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Probability space

Let Ω be a set.

A σ-algebra F of Ω is a collection of subset of Ω such that
Ω ∈ F
F is closed under complementation
F is closed under countable union

A measure P : F → [0, 1] is a probability if
P(Ω) = 1
P(∪i∈NAi ) =

∑
i∈N P(Ai ) where {Ai}i∈N is a collection of

pairwise disjoint sets of F

(Ω,F ,P) is a probability space.

A ∈ F is P-almost-sure if P(A) = 1, and negligible if P(A) = 0.

(Ω,F ,P) is complete if all subset of a negligible set is measurable.
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Measurability and representation

Let F be a σ-algebra on Ω.

A σ-algebra is generated by a collection of sets if it is the smallest
containing the collection.

A function X : Ω→ Rn is F-measurable if X−1(I) ∈ F for all boxes
I of Rn, we note X � F .

A σ-algebra σ(X ) is generated by a function X : Ω→ Rn sets if it is
generated by

{
X−1(I) | I boxes of Rn}.

The σ-algebra generated by all boxes is called the Borel σ-algebra.

Theorem (Doob-Dynkin)
Let X : Ω→ Rn, Y : Ω→ Rp be two F-measurable functions. Then
Y � σ(X ) iff there exists a Borel measurable function f : Rn → Rp such
that Y = f (X ).
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Random variables

Let (Ω,F ,P) be a complete probability space.

Define the equivalence class over the L0(Ω,F ,P;Rn)

X ∼ Y ⇐⇒ P
(
{ω ∈ Ω | X (ω) = Y (ω)}

)
= 1

A random variable X is an element of
L0(Ω,F ,P;Rn) := L0(Ω,F ,P;Rn)/ ∼.

In other word a random variable is a measurable function from Ω to
Rn defined up to negligeable set.
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Expectation and variance

We recall that E
[
X
]

:=
∫

Ω X(ω)P(dω).

If P is discrete, we have E
[
X
]

=
∑|Ω|

ω=1 X (ω)pω.
If X admit a density function f we have E

[
X
]

=
∫
R xf (x)dx .

We define the variance of X

var(X) := E
[(

X − E
[
X
])2]

= E
[
X2]− (E[X])2

and the standard deviation
std(X) :=

√
var(X)

the covariance is given by
cov(X ,Y ) = E

[
XY

]
− E

[
X
]
E
[
Y
]
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Random variables spaces

L0(Ω,F ,P;Rn) is the set of rv

L1(Ω,F ,P;Rn) is the set of rv such that E
[
|X |
]
< +∞

Lp(Ω,F ,P;Rn) is the set of rv such that E
[
|X |p

]
< +∞

L∞(Ω,F ,P;Rn) is the set of rv that is almost surely bounded

Lp(Ω,F ,P;Rn), for p ∈]1,+∞[ is a reflexive Banach space, with
dual Lq, where 1

p + 1
q = 1

L1(Ω,F ,P;Rn) is a non-reflexive Banach space with dual L∞

L2(Ω,F ,P;Rn) is a Hilbert space

L∞(Ω,F ,P;Rn) is a non-reflexive Banach space
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Independence

The cumulative distribution function (cdf) of a random variable X is

FX (x) := P(X ≤ x)

Two random variables X and Y are independent iff (one of the
following)

FX ,Y (a, b) = FX (a)FY (b) for all a, b
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all Borel sets A
and B
E
[
f (X)g(Y )

]
= E

[
f (X)

]
E
[
g(Y )

]
for all Borel functions f

and g

A sequence of identically distributed indenpendent variables is
denoted iid.
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Inequalities

(Markov) P
(
|X | ≥ a

)
≤ E

[
|X|
]

a , for a > 0.

(Chernoff) P
(
X ≥ a

)
≤ E

[
etX
]

eta , for t, a > 0.

(Chebyshev) P
(
|X − E

[
X
]
| ≥ a

)
≤ var(X)

a2 , for a > 0.

(Jensen) E
[
f (X)

]
≥ f (E

[
X
]
) for f convex

(Cauchy-Schwartz) E
[
|XY |

]
≤ ‖X‖2‖Y‖2

(Hölder) E
[
|XY |

]
≤ ‖X‖p‖Y‖q for 1

p + 1
q = 1

(Hoeffding) P
(

Mn − E
[
Mn
]
≥ t
)
≤ exp

(
−2n2t2∑n
i=1

(bi−ai )2

)
where{

X i
}

i∈N is a sequence of bounded independent rv with
ai ≤ X i ≤ bi .
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Limits of random variable
Let

{
Xn
}

n∈N be a sequence of random variables.

We say that
{

Xn
}

n∈N converges almost surely toward X if

P
(

lim
n

(Xn − X) = 0
)

= 1.

We say that
{

Xn
}

n∈N converges in probability toward X if

∀ε > 0, P(|Xn − X | > ε)→ 0.

We say that
{

Xn
}

n∈N converges in Lp toward X if

‖Xn − X‖p = E
[
|Xn − X |p

]
→ 0.

We say that
{

Xn
}

n∈N converges in law toward X if

E
[
f (Xn)

]
→ E

[
f (X)

]
for all bounded Lipschitz f
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Conditional expectation

P(A|B) = P(A ∩ B)/P(B)
If (X ,Y ) has density fX ,Y , then the conditional law (X |Y ) has
density fX |Y (x |y) = fX ,Y (x , y)/fY (y).
In the continuous case we have

E
[
X |Y = y

]
=
∫
R

xfX |Y (x |y)dx .

More generally if G is a sub-sigma-algebra of F , the conditional
expectation of X ∈ L1(Ω,F ,P) w.r.t G is the G-measurable random
variable Y satisfying

E
[
Y1G

]
= E

[
X1G

]
, ∀G ∈ G

Finally, we always have

E
[
E
[
X |Y

]]
= E

[
X
]
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Monotone and dominated convergence

Theorem (Monotone convergence)

Let
{

Xn
}

n∈N be a sequence of random variables such that

Xn+1 ≥ Xn P-a.s.

Xn → X∞ P-a.s.

then limn→∞ E
[
Xn
]

= E
[

limn Xn
]

Theorem (Dominated convergence)

Let
{

Xn
}

n∈N be a sequence of random variables, and Y such that

|Xn| ≤ Y P-a.s. with E
[
|Y |
]
< +∞

Xn → X∞ P-a.s.

then limn→∞ E
[
Xn
]

= E
[

limn Xn
]
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Measurability of multi-valued function

Consider a measurable space (Ω,F).

A function f : Ω→ R is F-measurable if f −1(I) ∈ F for all interval
I of R.

A multi-function G : Ω⇒ Rn is F-measurable if

∀A ⊂ Rnclosed, G−1(A) :=
{
ω ∈ Ω | G(ω) ∩ A 6= ∅

}
∈ F .

A closed valued multi-function G : Ω⇒ Rn is F-measurable iff
dx (ω) := dist(x ,G(ω)) is F-measurable.

Theorem (Measurable selection theorem)
If G : Ω⇒ Rn is a closed valued measurable multifunction, then there
exists a measurable selection of G, that is a measurable function
π : dom(G) ⊂ Ω→ Rn such that π(ω) ∈ G(ω) for all ω ∈ dom(G).
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Normal integrand
Assume that F is P-complete.

Definition (Caratheodory function)
f : Rn × Ω→ R is a Carathéodory function if

f (·, ω) is continuous for a.a. ω ∈ Ω

f (x , ·) is measurable for all x ∈ Rn

Definition (Normal integrand)

f : Rn × Ω→ R̄ is a normal integrand (aka random lowersemicontinuous
function) if

f (·, ω) is lsc for a.a. ω ∈ Ω

f (·, ·) is measurable

f is a convex normal integrand if in addition it is convex in x for a.a.
ω ∈ Ω.
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Measurability of minimum and argmin

Theorem (Measurability of minimum)

Let f : Rn × Ω→ R̄ be a normal integrand and define

ϑ(ω) := inf
x

f (x , ω) X∗(ω) := arg min
x

f (x , ω).

Then, ϑ and X∗ are measurable.

Theorem (Pointwise minimization)

Let f : Rn × Ω→ R̄ be a normal convex integrand then

inf
U∈L0,U∈U

E
[
f (U(ω), ω)

]
= E

[
inf

u∈U(ω)
f (u, ω)

]
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Continuity and derivation under expectation
Let f : Rn × Ω be a random function (i.e. measurable in ω for all x). We
say that f is dominated on X if, for all x ∈ X , there exists an integrable
random variable Y such that f (x , ·) ≤ Y almost surely. If f is dominated
on X ⊂ Rn, we define F (x) := E

[
f (x , ω)

]
.

If f is lsc in x and dominated on X , then F is lsc.
If f is continuous in x and dominated on X , then F is continuous.
If f is Lispchitz in x , with E

[
lip(f (·, ω))

]
< +∞, then F in

Lipschitz continous. Moreover if f is differentiable in x , we have

∇F (x) = E
[
∇x f (x , ω)

]
.

If f is a convex normal integrand, and x0 ∈ int(dom(F )), then

∂F (x0) = E
[
∂f (x0, ω)

]
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Strong Law of large number

We consider a function f : Rn × Ξ→ R, and a random variable ξ
which takes values in Ξ, and define F (x) := E

[
f (x , ξ)

]
.

We consider a sequence of random variables
{

ξi
}

i∈N.
We define the average function

F̂N(x) := 1
N

N∑
i=1

f (x , ξi )

We say that we have a Law of Large Number (LLN) if,

∀x ∈ Rn, P
(

lim
n

F̂n(x) = F (x)
)

= 1

The strong LLN state that LLN holds if f (x , ξ) is integrable, and{
ξi
}

i∈N is a iid (with same law as ξ).
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Uniform Law of large number

Having LLN means that, for all ε > 0 (and almost all sample),

∀x , ∃Nε ∈ N, n ≥ N =⇒ |F̂N(x)− F (x)| ≤ ε

We say that we have ULLN if for all ε > 0 (and almost all sample),

∃Nε ∈ N, ∀x , n ≥ N =⇒ |F̂N(x)− F (x)| ≤ ε

or equivalently

∃N ∈ N n ≥ N =⇒ sup
x
|F̂N(x)− F (x)| ≤ ε

Theorem
If f is a dominated Caratheodory function on X compact and the sample
is iid then we have ULLN on X.
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Central Limit Theorem

Theorem
Let

{
X i
}

i∈N be a sequence of rv iid, with finite second order moments.
Then we have

√
n
( 1

n

n∑
i=1

X i︸ ︷︷ ︸
Mn

−E
[
X
])
→ N (0, std(X))

where the convergence is in law.
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Monte-Carlo method

Let
{

X i
}

i∈N be a sequence of rv iid with finite variance.

We have P
(

MN ∈
[
E
[
X
]
± Φ−1(p)std(X)√

N

])
≈ p

In order to estimate the expectation E
[
X
]
, we can

sample N independent realizations of X ,
{

Xi
}

i∈J1,NK

compute the empirical mean MN =
∑N

i=1
Xi

N , and
standard-deviation sN
choose an error level p (e.g. 5%) and compute Φ−1(1− p/2)
(1.96)
and we know that, asymptotically, the expectation E

[
X
]

is in[
MN ± Φ−1(p)sN√

N

]
with probability (on the sample) 1− p

In the case of bounded independent variable we can use Hoeffding

P
(
E
[
X
]
∈ [Mn ± t]

)
≥ 2e−

2nt2
b−a
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The (deterministic) newsboy problem

In the 50’s a boy would buy a stock u of newspapers each morning
at a cost c, and sell them all day long for a price p. The number of
people interested in buying a paper during the day is d . We
assume that 0 < c < p.

How shall we model this ?

Control u ∈ R+

Cost L(u) = cu − p min(u, d)
Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a
random variable d with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to
minimize its expectation.

We consider the following problem

min
u

E
[
cu − p min(u,d)

]
s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper
again and again. Then optimizing the sum over time of its gains is
closely related to optimizing the expected gains.
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Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]
= (c − p)u − pE

[
min(0, d − u)

]
= (c − p)u − p

∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)
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Newsvendor problem (continued)

We assume that the demand can take value {di}i∈J1,nK with
probabilities {pi}i∈J1,nK.

In this case the stochastic newsvendor problem reads

min
u

n∑
i=1

pi
(

cu − p min(u, di )
)

s.t. u ≥ 0
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Two-stage newsvendor problem I
We can represent the newsvendor problem in a 2-stage framework.

Let u0 be the number of newspaper bought in the morning.

 first stage control

let u1 be the number of newspaper sold during the day.

 second stage control
The problem reads

min
u0,u1

E
[
cu0 − pu1

]
s.t. u0 ≥ 0

u1 ≤ u0 P− as
u1 ≤ d P− as
u1 � d
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Two-stage newsvendor problem II

In extensive formulation the problem reads

min
u0,{ui

1}i∈J1,nK

n∑
i=1

pi
(
cu0 − pui

1
)

s.t. u0 ≥ 0
ui

1 ≤ u0 ∀i ∈ J1, nK

ui
1 ≤ di ∀i ∈ J1, nK

Note that there are as many second-stage control ui
1 as there are

possible realization of the demand d , but only one first-stage
control u0.
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Practical work

Using julia we are going to model and work around the Newsvendor
problem

Download the files at https://github.com/leclere/TP-Saclay

Start working on the ”Newsvendor Problem” up to question 3.
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