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Some considerations on dealing with uncertainty

A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0

where
u0 is the control, or decision.
L is the cost or objective function.
g(u0) ≤ 0 represent the constraint(s).
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Some considerations on dealing with uncertainty

The (deterministic) newsboy problem

In the 50’s a boy would buy a stock u of newspapers each morning
at a cost c, and sell them all day long for a price p. The number of
people interested in buying a paper during the day is d . We
assume that 0 < c < p.

How shall we model this ?

Control u ∈ R+

Cost L(u) = cu − p min(u, d)
Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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Some considerations on dealing with uncertainty

An optimization problem with uncertainty
Adding uncertainty ξ in the mix

min
u0

L(u0, ξ)

s.t. g(u0, ξ) ≤ 0

Remarks:
ξ is unknown. Two main ways of modelling it:

ξ ∈ Ξ with a known uncertainty set Ξ, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈Ξ L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ Ξ.
SP : g(u, ξ) ≤ 0, P− a.s..
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Some considerations on dealing with uncertainty

The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a
random variable d with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to
minimize its expectation.

We consider the following problem

min
u

E
[
cu − p min(u,d)

]
s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper
again and again. Then optimizing the sum over time of its gains is
closely related to optimizing the expected gains.
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Some considerations on dealing with uncertainty

Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]
= (c − p)u − pE

[
min(0, d − u)

]
= (c − p)u − p

∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)

Vincent Leclère Two-stage stochastic program 08/12/2021 6 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]
= (c − p)u − p

(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)
Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)
Vincent Leclère Two-stage stochastic program 08/12/2021 6 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

The robust newsboy problem

Demand d is unknown at time of purchasing. We assume that it
will be in the set [d , d ].

The robust problem consist in solving

min
u

max
d∈[d ,d]

cu − p min(u, d)

s.t. u ≥ 0

By monotonicity it is equivalent to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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Some considerations on dealing with uncertainty

Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want
to minimize its expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large
number of time (Law of Large Number).
In some cases the expectation is not really representative of
your risk attitude. Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to
win $10000 ?
You need to be at the airport in 1 hour or you miss your flight,
you have the choice between two mean of transport, one of
them take surely 50’, the other take 40’ four times out of five,
and 70’ one time out of five.
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Some considerations on dealing with uncertainty

Alternative cost functions II

Here are some cost functions you might consider
Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)
Value-at-Risk of costs V @Rα(L(u, ξ)), where for any real
valued random variable X ,

V @Rα(X) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a
cost worse than V @Rα(X).
Average Value-at-Risk of costs AV @Rα(L(u, ξ)), which is the
expected cost over the α worst outcomes.
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Some considerations on dealing with uncertainty

Alternative constraints I

The natural extension of the deterministic constraint
g(u, ξ) ≤ 0 to g(u, ξ) ≤ 0 P− as can be extremely
conservative, and even often without any admissible solutions.
For example, if u is a level of production that need to be
greater than the demand. In a deterministic setting the
realized demand is equal to the forecast. In a stochastic
setting we add an error to the forecast. If the error is
unbouded (e.g. Gaussian) no control u is admissible.
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Some considerations on dealing with uncertainty

Alternative constraints II

Here are a few possible constraints
E
[
g(u, ξ)

]
≤ 0, for quality of service like constraint.

P(g(u, ξ) ≤ 0) ≥ 1− α for chance constraint. Chance
constraint is easy to present, but might lead to misconception
as nothing is said on the event where the constraint is not
satisfied.
AV @Rα(g(u, ξ)) ≤ 0

Vincent Leclère Two-stage stochastic program 08/12/2021 11 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 11 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Computing expectation

Computing an expectation E
[
L(u, ξ)

]
for a given u is costly.

If ξ is a r.v. with known law admitting a density, E
[
L(u, ξ)

]
is

a (multidimensional) integral.
If ξ is a r.v. with known discrete law, E

[
L(u, ξ)

]
is a sum over

all possible realizations of ξ, which can be huge.
If ξ is a r.v. that can be simulated but with unknown law,
E
[
L(u, ξ)

]
cannot be computed exactly.

Solution : use Law of Large Number (LLN) and Central Limit
Theorem (CLT).

Draw N ' 1000 realization of ξ.

Compute the sample average 1
N
∑N

s=1 L(u, ξs).
Use CLT to give an asymptotic confidence interval of the
expectation.

This is known as the Monte-Carlo method.
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Evaluating a solution

Consequence : evaluating a solution is difficult

In stochastic optimization even evaluating the value of a
solution can be difficult an require approximate methods.
The same holds true for checking admissibility of a candidate
solution.
It is even more difficult to obtain first order informations
(gradient).

Standard solution : sampling and solving the sampled problem
(Sample Average Approximation).
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Evaluating a solution

Recall on CLT

Let {Ci}i∈N be a sequence of identically distributed random
variables with finite variance.
Then the Central Limit Theorem ensures that

√
N
(∑N

i=1 C i
N − E[C1]

)
=⇒ G ∼ N (0,Var [C1]) ,

where the convergence is in law.
In practice it is often used in the following way.
Asymptotically,

P
(
E
[
C1
]
∈
[
C̄N −

1.96σN√
N

, C̄N + 1.96σN√
N

])
' 95% ,

where C̄N =
∑N

i=1 C i
N is the empirical mean and

σN =
√∑N

i=1(C i−C̄N )2

N−1 the empirical standard deviation.
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Evaluating a solution

Optimization problem and simulator

Generally speaking stochastic optimization problem are not
well posed and often need to be approximated before solving
them.
Good practice consists in defining a simulator, i.e. a
representation of the “real problem” on which solution can be
tested.
Then find a candidate solution by solving an (or multiple)
approximated problem.
Finally evaluate the candidate solutions on the simulator. The
comparison can be done on more than one dimension (e.g.
constraints, risk...)
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Evaluating a solution

Conclusion

When addressing an optimization problem under uncertain one has
to consider carefully

How to model uncertainty ? (random variable or uncertainty
set)
How to represent your attitude toward risk ? (expectation,
probability level,...)
How to include constraints ?
What is your information stucture ? (More on that later)
Set up a simulator and evaluate your solutions.

Vincent Leclère Two-stage stochastic program 08/12/2021 16 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

One-stage Problems

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 16 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

One-stage Problems

One-Stage Problems
Assume that ξ has a discrete distribution 1 , with
P
(
ξ = ξs

)
= πs > 0 for s ∈ J1,SK. Then, the one-stage problem

min
u0

E
[
L(u0, ξ)

]
s.t. g(u0, ξ) ≤ 0, P− a.s

can be written

min
u0

S∑
s=1

πsL(u0, ξs)

s.t g(u0, ξs) ≤ 0, ∀s ∈ J1, SK.

1If the distribution is continuous we can sample and work on the sampled
distribution, this is called the Sample Average Approximation approach with
lots of guarantee and results
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One-stage Problems

Newsvendor problem (continued)

We assume that the demand can take value {d s}s∈J1,SK with
probabilities {πs}s∈J1,SK.

In this case the stochastic newsvendor problem reads

min
u

S∑
s=1

πs
(
cu − p min(u, d s)

)
s.t. u ≥ 0
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Two-stage Problems

Recourse Variable
In most problem we can make a correction u1 once the uncertainty
is known:

u0  ξ1  u1.

As the recourse control u1 is a function of ξ it is a random
variable. The two-stage optimization problem then reads

min
u0,u1

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

u1 � ξ

u0 is called a first stage control
u1 is called a second stage (or recourse) control
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Two-stage Problems

Two-stage Problem
The extensive formulation of

min
u0,u1

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

u1 � ξ

is

min
u0,{us

1}s∈J1,SK

S∑
s=1

psL(u0, ξ
s , us

1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1,SK.

It is a deterministic problem that can be solved with standard tools
or specific methods.
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Two-stage Problems

Two-stage newsvendor problem I
We can represent the newsvendor problem in a 2-stage framework.

Let u0 be the number of newspaper bought in the morning.

 first stage control

let u1 be the number of newspaper sold during the day.

 second stage control
The problem reads

min
u0,u1

E
[
cu0 − pu1

]
s.t. u0 ≥ 0

u1 ≤ u0 P− as
u1 ≤ d P− as
u1 � d
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Two-stage Problems

Two-stage newsvendor problem II

In extensive formulation the problem reads

min
u0,{us

1}s∈J1,SK

S∑
s=1

πs(cu0 − pus
1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ d s ∀s ∈ J1, SK

Note that there are as many second-stage control us
1 as there are

possible realization of the demand d , but only one first-stage
control u0.
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1
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Time decomposition of the problem
We presented the generic two-stage problem as

min
u0,u1

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

u1 � ξ

With L(u0, ξ, u1) = L0(u0) + L1(u0, ξ, u1), it can also be written as

min
u0

L0(u0) + E
[
Q̃(u0, ξ)

]

first stage problem

s.t. g0(u0) ≤ 0
where

Q̃(u0, ξ) := min
u1

L1(u0, ξ, u1)

second stage problem

s.t. g1(u0, ξ, u1) ≤ 0

The reformulation always exists, but is not unique
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Admissible set

For a given decomposition, we set

U0 :=
{
u0 ∈ Rn0 | g0(u0) ≤ 0

}
Ũ1(u0, ξ) :=

{
u1 ∈ Rn1 | g1(u0, ξ, u1) ≤ 0

}

Note that
Ũ1(u0, ξ) is the set of admissible solutions of the second stage
problem
U0 contains the set of admissible solutions of the first stage
problem
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

We say that we are in a complete recourse framework, if for all
u0 ∈ U0, and almost-all possible outcome ξ, every control u1 is
admissible, i.e.,

P
(
Ũ1(u0, ξ) = Rn1

)
= 1, ∀u0 ∈ U0.

We say that we are in a relatively complete recourse framework, if
for all u0 ∈ U0, and almost-all possible outcome ξ, there exists a
control u1 that is admissible, i.e.,

P
(
Ũ1(u0, ξ) 6= ∅

)
= 1, ∀u0 ∈ U0.

We say that we are in an extended relatively complete recourse
framework, if there exists ε > 0 such that, for all u0 ∈ U0 + εB, and
almost-all possible outcome ξ, there exists a control u1 that is
admissible, i.e.,

P
(
Ũ1(u0, ξ) 6= ∅

)
= 1, ∀u0 ∈ U0 + εB.
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Recourse assumptions

Obtaining relatively complete recourse

Assume that the two-stage program is given by

min
u0∈U0

{
L0(u0)+E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

with finite value, but not necessarily relatively complete recourse.
Then the program is equivalent to

min
u0∈U0∩U ind

0

{
L0(u0)+E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

where U ind
0 is the set of induced constraints given by

U ind
0 =

{
u0 ∈ Rn0 | P

(
Ũ1(u0, ξ) 6= ∅

)
= 1
}
,

and with this formulation we are in a relatively complete recourse
framework.
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Two-stage framework : three information models
Consider the problem

min
u0,u1

E
[
L(u0, ξ,u1)

]
Open-Loop case : u0 and u1 are deterministic. In this case
both controls are choosen without any knowledge of the alea
ξ. The set of control is small, and an optimal control can be
found through specific method (e.g. Stochastic Gradient).
Two-Stage case : u0 is deterministic and u1 is measurable
with respect to ξ. This is the problem tackled by the
Stochastic Programming case.
Anticipative case : u0 and u1 are measurable with respect to
ξ. This case consists in solving one deterministic problem per
possible outcome of the alea, and taking the expectation of
the value of this problems.
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Splitted formulation
The extended formulation (in a compact way)

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξ
s , us

1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

Can be written in a splitted formulation

min

ū0,

us
0,{us

1}s∈J1,SK

S∑
s=1

πsL(us
0, ξ

s , us
1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

us
0 = us′

0 ∀s, s ′
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Information models for the Newsvendor I

Open-loop :

min
u0,u1

S∑
s=1

πs(cu0 − pu1
)

s.t. u0 ≥ 0
u1 ≤ u0

u1 ≤ d s ∀s ∈ J1,SK
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Information models for the Newsvendor II

Two-stage :

min
u0,{us

1}s∈J1,SK

S∑
s=1

πs(cu0 − pus
1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ ds ∀s ∈ J1, SK
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Information Frameworks

Information models for the Newsvendor III

Anticipative :

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πs(cus
0 − pus

1
)

s.t. us
0 ≥ 0 ∀s ∈ J1,SK

us
1 ≤ u0 ∀s ∈ J1,SK

us
1 ≤ d s ∀s ∈ J1,SK
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Information Frameworks

Comparing the information models
The three information models can be written this way :

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πs(cus
0 − pus

1
)

s.t. us
0 ≥ 0 ∀s ∈ J1,SK

us
1 ≤ u0 ∀i ∈ J1,SK

us
1 ≤ d s ∀i ∈ J1, sK

us
0 = us′

0 ∀s, s ′

us
1 = us′

1 ∀s, s ′

Hence, by simple comparison of constraints we have

V anticipative

≤ V 2−stage ≤ V OL.
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Value of information

The Expected Value of Perfect Information (EVPI) is defined as

EVPI = v2−stage − vanticipative ≥ 0.

Its the maximum amount of money you can gain by getting more
information (e.g. incorporating better statistical model in your
problem)
The Value of Stochastic Solution is defined as

VSS = vOL − v2−stage ≥ 0.

The expected value problem is the value of the deterministic
problem where the randomness is replaced by its expectation

vEV = min
u0,u1

L(u0,E[ξ], u1).

If (uEV
0 , uEV

1 ) is the solution of the EV problem, then
E
[
L(uEV

0 , ξ, uEV
1 )
]
, is known as Expected Value of Expected Value

problem vEEV .
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Comparison and convexity

Without assumption we have

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative

If additionally L is jointly convex we have

vanticipative = E
[
L(uξ

0 , ξ, u
ξ
1 )
]

≥ L(E
[
uξ

0
]
,E
[
ξ
]
,E
[
uξ

1 )
]

≥ L(uEV
0 ,E

[
ξ
]
, uEV

1 ) = vEV

Hence, under convexity we have,

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative≥ vEV
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Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Solving the problems

The solution of vEEV is easy to find (one deterministic problem),
and its value is obtained by Monte-Carlo.
vOL can be approximated through specific methods (e.g. SG).
v2−stage is obtained through Stochastic Programming specific
methods. There are two main approaches:

Lagrangian decomposition methods (like Progressive-Hedging
algorithm).
Benders decomposition methods (like L-shaped or
nested-decomposition methods).

vanticipative is difficult to compute exactly but can be estimated
through Monte-Carlo approach by drawing a reasonable number of
realizations of ξ, solving the deterministic problem for each
realization ξi and taking the means of the value of the deterministic
problem.
vEV is easy to compute, but is usefull only in the convex case.
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How to deal with continuous distributions ?
Recall that if ξ as finite support we rewrite the 2-stage problem

min
u0,u1

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

as

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξ
s , us

1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

If we consider a continuous distribution (e.g. a Gaussian), we
would need an infinite number of recourse variables to obtain an
extensive formulation.
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Simplest idea: sample ξ

First consider the one-stage problem

min
u∈U

E
[
L(u, ξ)

]
(P)

Draw a sample (ξ1, . . . , ξN) (in a i.i.d setting with law ξ).
Consider the empirical probability P̂N = 1

N
∑N

i=1 δξi .

Replace P by P̂N to obtain a finite-dimensional problem that
can be solved.
This means solving

min
u∈U

1
N

N∑
i=1

L(u, ξi ) (PN)

We denote by v̂N (resp. v∗) the value of (PN) (resp. (P)),
and Sn the set of optimal solutions (resp. S∗).
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Biased estimator
Generically speaking the estimators of the minimum are biased

E
[
v̂N
]
≤ E

[
v̂N+1

]
≤ v∗

proof :
Let (ξi )i∈N be a sequence of iid copies of ξ

Set J(u) := E
[
L(u, ξ)

]
, JN(u) := 1

N
∑N

i=1 L(u, ξi )
We have, for every u′ ∈ U, JN(u′) ≥ infu∈U JN(u).
Taking the expectation yields,

J(u′) = E
[
JN(u′)

]
≥ E

[
inf
u∈U

JN(u)
]

= E
[
v̂N
]
.

We now take the infimum over u′ ∈ U, to obtain
v∗ = inf

u′∈U
J(u′) ≥ E

[
v̂N
]
.
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Decreasing bias
We now show that the bias is monotonically decreasing. Notice that

JN+1(u) = 1
N + 1

N+1∑
i=1

[ 1
N
∑
j 6=i

L(u, ξj)
]
.

Hence,

E
[
v̂N+1

]
= E

[
inf
u∈U

JN+1(u)
]

= E
[

inf
u∈U

1
N + 1

N+1∑
i=1

[ 1
N
∑
j 6=i

L(u, ξj)
]]

≥ E
[

1
N + 1

N+1∑
i=1

inf
ui∈U

[ 1
N
∑
j 6=i

L(ui , ξj)
]]

= 1
N + 1

N+1∑
i=1

E
[

inf
ui∈U

[ 1
N
∑
j 6=i

L(ui , ξj)
]]

= 1
N + 1

N+1∑
i=1

E
[
v̂N
]

= E
[
v̂N
]

which ends the proof.
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Consistency of estimator

Definition
Let

{
f N
}

N∈N be a sequence of random functions mapping X into
R. We say that f N converges almost surely toward f : X 7→ R
uniformly on X , if

∀ε > 0, ∃N ∈ N, ∀n ≥ N, P
(

sup
x∈X
|f n(x)− f (x)| ≤ ε

)
= 1.

Theorem (Consistency of SAA)
If JN+1 converges almost surely toward J uniformly on U, then v̂N
converges almost surely toward v ].
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Theorem (Convergence in the compact case)
Assume that

1 U is compact non empty,
2 JN converges uniformly on U toward J,
3 U]

N in non-empty,
4 J is continuous on U.

Then,

v]N → v ] PN -a.s.,

D
(
U]

n,U]
)
→ 0 PN -a.s.

1 can be relaxed in a compact set containing optimal solution
2 usually comes from the uniform law of large number
3 can be obtained if JN is lower semi-continuous with some non-empty but

uniformly bounded level set
4 often rely on a domination theorem.
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Theorem (Convergence in the convex case)
Assume that

1 j is a.s. convex l.s.c.
2 U is closed convex
3 J is l.s.c, and there exists u ∈ U such that a neighboorhoud of u is

contained in dom(J)
4 S 6= ∅ is bounded
5 the LLN holds

Then,

v]N → v ] PN -a.s.,

D
(
U]

n,U]
)
→ 0 PN -a.s.
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Theorem (Convergence speed)
Assume that,

E
[
j(u, ξ)2] <∞,

u 7→ j(u, ξ) is Lipschitz-continuous with constant L(ξ) with
E
[
L(ξ)2] <∞,

U is compact, U] =
{

u]
}

.

Then,

v]N = JN(u]) + o( 1√
N ),

√
N
(
v]N − v ]

)
⇒ N (0, σ2(u])),

where σ2(u) := E
[(

j(u, ξ)− E
[
j(u, ξ)

])2
]
.

The unicity of solution assumption can be relaxed.
Good reference for precise results : Lectures on Stochastic Programming
(Dentcheva, Ruszczynski, Shapiro) chap. 5.
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