otherwise} \end{cases}$$

- If f is lsc and C is closed, then $f + \mathbb{I}_C$ is lsc.
- If f is proper and C is bounded, then $f + \mathbb{I}_C$ is coercive.
- Thus, from a theoretical point of view, we do not need to explicitely write constraint in a problem.

Subdifferential and Fenchel-Transform

Presentation Outline

Overview of the course

2 Convex sets and functions

- Fundamental definitions and results
- Convex function and minimization
- Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Subdifferential of convex function

Let X be a Banach space, $f : X \to \overline{\mathbb{R}}$.

- X* is the topological dual of X, that is the set of continuous linear form on X.
- The subdifferential of f at x ∈ dom(f) is the set of slopes of all affine minorants of f exact at x:

$$\partial f(x) := \Big\{ x^* \in X^* \mid f(\cdot) \ge \langle x^*, \cdot - x \rangle + f(x) \Big\}.$$

• If f is convex and derivable at x then

 $\partial f(x) = \big\{ \nabla f(x) \big\}.$

Overview of the course

Convex sets and functions

Subdifferential and Fenchel-Transform

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

 $v(x) = \inf_{y \in Y} f(x, y)$

then v is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \left\{ g \in X^* \mid \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \right\}$$

proof:

$$g \in \partial v(x) \quad \Leftrightarrow \quad \forall x', \qquad v(x') \ge v(x) + \langle g, x' - x \rangle$$
$$\Leftrightarrow \quad \forall x', y' \quad f(x', y') \ge f(x, y^{\sharp}(x)) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} - \begin{pmatrix} x \\ y^{\sharp}(x) \end{pmatrix} \right\rangle$$
$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(x, y^{\sharp}(x))$$

Overview of the course

Convex sets and functions

Subdifferential and Fenchel-Transform

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

 $v(x) = \inf_{y \in Y} f(x, y)$

then v is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \left\{ g \in X^* \mid \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \right\}$$

proof:

$$\begin{split} g \in \partial v(\mathbf{x}) & \Leftrightarrow & \forall x', \qquad v(x') \ge v(x) + \langle g, x' - x \rangle \\ & \Leftrightarrow & \forall x', y' \quad f(x', y') \ge f(\mathbf{x}, y^{\sharp}(x)) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} - \begin{pmatrix} x \\ y^{\sharp}(x) \end{pmatrix} \right\rangle \\ & \Leftrightarrow & \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(x, y^{\sharp}(x)) \end{split}$$

Overview of the course

Convex sets and functions

Subdifferential and Fenchel-Transform

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

 $v(x) = \inf_{y \in Y} f(x, y)$

then v is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \left\{ g \in X^* \mid \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \right\}$$

proof:

$$g \in \partial v(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{x}', \qquad v(\mathbf{x}') \ge v(\mathbf{x}) + \langle g, \mathbf{x}' - \mathbf{x} \rangle$$
$$\Leftrightarrow \quad \forall \mathbf{x}', \mathbf{y}' \quad f(\mathbf{x}', \mathbf{y}') \ge f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x})) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y}^{\sharp}(\mathbf{x}) \end{pmatrix} \right\rangle$$
$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x}))$$

Convex function : regularity

- Assume *f* convex, then *f* is continuous on the relative interior of its domain, and Lipschtiz on any compact contained in the relative interior of its domain.
- A proper convex function is subdifferentiable on the relative interior of its domain
- Assume $f : X \to \overline{\mathbb{R}}$ is convex, and consider $A \subset X$.
 - If f is L-Lipschitz on A then $\partial f(x) \subset B(0,L)$, $\forall x \in ri(A)$
 - If $\partial f(x) \subset B(0, L)$, $\forall x \in A + \varepsilon B(0, 1)$ then f is L-Lipschitz on A then

Subdifferential and Fenchel-Transform

- Let X be a Banach space, $f : X \to \overline{\mathbb{R}}$ convex proper.
 - The Fenchel transform of f, is $f^*: X^* \to \overline{\mathbb{R}}$ with

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f^* is convex lsc as the supremum of affine functions.
- $f \leq g$ implies that $f^* \geq g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} \leq f$.

Subdifferential and Fenchel-Transform

- Let X be a Banach space, $f : X \to \overline{\mathbb{R}}$ convex proper.
 - The Fenchel transform of f, is $f^*: X^* \to \overline{\mathbb{R}}$ with

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f^* is convex lsc as the supremum of affine functions.
- $f \leq g$ implies that $f^* \geq g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} \leq f$.

Subdifferential and Fenchel-Transform

- Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.
 - The Fenchel transform of f, is $f^*: X^* \to \overline{\mathbb{R}}$ with

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f^* is convex lsc as the supremum of affine functions.
- $f \leq g$ implies that $f^* \geq g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} \leq f$.

Subdifferential and Fenchel-Transform

- Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.
 - The Fenchel transform of f, is $f^*: X^* \to \overline{\mathbb{R}}$ with

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f^* is convex lsc as the supremum of affine functions.
- $f \leq g$ implies that $f^* \geq g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} \leq f$.

Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle - f(x) \ge \langle x^*, x' \rangle - f(x') \quad \forall x'$

that is

 $x^* \in \partial f(x) \Leftrightarrow x \in \underset{x' \in X}{\operatorname{arg\,max}} \left\{ \langle x^*, x' \rangle - f(x') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$

• From Fenchel-Young equality we have $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$

If f proper convex lsc

 $x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$

Fenchel transform and subdifferential

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle - f(x) \ge \langle x^*, x' \rangle - f(x') \quad \forall x'$

that is

 $x^* \in \partial f(x) \Leftrightarrow x \in \underset{x' \in X}{\operatorname{arg max}} \left\{ \langle x^*, x' \rangle - f(x') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$

• From Fenchel-Young equality we have $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$

• If *f* proper convex lsc

 $x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$

Fenchel transform and subdifferential

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle - f(x) \ge \langle x^*, x' \rangle - f(x') \quad \forall x'$

that is

 $x^* \in \partial f(x) \Leftrightarrow x \in \underset{x' \in X}{\operatorname{arg max}} \left\{ \langle x^*, x' \rangle - f(x') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$

• From Fenchel-Young equality we have $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$

• If *f* proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$$

Fenchel transform and subdifferential

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle - f(x) \ge \langle x^*, x' \rangle - f(x') \quad \forall x'$

that is

 $x^* \in \partial f(x) \Leftrightarrow x \in \underset{x' \in X}{\operatorname{arg max}} \left\{ \langle x^*, x' \rangle - f(x') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$

- From Fenchel-Young equality we have $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$
- If *f* proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$$

Recall on Lagrangian duality

Presentation Outline

Overview of the course

- 2 Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Overview of the course	Convex sets and functions	Duality 0●00000000000000000000000000000000000
Recall on Lagrangian duality		
Weak duality		
The problem		
(<i>P</i>)	$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$	
	s.t. $c_i(x) = 0$ $\forall i \in \llbracket 1, n_E \rrbracket$	
	$c_j(x) \leq 0$ $\forall j \in \llbracket n_E + 1, n_E + n_I rbracket$	
can be written		
	$\min_{x\in \mathbb{R}^n} \max_{\lambda\in \mathbb{R}^{n_{\mathcal{E}}}, \mu\in \mathbb{R}^{n_{\mathcal{I}}}_+} \mathcal{L}(x,\lambda,\mu)$	
where		
	$\mathcal{L}(x,\lambda,\mu):=f(x)+\sum_{i=1}^{n_E+n_I}\lambda_i c_i(x)$	
The dual problem	is	
	$(D) \qquad \max_{\lambda \in \mathbb{R}^{n_{\mathcal{E}}} \times \mathbb{R}^{n_{l}}_{+}} \min_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \mu)$	
and we have, without assumption		
	$v_D \leq v_P$.	

Overview of the course	Convex sets and functions	Duality 000000000000000000000000000000000000	
Recall on Lagrangian duality			
Weak duality			
The problem			
$(P) \underset{x \in}{m}$	$\lim_{\mathbb{R}^n} f(x)$		
5.	$t. c_i(x) = 0 \qquad \qquad \forall i \in \llbracket 1, n_E \rrbracket$		
	$c_j(x) \leq 0$ $\forall j \in \llbracket n_E + 1, n_E + n_I rbracket$		
can be written			
	$\min_{x\in \mathbb{R}^n} \max_{\lambda\in \mathbb{R}^{n_{\mathcal{E}}}, \mu\in \mathbb{R}^{n_{\ell}}_+} \mathcal{L}(x,\lambda,\mu)$		
where	- 		
$\mathcal{L}(x,\lambda,\mu):=f(x)+\sum_{i=1}^{n_E+n_I}\lambda_i c_i(x)$			
The dual problem is			
	$(D) \qquad \max_{\lambda \in \mathbb{R}^{n_{E}} \times \mathbb{R}^{n_{l}}_{+}} \min_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \mu)$		
and we have, without assumption			
$v_D \leq v_P$.			

Recall on Lagrangian duality

Linear Programming duality

$$\min_{\substack{x \ge 0}} c^{\top} x \\ s.t. \quad Ax = b$$

is equivalent to

$$\min_{x\geq 0}\max_{\lambda}(c-A^{\top}\lambda)^{\top}x+b^{\top}\lambda$$

and the dual problem is

$$\begin{array}{ll} \max_{\lambda} & b^{\top}\lambda \\ s.t. & A^{\top}\lambda \leq c \end{array}$$

with equality between both problem except if there is neither primal nor dual admissible solution.

Vincent	eclère

Recall on Lagrangian duality

The duality gap is the difference between the primal value and dual value of a problem. Consider problem

> $(P) \min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0$ $\forall i \in \llbracket 1, n_E \rrbracket$ $c_j(x) \le 0$ $\forall j \in \llbracket n_E + 1, n_E + n_I \rrbracket$

with (P) convex in the sense that f is convex, c_l is convex lsc, c_l is affine. If further the constraints are qualified, then there is no duality gap. Recall on Lagrangian duality

Assume that f, g_i and h_j are differentiable. Assume that x^{\sharp} is an optimal solution of (P), and that the constraints are qualified in x^{\sharp} . Then we have

$$egin{aligned} &\left(
abla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^{\sharp},\lambda^{\sharp}) =
abla f(\mathbf{x}^{\sharp}) + \sum_{i=1}^{n_E+n_i} \lambda_i^{\sharp}
abla c_i(\mathbf{x}^{\sharp}) = 0 \ & c_E(\mathbf{x}^{\sharp}) = 0 \ & 0 \leq \lambda_I \perp c_I(\mathbf{x}^{\sharp}) \leq 0 \end{aligned} \end{aligned}$$

Duality

Marginal interpretation of multiplier

Presentation Outline

Overview of the course

- 2 Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Marginal interpretation of multiplier

Perturbed problem

Consider the perturbed problem

$$\begin{array}{ll} (P_p) & \min_{x \in \mathbb{R}^n} & f(x) \\ & s.t. & c_i(x) + p_i = 0 & \qquad \forall i \in \llbracket 1, n_E \rrbracket \\ & c_j(x) + p_j \leq 0 & \qquad \forall j \in \llbracket n_E + 1, n_I + n_E \rrbracket \end{array}$$

with value v(p), and optimal multiplier (for p = 0) λ_0 .

Duality

Marginal interpretation of multiplier

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

s.t. $Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \leq c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \ge -b^{\top}\lambda_0 + p^{\top}\lambda_0$. By strong duality we have $v(0) = -b^{\top}\lambda_0$, hence $v(p) \ge v(0) + \lambda_0^{\top}p$

or

 $\lambda_0 \in \partial v(0).$

Duality

Marginal interpretation of multiplier

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

s.t. $Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \leq c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \ge -b^\top \lambda_0 + p^\top \lambda_0$. By strong duality we have $v(0) = -b^\top \lambda_0$, hence $v(p) \ge v(0) + \lambda_0^\top p$

or

 $\lambda_0 \in \partial v(0).$

Marginal interpretation of multiplier

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

s.t. $Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \leq c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \ge -b^\top \lambda_0 + p^\top \lambda_0$. By strong duality we have $v(0) = -b^\top \lambda_0$, hence $v(p) \ge v(0) + \lambda_0^\top p$

or

 $\lambda_0 \in \partial v(0).$

Duality

Marginal interpretation of multiplier

Optimality condition by saddle point

Let $\Lambda := \mathbb{R}^{n_{\mathcal{E}}} \times \mathbb{R}^{n_{l}}_{+}$. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^{n} \times \Lambda$ iff $\forall \lambda \in \Lambda, \quad \mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp}), \quad \forall x \in \mathbb{R}^{n}$

Marginal interpretation of multiplier

Optimality condition by saddle point

Let $\Lambda := \mathbb{R}^{n_E} \times \mathbb{R}^{n_l}_+$. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$ iff $\forall \lambda \in \Lambda, \quad \mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp}), \quad \forall x \in \mathbb{R}^n$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^n \times \Lambda$. Then $\bar{\lambda} \in \arg \max_{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_E(\bar{x}) = 0$ and $0 \leq \bar{\lambda}_I \perp c_I(\bar{x}) \leq 0$. Marginal interpretation of multiplier

Optimality condition by saddle point

Let $\Lambda := \mathbb{R}^{n_{\mathcal{E}}} \times \mathbb{R}^{n_l}_+$. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$ iff

 $\forall \lambda \in \Lambda, \quad \mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp}), \quad \forall x \in \mathbb{R}^{n}$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^n \times \Lambda$. Then $\bar{\lambda} \in \arg \max_{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_E(\bar{x}) = 0$ and $0 \leq \bar{\lambda}_I \perp c_I(\bar{x}) \leq 0$.

Theorem

If $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^{n} \times \Lambda$, then x^{\sharp} is an optimal solution of (P).

Note that we need no assumption for this result.

Marginal interpretation of multiplier

If (P) is convex in the sense that f is convex, c_I is convex and c_E is affine, then v is convex.

Theorem

Assume that v is convex, then

 $\partial v(0) = \{ \lambda \in \Lambda \mid (x, \lambda) \text{ is a saddle point of } \mathcal{L} \}$

In particular, $\partial v(0) \neq \emptyset$ iff there exists a saddle point of \mathcal{L} .

Marginal interpretation of multiplier

If (P) is convex in the sense that f is convex, c_I is convex and c_E is affine, then v is convex.

Theorem

Assume that v is convex, then

 $\partial v(0) = \{ \lambda \in \Lambda \mid (x, \lambda) \text{ is a saddle point of } \mathcal{L} \}$

In particular, $\partial v(0) \neq \emptyset$ iff there exists a saddle point of \mathcal{L} .

Theorem (Slater's qualification condition)

Consider a convex optimisation problem. Assume that c'_E is onto, and there exists $x \in rint(dom(f))$ with $c_l(x) < 0$, and c_l continuous at x, then if x^* is an optimal solution, there exists λ^* such that (x^*, λ^*) is a saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.

Fenchel duality

Presentation Outline

Overview of the course

- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform

3 Duality

- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Fenchel duality

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{x \in \mathbb{X}} \Phi(x, y).$

We have

$$egin{aligned} &v^*(y^*) = \sup_{y \in \mathbb{Y}} \langle y^*, y
angle - v(y) \ &= \sup_{x,y} \langle y^*, y
angle - \Phi(x,y) = \Phi^*(0,y^*) \end{aligned}$$

Thus we have

$$(\mathcal{D}_y) \qquad v^{**}(y) = \sup_{y^* \in \mathbb{Y}^*} ra{y^*, y} - \Phi^*(0, y^*)$$

Generically

$$\operatorname{val}(\mathcal{D}_y) = v^{**}(y) \leq v(y) = \operatorname{val}(\mathcal{P}_y)$$

Fenchel duality

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{x \in \mathbb{X}} \Phi(x, y).$

We have

$$egin{aligned} &v^*(y^*) = \sup_{y \in \mathbb{Y}} \langle y^*, y
angle - v(y) \ &= \sup_{x,y} \langle y^*, y
angle - \Phi(x,y) = \Phi^*(0,y^*) \end{aligned}$$

Thus we have

$$(\mathcal{D}_y) \qquad v^{**}(y) = \sup_{y^* \in \mathbb{Y}^*} \langle y^*, y
angle - \Phi^*(0, y^*)$$

Generically

$$\operatorname{val}(\mathcal{D}_y) = v^{**}(y) \leq v(y) = \operatorname{val}(\mathcal{P}_y)$$

Fenchel duality

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{x \in \mathbb{X}} \Phi(x, y).$

We have

$$egin{aligned} &v^*(y^*) = \sup_{y \in \mathbb{Y}} \, \langle y^*, y
angle - v(y) \ &= \sup_{x,y} \, \langle y^*, y
angle - \Phi(x,y) = \Phi^*(0,y^*) \end{aligned}$$

Thus we have

$$(\mathcal{D}_y) \qquad v^{**}(y) = \sup_{y^* \in \mathbb{Y}^*} \langle y^*, y
angle - \Phi^*(0, y^*)$$

Generically

$$\operatorname{val}(\mathcal{D}_y) = v^{**}(y) \leq v(y) = \operatorname{val}(\mathcal{P}_y)$$

Fenchel duality

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

 $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

 $\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$ $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

 $0 \in rint(dom(v)).$

Fenchel duality

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

 $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

 $\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$ $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

 $0 \in rint(dom(v)).$

Fenchel duality

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

 $\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

 $\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$ $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

 $0 \in rint(dom(v)).$

Overview of the course 000

Convex sets and functions

Fenchel duality

Recovering the Lagrangian dual

Problem (\mathcal{P}_y) can be written

 $\min_{x,z} \quad \Phi(x,z)$ s.t. z = y

with Lagrangian dual

$$\max_{y^* \in Y^*} \inf_{x, z \in X \times Y} \Phi(x, z) + \langle y^*, y - z \rangle = \max_{y^* \in Y^*} \langle y^*, y \rangle - \underbrace{\sup_{x, z \in X \times Y} \left\{ \langle y^*, z \rangle - \Phi(x, z) \right\}}_{\Phi^*(0, y^*)}$$

Hence, we recover the Fenchel dual from the Lagrangian dual.

Fenchel duality

For next week

- Install Julia / Jupyter / JuMP (see instructions https://github.com/leclere/TP-Saclay)
- Run the CrashCourse notebook to get used with those tools (there are other resources available on the web as well)
- Contact me vincent.leclere@enpc.fr in case of trouble