
Overview of the course Convex sets and functions Duality

Stochastic Optimization
Recalls on convex analysis

V. Leclère

November 24 2021

Vincent Leclère OS - 1 24/11/2021 1 / 30

Overview of the course Convex sets and functions Duality

Objective of the course

Uncertainty is present in most optimization problem,
sometimes taken into account.
Two major way of taking uncertainty into account :

Robust approach: assuming that uncertainty belongs in some
set C , and will be chosen adversarily.
Stochastic approach: assuming that uncertainty is a random
variable with known law.

We will take the stochastic approach, considering the
multi-stage approach : a first decision is taken, then part of
the uncertainty is revealed, before taking a second decision
and so on.

Vincent Leclère OS - 1 24/11/2021 2 / 30

Overview of the course Convex sets and functions Duality

Syllabus

1st course: Convex toolbox
2nd course: Probability toolbox
3rd course: two-stage stochastic programm
4th course: Bellman operators and Dynamic Programming
5th course: Decomposition methods for two stage SP
6th course: Stochastic Dual Dynamic Programming

Vincent Leclère OS - 1 24/11/2021 3 / 30

Overview of the course Convex sets and functions Duality

Validation

The stochastic optimization course is in two part
Evaluation have 2 components :

Practical works to be done in between classes and sent to
vincent.leclere@enpc.fr
Written exam ith theoretical and modelling questions

Practical work will be done in Julia (www.julialang.com)using
jupyter notebook
Instructions for installing julia / jupyter and using the library
can be found at https://github.com/leclere/TP-Saclay
Practical work will be posted there

Vincent Leclère OS - 1 24/11/2021 4 / 30



Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 4 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex sets

C is a convex set iff

∀x1, x2 ∈ C , [x1, x2] ⊂ C .

If for all i ∈ I, Ci is convex, then so is ∩i∈ICi

C1 + C2, and C1 × C2 are convex
For any set X the convex hull of X is the smallest convex set
containing X ,

conv(X ) :=
{

tx1 + (1− t)x2 | x1, x2 ∈ C , t ∈ [0, 1]
}
.

The closed convex hull of X is the intersection of all half-spaces
containing X .

Vincent Leclère OS - 1 24/11/2021 5 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Separation
Let X be a Banach space, and X∗ its topological dual (i.e. the set of all
continuous linear form on X ).

Theorem (Simple separation)
Let A and B be convex non-empty, disjunct subsets of X. Assume that,
int(A) 6= ∅, then there exists a separating hyperplane (x∗, α) ∈ X∗ × R
such that

〈x∗, a〉 ≤ α ≤ 〈x∗, b〉 ∀a, b ∈ A× B.

Theorem (Strong separation)
Let A and B be convex non-empty, disjunct subsets of X. Assume that,
A is closed, and B is compact (e.g. a point), then there exists a strict
separating hyperplane (x∗, α) ∈ X∗ × R such that, there exists ε > 0,

〈x∗, a〉+ ε ≤ α ≤ 〈x∗, b〉 − ε ∀a, b ∈ A× B.

Vincent Leclère OS - 1 24/11/2021 6 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex functions : basic properties

A function f : X → R̄ is convex if its epigraph is convex.
f : X → R ∪ {+∞} is convex iff

∀t ∈ [0, 1], ∀x , y ∈ X , f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).

If f , g convex, λ > 0, then λf + g is convex.
If f convex non-decreasing, g convex, then f ◦ g convex.
If f convex and a affine, then f ◦ a is convex.
If (fi )i∈I is a family of convex functions, then supi∈I fi is convex.

Vincent Leclère OS - 1 24/11/2021 7 / 30



Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex functions : further definitions and properties

The domain of a convex function is
dom(f ) = {x ∈ X | f (x) < +∞}.
The level set of a convex function is levα(f ) = {x ∈ X | f (x) ≤ α}
A function is lower semi continuous (lsc) iff for all α ∈ R, levα is
closed.
The domain and the level sets of a convex function are convex.
A convex function is proper if it never takes −∞, and dom(f ) 6= ∅.
A function is coercive if lim‖x‖→∞ f (x) = +∞.

Vincent Leclère OS - 1 24/11/2021 8 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex functions : polyhedral functions

A polyhedra is a finite intersection of half-spaces, thus convex.
A polyhedral function is a function whose epigraph is a polyhedra.
Finite intersection, cartesian product and sum of polyhedra is
polyhedra.
In particular a polyhedral function is convex lsc, with polyhedral
domain and level sets.
If f : Rn → R̄ is polyhedral, then it can be written as

f (x) = min
θ

θ

s.t. α>κ x + βκ ≤ θ ∀κ ≤ k
γκ>x + δκ ≤ 0 ∀κ ≤ k ′

Vincent Leclère OS - 1 24/11/2021 9 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex functions : polyhedral approximations

f is convex iff it is above all its tangeant.
Let {xκ, gκ}κ≤k be a collection of (sub-)gradient, that is such that
f ≥ 〈gκ, · − xκ〉+ f (xκ), then

fk : x 7→ max
κ≤k
〈gκ, x − xκ〉+ f (xκ)

is a polyhedral outer-approximation of f .
Let {xκ}κ≤k be a collection of point in dom(f ). Then,

f̄k : x 7→ min
σ∈∆k

{ k∑

κ=1
σκf (xκ)

∣∣∣
k∑

κ=1
σκxκ = x

}

is a polyhedral inner-approximation of f .

Vincent Leclère OS - 1 24/11/2021 10 / 30

Overview of the course Convex sets and functions Duality

Fundamental definitions and results

Convex functions : strict and strong convexity

f : X → R ∪ {+∞} is strictly convex iff
∀t ∈]0, 1[, ∀x , y ∈ X , f (tx + (1− t)y) < tf (x) + (1− t)f (y).

f : X → R ∪ {+∞} is α-convex iff ∀x , y ∈ X

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ α

2 ‖y − x‖2.

If f ∈ C 1(Rn)
〈∇f (x)−∇f (y), x − y〉 ≥ 0 iff f convex
if strict inequality holds, then f strictly convex

If f ∈ C 2(Rn),
∇2f < 0 iff f convex
if ∇2f � 0 then f strictly convex
if ∇2f < αI then f is α-convex

Vincent Leclère OS - 1 24/11/2021 11 / 30



Overview of the course Convex sets and functions Duality

Convex function and minimization

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 11 / 30

Overview of the course Convex sets and functions Duality

Convex function and minimization

Convex optimization problem

min
x∈C

f (x)

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

If C is compact and f proper lsc, then there exists an optimal
solution.
If f proper lsc and coercive, then there exists an optimal solution.
The set of optimal solutions is convex.
If f is strictly convex the minimum (if it exists) is unique.
If f is α-convex the minimum exists and is unique.

Vincent Leclère OS - 1 24/11/2021 12 / 30

Overview of the course Convex sets and functions Duality

Convex function and minimization

Constraints and infinite values

A very standard trick in optimization consists in replacing constraints by
infinite value of the cost function.

min
x∈C⊂X

f (x) = min
x∈X

f (x) + IC (x).

where

IC (x) =
{

0 if x ∈ C
+∞ otherwise

If f is lsc and C is closed, then f + IC is lsc.
If f is proper and C is bounded, then f + IC is coercive.
Thus, from a theoretical point of view, we do not need to explicitely
write constraint in a problem.

Vincent Leclère OS - 1 24/11/2021 13 / 30

Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 13 / 30



Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Subdifferential of convex function

Let X be a Banach space, f : X → R̄.
X∗ is the topological dual of X , that is the set of continuous linear
form on X .
The subdifferential of f at x ∈ dom(f ) is the set of slopes of all
affine minorants of f exact at x :

∂f (x) :=
{

x∗ ∈ X∗ | f (·) ≥ 〈x∗, · − x〉+ f (x)
}
.

If f is convex and derivable at x then

∂f (x) =
{
∇f (x)

}
.

Vincent Leclère OS - 1 24/11/2021 14 / 30

Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Partial infimum
Let f : X × Y → R̄ be a jointly convex and proper function, and define

v(x) = inf
y∈Y

f (x , y)

then v is convex.
If v is proper, and v(x) = f (x , y ](x)) then

∂v(x) =
{

g ∈ X∗ |
(

g
0

)
∈ ∂f (x , y ](x))

}

proof:

g ∈ ∂v(x) ⇔ ∀x ′, v(x ′) ≥ v(x) + 〈g , x ′ − x〉

⇔ ∀x ′, y ′ f (x ′, y ′) ≥ f (x , y ](x)) +
〈(

g
0

)
,

(
x ′
y ′
)
−
(

x
y ](x)

)〉

⇔
(

g
0

)
∈ ∂f (x , y ](x))

Vincent Leclère OS - 1 24/11/2021 15 / 30

Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Convex function : regularity

Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.
A proper convex function is subdifferentiable on the relative interior
of its domain
Assume f : X → R̄ is convex, and consider A ⊂ X .

If f is L-Lipschitz on A then ∂f (x) ⊂ B(0, L), ∀x ∈ ri(A)
If ∂f (x) ⊂ B(0, L), ∀x ∈ A + εB(0, 1) then f is L-Lipschitz
on A then

Vincent Leclère OS - 1 24/11/2021 16 / 30

Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X → R̄ convex proper.
The Fenchel transform of f , is f ∗ : X∗ → R̄ with

f ∗(x∗) := sup
x∈X
〈x∗, x〉 − f (x).

f ∗ is convex lsc as the supremum of affine functions.
f ≤ g implies that f ∗ ≥ g∗.
If f is proper convex lsc, then f ∗∗ = f , otherwise f ∗∗ ≤ f .

Vincent Leclère OS - 1 24/11/2021 17 / 30



Overview of the course Convex sets and functions Duality

Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

By definition f ∗(x∗) ≥ 〈x∗, x〉 − f (x) for all x ,
thus we always have (Fenchel-Young) f (x) + f ∗(x∗) ≥ 〈x∗, x〉.
Recall that x∗ ∈ ∂f (x) iff for all x ′, f (x ′) ≥ f (x) + 〈x∗, x ′ − x〉 iff

〈x∗, x〉 − f (x) ≥ 〈x∗, x ′〉 − f (x ′) ∀x ′

that is
x∗ ∈ ∂f (x)⇔ x ∈ arg max

x ′∈X

{
〈x∗, x ′〉−f (x ′)

}
⇔ f (x)+f ∗(x∗) = 〈x∗, x〉

From Fenchel-Young equality we have
∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x).

If f proper convex lsc
x∗ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(x∗).

Vincent Leclère OS - 1 24/11/2021 18 / 30

Overview of the course Convex sets and functions Duality

Recall on Lagrangian duality

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 18 / 30

Overview of the course Convex sets and functions Duality

Recall on Lagrangian duality

Weak duality
The problem

(P) min
x∈Rn

f (x)

s.t. ci(x) = 0 ∀i ∈ J1, nE K
cj(x) ≤ 0 ∀j ∈ JnE + 1, nE + nIK

can be written
min
x∈Rn

max
λ∈RnE ,µ∈RnI

+

L(x , λ, µ)

where

L(x , λ, µ) := f (x) +
nE +nI∑

i=1

λici(x)

The dual problem is
(D) max

λ∈RnE×RnI
+

min
x∈Rn

L(x , λ, µ)

and we have, without assumption
vD ≤ vP .

Vincent Leclère OS - 1 24/11/2021 19 / 30

Overview of the course Convex sets and functions Duality

Recall on Lagrangian duality

Linear Programming duality

min
x≥0

c>x

s.t. Ax = b

is equivalent to
min
x≥0

max
λ

(c − A>λ)>x + b>λ

and the dual problem is

max
λ

b>λ

s.t. A>λ ≤ c

with equality between both problem except if there is neither primal nor
dual admissible solution.

Vincent Leclère OS - 1 24/11/2021 20 / 30



Overview of the course Convex sets and functions Duality

Recall on Lagrangian duality

Strong duality

The duality gap is the difference between the primal value and dual value
of a problem.
Consider problem

(P) min
x∈Rn

f (x)

s.t. ci (x) = 0 ∀i ∈ J1, nE K
cj(x) ≤ 0 ∀j ∈ JnE + 1, nE + nIK

with (P) convex in the sense that f is convex, cI is convex lsc, cI is affine.
If further the constraints are qualified, then there is no duality gap.

Vincent Leclère OS - 1 24/11/2021 21 / 30

Overview of the course Convex sets and functions Duality

Recall on Lagrangian duality

Recall KKT

Assume that f , gi and hj are differentiable. Assume that x ] is an optimal
solution of (P), and that the constraints are qualified in x ]. Then we
have 




∇xL(x ], λ]) = ∇f (x ]) +
nE +ni∑

i=1
λ]i∇ci (x ]) = 0

cE (x ]) = 0
0 ≤ λI ⊥ cI(x ]) ≤ 0

Vincent Leclère OS - 1 24/11/2021 22 / 30

Overview of the course Convex sets and functions Duality

Marginal interpretation of multiplier

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 22 / 30

Overview of the course Convex sets and functions Duality

Marginal interpretation of multiplier

Perturbed problem

Consider the perturbed problem

(Pp) min
x∈Rn

f (x)

s.t. ci (x) + pi = 0 ∀i ∈ J1, nE K
cj(x) + pj ≤ 0 ∀j ∈ JnE + 1, nI + nE K

with value v(p), and optimal multiplier (for p = 0) λ0.

Vincent Leclère OS - 1 24/11/2021 23 / 30



Overview of the course Convex sets and functions Duality

Marginal interpretation of multiplier

Linear programming case

v(p) := min
x≥0

c>x

s.t. Ax + p = b
by LP duality (assuming at least one admissible primal solution) we have

v(p) = max
λ

− b>λ+ p>λ

s.t. A>λ ≤ c

Note λ0 the optimal multiplier for (P0), note that it is admissible for
(Dp), hence v(p) ≥ −b>λ0 + p>λ0. By strong duality we have
v(0) = −b>λ0, hence

v(p) ≥ v(0) + λ>0 p
or

λ0 ∈ ∂v(0).

Vincent Leclère OS - 1 24/11/2021 24 / 30

Overview of the course Convex sets and functions Duality

Marginal interpretation of multiplier

Optimality condition by saddle point

Let Λ := RnE × RnI
+ . (x ], λ]) is a saddle-point of L on Rn × Λ iff

∀λ ∈ Λ, L(x ], λ) ≤ L(x ], λ]) ≤ L(x , λ]), ∀x ∈ Rn

Consider (x̄ , λ̄) ∈ Rn × Λ. Then λ̄ ∈ arg maxλ∈Λ L(x̄ , λ) iff cE (x̄) = 0
and 0 ≤ λ̄I ⊥ cI(x̄) ≤ 0.

Theorem
If (x ], λ]) is a saddle-point of L on Rn × Λ, then x ] is an optimal
solution of (P).

Note that we need no assumption for this result.

Vincent Leclère OS - 1 24/11/2021 25 / 30

Overview of the course Convex sets and functions Duality

Marginal interpretation of multiplier

Convex case

If (P) is convex in the sense that f is convex, cI is convex and cE is
affine, then v is convex.

Theorem
Assume that v is convex, then

∂v(0) =
{
λ ∈ Λ | (x , λ) is a saddle point of L

}

In particular, ∂v(0) 6= ∅ iff there exists a saddle point of L.

Theorem (Slater’s qualification condition)
Consider a convex optimisation problem. Assume that c ′E is onto, and
there exists x ∈ rint(dom(f )) with cI(x) < 0, and cI continuous at x,
then if x∗ is an optimal solution, there exists λ∗ such that (x∗, λ∗) is a
saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.

Vincent Leclère OS - 1 24/11/2021 26 / 30

Overview of the course Convex sets and functions Duality

Fenchel duality

Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
Fenchel duality

Vincent Leclère OS - 1 24/11/2021 26 / 30



Overview of the course Convex sets and functions Duality

Fenchel duality

Duality by abstract perturbation
Let X and Y be Banach spaces. There exists an abstract duality
framework for minx∈X f (x) by considering a perturbation function
Φ : X× Y→ R ∪ {+∞} (with Φ(·, 0) = f ).

(Py ) v(y) := inf
x∈X

Φ(x , y).

We have
v∗(y∗) = sup

y∈Y
〈y∗, y〉 − v(y)

= sup
x ,y
〈y∗, y〉 − Φ(x , y) = Φ∗(0, y∗)

Thus we have
(Dy ) v∗∗(y) = sup

y∗∈Y∗
〈y∗, y〉 − Φ∗(0, y∗)

Generically
val(Dy ) = v∗∗(y) ≤ v(y) = val(Py )

Vincent Leclère OS - 1 24/11/2021 27 / 30

Overview of the course Convex sets and functions Duality

Fenchel duality

Solution of the dual as subgradient
Note that the set of solution of the dual is S(Dy ) = ∂v∗∗(y).
Recall that, for v proper convex,

∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x)

Thus, if v is proper convex and subdifferentiable at y (or equivalently if
S(Dy ) 6= ∅), then,

val(Dy ) = val(Py )
S(Dy ) = ∂v(y)

Finally, as a convex function is subdifferentiable on the relative interior of
its domain, a sufficient qualification condition (to have a zero dual gap
and existence of multipliers), is that

0 ∈ rint(dom(v)).

Vincent Leclère OS - 1 24/11/2021 28 / 30

Overview of the course Convex sets and functions Duality

Fenchel duality

Recovering the Lagrangian dual

Problem (Py ) can be written

min
x ,z

Φ(x , z)

s.t. z = y

with Lagrangian dual

max
y∗∈Y ∗

inf
x ,z∈X×Y

Φ(x , z)+〈y∗, y−z〉 = max
y∗∈Y ∗

〈y∗, y〉− sup
x ,z∈X×Y

{
〈y∗, z〉 − Φ(x , z)

}

︸ ︷︷ ︸
Φ∗(0,y∗)

Hence, we recover the Fenchel dual from the Lagrangian dual.

Vincent Leclère OS - 1 24/11/2021 29 / 30

Overview of the course Convex sets and functions Duality

Fenchel duality

For next week

Install Julia / Jupyter / JuMP (see instructions
https://github.com/leclere/TP-Saclay)
Run the CrashCourse notebook to get used with those tools
(there are other resources available on the web as well)
Contact me vincent.leclere@enpc.fr in case of trouble

Vincent Leclère OS - 1 24/11/2021 30 / 30



Probability recalls Random function Limit of averages Newsvendor problem

Stochastic Optimization
Recalls on probability

V. Leclère

December 1st 2021

Vincent Leclère OS - 2 1/12/2021 1 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Presentation Outline

1 Probability recalls

2 Random function

3 Limit of averages

4 Newsvendor problem

Vincent Leclère OS - 2 1/12/2021 1 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Probability space

Let Ω be a set.
A σ-algebra F of Ω is a collection of subset of Ω such that

Ω ∈ F
F is closed under complementation
F is closed under countable union

A measure P : F → [0, 1] is a probability if
P(Ω) = 1
P(∪i∈NAi ) =

∑
i∈N P(Ai ) where {Ai}i∈N is a collection of

pairwise disjoint sets of F
(Ω,F ,P) is a probability space.
A ∈ F is P-almost-sure if P(A) = 1, and negligible if P(A) = 0.
(Ω,F ,P) is complete if all subset of a negligible set is measurable.

Vincent Leclère OS - 2 1/12/2021 2 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Measurability and representation

Let F be a σ-algebra on Ω.
A σ-algebra is generated by a collection of sets if it is the smallest
containing the collection.
A function X : Ω→ Rn is F-measurable if X−1(I) ∈ F for all boxes
I of Rn, we note X � F .
A σ-algebra σ(X ) is generated by a function X : Ω→ Rn sets if it is
generated by

{
X−1(I) | I boxes of Rn}.

The σ-algebra generated by all boxes is called the Borel σ-algebra.

Theorem (Doob-Dynkin)
Let X : Ω→ Rn, Y : Ω→ Rp be two F-measurable functions. Then
Y � σ(X ) iff there exists a Borel measurable function f : Rn → Rp such
that Y = f (X ).

Vincent Leclère OS - 2 1/12/2021 3 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Random variables

Let (Ω,F ,P) be a complete probability space.
Define the equivalence class over the L0(Ω,F ,P;Rn)

X ∼ Y ⇐⇒ P
(
{ω ∈ Ω | X (ω) = Y (ω)}

)
= 1

A random variable X is an element of
L0(Ω,F ,P;Rn) := L0(Ω,F ,P;Rn)/ ∼.
In other word a random variable is a measurable function from Ω to
Rn defined up to negligeable set.

Vincent Leclère OS - 2 1/12/2021 4 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Expectation and variance

We recall that E
[
X
]

:=
∫

Ω X(ω)P(dω).

If P is discrete, we have E
[
X
]

=
∑|Ω|

ω=1 X (ω)pω.
If X admit a density function f we have E

[
X
]

=
∫
R xf (x)dx .

We define the variance of X

var(X) := E
[(

X − E
[
X
])2]

= E
[
X2]−

(
E
[
X
])2

and the standard deviation
std(X) :=

√
var(X)

the covariance is given by
cov(X ,Y ) = E

[
XY

]
− E

[
X
]
E
[
Y
]

Vincent Leclère OS - 2 1/12/2021 5 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Random variables spaces

L0(Ω,F ,P;Rn) is the set of rv
L1(Ω,F ,P;Rn) is the set of rv such that E

[
|X |
]
< +∞

Lp(Ω,F ,P;Rn) is the set of rv such that E
[
|X |p

]
< +∞

L∞(Ω,F ,P;Rn) is the set of rv that is almost surely bounded
Lp(Ω,F ,P;Rn), for p ∈]1,+∞[ is a reflexive Banach space, with
dual Lq, where 1

p + 1
q = 1

L1(Ω,F ,P;Rn) is a non-reflexive Banach space with dual L∞

L2(Ω,F ,P;Rn) is a Hilbert space
L∞(Ω,F ,P;Rn) is a non-reflexive Banach space

Vincent Leclère OS - 2 1/12/2021 6 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Independence

The cumulative distribution function (cdf) of a random variable X is

FX (x) := P(X ≤ x)

Two random variables X and Y are independent iff (one of the
following)

FX ,Y (a, b) = FX (a)FY (b) for all a, b
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all Borel sets A
and B
E
[
f (X)g(Y )

]
= E

[
f (X)

]
E
[
g(Y )

]
for all Borel functions f

and g
A sequence of identically distributed indenpendent variables is
denoted iid.

Vincent Leclère OS - 2 1/12/2021 7 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Inequalities

(Markov) P
(
|X | ≥ a

)
≤ E

[
|X|
]

a , for a > 0.

(Chernoff) P
(
X ≥ a

)
≤ E

[
etX
]

eta , for t, a > 0.

(Chebyshev) P
(
|X − E

[
X
]
| ≥ a

)
≤ var(X)

a2 , for a > 0.

(Jensen) E
[
f (X)

]
≥ f (E

[
X
]
) for f convex

(Cauchy-Schwartz) E
[
|XY |

]
≤ ‖X‖2‖Y‖2

(Hölder) E
[
|XY |

]
≤ ‖X‖p‖Y‖q for 1

p + 1
q = 1

(Hoeffding) P
(

Mn − E
[
Mn
]
≥ t
)
≤ exp

(
−2n2t2∑n
i=1

(bi−ai )2

)
where

{
X i
}

i∈N is a sequence of bounded independent rv with
ai ≤ X i ≤ bi .

Vincent Leclère OS - 2 1/12/2021 8 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Limits of random variable
Let

{
Xn
}

n∈N be a sequence of random variables.

We say that
{

Xn
}

n∈N converges almost surely toward X if

P
(

lim
n

(Xn − X) = 0
)

= 1.

We say that
{

Xn
}

n∈N converges in probability toward X if

∀ε > 0, P(|Xn − X | > ε)→ 0.

We say that
{

Xn
}

n∈N converges in Lp toward X if

‖Xn − X‖p = E
[
|Xn − X |p

]
→ 0.

We say that
{

Xn
}

n∈N converges in law toward X if

E
[
f (Xn)

]
→ E

[
f (X)

]
for all bounded Lipschitz f

Vincent Leclère OS - 2 1/12/2021 9 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Conditional expectation

P(A|B) = P(A ∩ B)/P(B)
If (X ,Y ) has density fX ,Y , then the conditional law (X |Y ) has
density fX |Y (x |y) = fX ,Y (x , y)/fY (y).
In the continuous case we have

E
[
X |Y = y

]
=
∫

R
xfX |Y (x |y)dx .

More generally if G is a sub-sigma-algebra of F , the conditional
expectation of X ∈ L1(Ω,F ,P) w.r.t G is the G-measurable random
variable Y satisfying

E
[
Y1G

]
= E

[
X1G

]
, ∀G ∈ G

Finally, we always have

E
[
E
[
X |Y

]]
= E

[
X
]

Vincent Leclère OS - 2 1/12/2021 10 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Presentation Outline

1 Probability recalls

2 Random function

3 Limit of averages

4 Newsvendor problem

Vincent Leclère OS - 2 1/12/2021 10 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Monotone and dominated convergence

Theorem (Monotone convergence)
Let

{
Xn
}

n∈N be a sequence of random variables such that
Xn+1 ≥ Xn P-a.s.
Xn → X∞ P-a.s.

then limn→∞ E
[
Xn
]

= E
[

limn Xn
]

Theorem (Dominated convergence)
Let

{
Xn
}

n∈N be a sequence of random variables, and Y such that

|Xn| ≤ Y P-a.s. with E
[
|Y |
]
< +∞

Xn → X∞ P-a.s.
then limn→∞ E

[
Xn
]

= E
[

limn Xn
]

Vincent Leclère OS - 2 1/12/2021 11 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Measurability of multi-valued function

Consider a measurable space (Ω,F).
A function f : Ω→ R is F-measurable if f −1(I) ∈ F for all interval
I of R.
A multi-function G : Ω⇒ Rn is F-measurable if

∀A ⊂ Rnclosed, G−1(A) :=
{
ω ∈ Ω | G(ω) ∩ A 6= ∅

}
∈ F .

A closed valued multi-function G : Ω⇒ Rn is F-measurable iff
dx (ω) := dist(x ,G(ω)) is F-measurable.

Theorem (Measurable selection theorem)
If G : Ω⇒ Rn is a closed valued measurable multifunction, then there
exists a measurable selection of G, that is a measurable function
π : dom(G) ⊂ Ω→ Rn such that π(ω) ∈ G(ω) for all ω ∈ dom(G).

Vincent Leclère OS - 2 1/12/2021 12 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Normal integrand
Assume that F is P-complete.

Definition (Caratheodory function)
f : Rn × Ω→ R is a Carathéodory function if

f (·, ω) is continuous for a.a. ω ∈ Ω
f (x , ·) is measurable for all x ∈ Rn

Definition (Normal integrand)
f : Rn × Ω→ R̄ is a normal integrand (aka random lowersemicontinuous
function) if

f (·, ω) is lsc for a.a. ω ∈ Ω
f (·, ·) is measurable

f is a convex normal integrand if in addition it is convex in x for a.a.
ω ∈ Ω.

A caratheodory function is a special case of normal integrand.Vincent Leclère OS - 2 1/12/2021 13 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Measurability of minimum and argmin

Theorem (Measurability of minimum)
Let f : Rn × Ω→ R̄ be a normal integrand and define

ϑ(ω) := inf
x

f (x , ω) X∗(ω) := arg min
x

f (x , ω).

Then, ϑ and X∗ are measurable.

Theorem (Pointwise minimization)
Let f : Rn × Ω→ R̄ be a normal convex integrand then

inf
U∈L0,U∈U

E
[
f (U(ω), ω)

]
= E

[
inf

u∈U(ω)
f (u, ω)

]

Vincent Leclère OS - 2 1/12/2021 14 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Continuity and derivation under expectation
Let f : Rn × Ω be a random function (i.e. measurable in ω for all x). We
say that f is dominated on X if, for all x ∈ X , there exists an integrable
random variable Y such that f (x , ·) ≤ Y almost surely. If f is dominated
on X ⊂ Rn, we define F (x) := E

[
f (x , ω)

]
.

If f is lsc in x and dominated on X , then F is lsc.
If f is continuous in x and dominated on X , then F is continuous.
If f is Lispchitz in x , with E

[
lip(f (·, ω))

]
< +∞, then F in

Lipschitz continous. Moreover if f is differentiable in x , we have

∇F (x) = E
[
∇x f (x , ω)

]
.

If f is a convex normal integrand, and x0 ∈ int(dom(F )), then

∂F (x0) = E
[
∂f (x0, ω)

]

Vincent Leclère OS - 2 1/12/2021 15 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Presentation Outline

1 Probability recalls

2 Random function

3 Limit of averages

4 Newsvendor problem

Vincent Leclère OS - 2 1/12/2021 15 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Strong Law of large number

We consider a function f : Rn × Ξ→ R, and a random variable ξ
which takes values in Ξ, and define F (x) := E

[
f (x , ξ)

]
.

We consider a sequence of random variables
{

ξi
}

i∈N.
We define the average function

F̂N(x) := 1
N

N∑

i=1
f (x , ξi )

We say that we have a Law of Large Number (LLN) if,

∀x ∈ Rn, P
(

lim
n

F̂n(x) = F (x)
)

= 1

The strong LLN state that LLN holds if f (x , ξ) is integrable, and{
ξi
}

i∈N is a iid (with same law as ξ).

Vincent Leclère OS - 2 1/12/2021 16 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Uniform Law of large number

Having LLN means that, for all ε > 0 (and almost all sample),

∀x , ∃Nε ∈ N, n ≥ N =⇒ |F̂N(x)− F (x)| ≤ ε

We say that we have ULLN if for all ε > 0 (and almost all sample),

∃Nε ∈ N, ∀x , n ≥ N =⇒ |F̂N(x)− F (x)| ≤ ε

or equivalently

∃N ∈ N n ≥ N =⇒ sup
x
|F̂N(x)− F (x)| ≤ ε

Theorem
If f is a dominated Caratheodory function on X compact and the sample
is iid then we have ULLN on X.

Vincent Leclère OS - 2 1/12/2021 17 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Central Limit Theorem

Theorem
Let

{
X i
}

i∈N be a sequence of rv iid, with finite second order moments.
Then we have

√
n
( 1

n

n∑

i=1
X i

︸ ︷︷ ︸
Mn

−E
[
X
])
→ N (0, std(X))

where the convergence is in law.

Vincent Leclère OS - 2 1/12/2021 18 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Monte-Carlo method

Let
{

X i
}

i∈N be a sequence of rv iid with finite variance.

We have P
(

MN ∈
[
E
[
X
]
± Φ−1(p)std(X)√

N

])
≈ p

In order to estimate the expectation E
[
X
]
, we can

sample N independent realizations of X ,
{

Xi
}

i∈J1,NK

compute the empirical mean MN =
∑N

i=1
Xi

N , and
standard-deviation sN
choose an error level p (e.g. 5%) and compute Φ−1(1− p/2)
(1.96)
and we know that, asymptotically, the expectation E

[
X
]

is in[
MN ± Φ−1(p)sN√

N

]
with probability (on the sample) 1− p

In the case of bounded independent variable we can use Hoeffding

P
(
E
[
X
]
∈ [Mn ± t]

)
≥ 2e− 2nt2

b−a

Vincent Leclère OS - 2 1/12/2021 19 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Presentation Outline

1 Probability recalls

2 Random function

3 Limit of averages

4 Newsvendor problem

Vincent Leclère OS - 2 1/12/2021 19 / 26

Probability recalls Random function Limit of averages Newsvendor problem

The (deterministic) newsboy problem

In the 50’s a boy would buy a stock u of newspapers each morning
at a cost c, and sell them all day long for a price p. The number of
people interested in buying a paper during the day is d . We
assume that 0 < c < p.

How shall we model this ?
Control u ∈ R+

Cost L(u) = cu − p min(u, d)
Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0

Vincent Leclère OS - 2 1/12/2021 20 / 26



Probability recalls Random function Limit of averages Newsvendor problem

The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a
random variable d with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to
minimize its expectation.

We consider the following problem

min
u

E
[
cu − p min(u,d)

]

s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper
again and again. Then optimizing the sum over time of its gains is
closely related to optimizing the expected gains.

Vincent Leclère OS - 2 1/12/2021 21 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]

= (c − p)u − pE
[

min(0, d − u)
]

= (c − p)u − p
∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)

= c − p + pF (u)
where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)
Vincent Leclère OS - 2 1/12/2021 22 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Newsvendor problem (continued)

We assume that the demand can take value {di}i∈J1,nK with
probabilities {pi}i∈J1,nK.
In this case the stochastic newsvendor problem reads

min
u

n∑

i=1
pi
(

cu − p min(u, di )
)

s.t. u ≥ 0

Vincent Leclère OS - 2 1/12/2021 23 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Two-stage newsvendor problem I
We can represent the newsvendor problem in a 2-stage framework.

Let u0 be the number of newspaper bought in the morning.
 first stage control
let u1 be the number of newspaper sold during the day.
 second stage control

The problem reads

min
u0,u1

E
[
cu0 − pu1

]

s.t. u0 ≥ 0
u1 ≤ u0 P− as
u1 ≤ d P− as
u1 � d

Vincent Leclère OS - 2 1/12/2021 24 / 26



Probability recalls Random function Limit of averages Newsvendor problem

Two-stage newsvendor problem II

In extensive formulation the problem reads

min
u0,{ui

1}i∈J1,nK

n∑

i=1
pi
(
cu0 − pui

1
)

s.t. u0 ≥ 0
ui

1 ≤ u0 ∀i ∈ J1, nK
ui

1 ≤ di ∀i ∈ J1, nK

Note that there are as many second-stage control ui
1 as there are

possible realization of the demand d , but only one first-stage
control u0.

Vincent Leclère OS - 2 1/12/2021 25 / 26

Probability recalls Random function Limit of averages Newsvendor problem

Practical work

Using julia we are going to model and work around the Newsvendor
problem
Download the files at https://github.com/leclere/TP-Saclay

Start working on the ”Newsvendor Problem” up to question 3.

Vincent Leclère OS - 2 1/12/2021 26 / 26



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage stochastic program

V. Leclère

December 8 2021

Vincent Leclère Two-stage stochastic program 08/12/2021 1 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 1 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 1 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0

where
u0 is the control, or decision.
L is the cost or objective function.
g(u0) ≤ 0 represent the constraint(s).

Vincent Leclère Two-stage stochastic program 08/12/2021 2 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

The (deterministic) newsboy problem

In the 50’s a boy would buy a stock u of newspapers each morning
at a cost c, and sell them all day long for a price p. The number of
people interested in buying a paper during the day is d . We
assume that 0 < c < p.

How shall we model this ?
Control u ∈ R+

Cost L(u) = cu − p min(u, d)
Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0

Vincent Leclère Two-stage stochastic program 08/12/2021 3 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

An optimization problem with uncertainty
Adding uncertainty ξ in the mix

min
u0

L(u0, ξ)

s.t. g(u0, ξ) ≤ 0
Remarks:

ξ is unknown. Two main ways of modelling it:
ξ ∈ Ξ with a known uncertainty set Ξ, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈Ξ L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ Ξ.
SP : g(u, ξ) ≤ 0, P− a.s..

Vincent Leclère Two-stage stochastic program 08/12/2021 4 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a
random variable d with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to
minimize its expectation.

We consider the following problem

min
u

E
[
cu − p min(u,d)

]

s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper
again and again. Then optimizing the sum over time of its gains is
closely related to optimizing the expected gains.

Vincent Leclère Two-stage stochastic program 08/12/2021 5 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]

= (c − p)u − pE
[

min(0, d − u)
]

= (c − p)u − p
∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)

Vincent Leclère Two-stage stochastic program 08/12/2021 6 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

The robust newsboy problem

Demand d is unknown at time of purchasing. We assume that it
will be in the set [d , d ].
The robust problem consist in solving

min
u

max
d∈[d ,d]

cu − p min(u, d)

s.t. u ≥ 0

By monotonicity it is equivalent to

min
u

cu − p min(u, d)

s.t. u ≥ 0

Vincent Leclère Two-stage stochastic program 08/12/2021 7 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want
to minimize its expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large
number of time (Law of Large Number).
In some cases the expectation is not really representative of
your risk attitude. Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to
win $10000 ?
You need to be at the airport in 1 hour or you miss your flight,
you have the choice between two mean of transport, one of
them take surely 50’, the other take 40’ four times out of five,
and 70’ one time out of five.

Vincent Leclère Two-stage stochastic program 08/12/2021 8 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Alternative cost functions II

Here are some cost functions you might consider
Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)
Value-at-Risk of costs V @Rα(L(u, ξ)), where for any real
valued random variable X ,

V @Rα(X) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a
cost worse than V @Rα(X).
Average Value-at-Risk of costs AV @Rα(L(u, ξ)), which is the
expected cost over the α worst outcomes.

Vincent Leclère Two-stage stochastic program 08/12/2021 9 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Alternative constraints I

The natural extension of the deterministic constraint
g(u, ξ) ≤ 0 to g(u, ξ) ≤ 0 P− as can be extremely
conservative, and even often without any admissible solutions.
For example, if u is a level of production that need to be
greater than the demand. In a deterministic setting the
realized demand is equal to the forecast. In a stochastic
setting we add an error to the forecast. If the error is
unbouded (e.g. Gaussian) no control u is admissible.

Vincent Leclère Two-stage stochastic program 08/12/2021 10 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Some considerations on dealing with uncertainty

Alternative constraints II

Here are a few possible constraints
E
[
g(u, ξ)

] ≤ 0, for quality of service like constraint.
P(g(u, ξ) ≤ 0) ≥ 1− α for chance constraint. Chance
constraint is easy to present, but might lead to misconception
as nothing is said on the event where the constraint is not
satisfied.
AV @Rα(g(u, ξ)) ≤ 0

Vincent Leclère Two-stage stochastic program 08/12/2021 11 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 11 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Computing expectation
Computing an expectation E

[
L(u, ξ)

]
for a given u is costly.

If ξ is a r.v. with known law admitting a density, E
[
L(u, ξ)

]
is

a (multidimensional) integral.
If ξ is a r.v. with known discrete law, E

[
L(u, ξ)

]
is a sum over

all possible realizations of ξ, which can be huge.
If ξ is a r.v. that can be simulated but with unknown law,
E
[
L(u, ξ)

]
cannot be computed exactly.

Solution : use Law of Large Number (LLN) and Central Limit
Theorem (CLT).

Draw N ' 1000 realization of ξ.
Compute the sample average 1

N
∑N

s=1 L(u, ξs).
Use CLT to give an asymptotic confidence interval of the
expectation.

This is known as the Monte-Carlo method.
Vincent Leclère Two-stage stochastic program 08/12/2021 12 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Consequence : evaluating a solution is difficult

In stochastic optimization even evaluating the value of a
solution can be difficult an require approximate methods.
The same holds true for checking admissibility of a candidate
solution.
It is even more difficult to obtain first order informations
(gradient).

Standard solution : sampling and solving the sampled problem
(Sample Average Approximation).

Vincent Leclère Two-stage stochastic program 08/12/2021 13 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Recall on CLT
Let {Ci}i∈N be a sequence of identically distributed random
variables with finite variance.
Then the Central Limit Theorem ensures that

√
N
(∑N

i=1 C i
N − E[C1]

)
=⇒ G ∼ N (0,Var [C1]) ,

where the convergence is in law.
In practice it is often used in the following way.
Asymptotically,

P
(
E
[
C1
] ∈

[
C̄N −

1.96σN√
N

, C̄N + 1.96σN√
N

])
' 95% ,

where C̄N =
∑N

i=1 C i
N is the empirical mean and

σN =
√∑N

i=1(C i−C̄N )2

N−1 the empirical standard deviation.
Vincent Leclère Two-stage stochastic program 08/12/2021 14 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Optimization problem and simulator

Generally speaking stochastic optimization problem are not
well posed and often need to be approximated before solving
them.
Good practice consists in defining a simulator, i.e. a
representation of the “real problem” on which solution can be
tested.
Then find a candidate solution by solving an (or multiple)
approximated problem.
Finally evaluate the candidate solutions on the simulator. The
comparison can be done on more than one dimension (e.g.
constraints, risk...)

Vincent Leclère Two-stage stochastic program 08/12/2021 15 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Evaluating a solution

Conclusion

When addressing an optimization problem under uncertain one has
to consider carefully

How to model uncertainty ? (random variable or uncertainty
set)
How to represent your attitude toward risk ? (expectation,
probability level,...)
How to include constraints ?
What is your information stucture ? (More on that later)
Set up a simulator and evaluate your solutions.

Vincent Leclère Two-stage stochastic program 08/12/2021 16 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

One-stage Problems

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 16 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

One-stage Problems

One-Stage Problems
Assume that ξ has a discrete distribution 1 , with
P
(
ξ = ξs

)
= πs > 0 for s ∈ J1,SK. Then, the one-stage problem

min
u0

E
[
L(u0, ξ)

]

s.t. g(u0, ξ) ≤ 0, P− a.s

can be written

min
u0

S∑

s=1
πsL(u0, ξs)

s.t g(u0, ξs) ≤ 0, ∀s ∈ J1, SK.

1If the distribution is continuous we can sample and work on the sampled
distribution, this is called the Sample Average Approximation approach with
lots of guarantee and results

Vincent Leclère Two-stage stochastic program 08/12/2021 17 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

One-stage Problems

Newsvendor problem (continued)

We assume that the demand can take value {d s}s∈J1,SK with
probabilities {πs}s∈J1,SK.
In this case the stochastic newsvendor problem reads

min
u

S∑

s=1
πs
(
cu − p min(u, d s)

)

s.t. u ≥ 0

Vincent Leclère Two-stage stochastic program 08/12/2021 18 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage Problems

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 18 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage Problems

Recourse Variable
In most problem we can make a correction u1 once the uncertainty
is known:

u0  ξ1  u1.

As the recourse control u1 is a function of ξ it is a random
variable. The two-stage optimization problem then reads

min
u0,u1

E
[
L(u0, ξ,u1)

]

s.t. g(u0, ξ,u1) ≤ 0, P− a.s
u1 � ξ

u0 is called a first stage control
u1 is called a second stage (or recourse) control

Vincent Leclère Two-stage stochastic program 08/12/2021 19 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage Problems

Two-stage Problem
The extensive formulation of

min
u0,u1

E
[
L(u0, ξ,u1)

]

s.t. g(u0, ξ,u1) ≤ 0, P− a.s
u1 � ξ

is

min
u0,{us

1}s∈J1,SK

S∑

s=1
psL(u0, ξ

s , us
1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

It is a deterministic problem that can be solved with standard tools
or specific methods.

Vincent Leclère Two-stage stochastic program 08/12/2021 20 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage Problems

Two-stage newsvendor problem I
We can represent the newsvendor problem in a 2-stage framework.

Let u0 be the number of newspaper bought in the morning.
 first stage control
let u1 be the number of newspaper sold during the day.
 second stage control

The problem reads

min
u0,u1

E
[
cu0 − pu1

]

s.t. u0 ≥ 0
u1 ≤ u0 P− as
u1 ≤ d P− as
u1 � d

Vincent Leclère Two-stage stochastic program 08/12/2021 21 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Two-stage Problems

Two-stage newsvendor problem II

In extensive formulation the problem reads

min
u0,{us

1}s∈J1,SK

S∑

s=1
πs(cu0 − pus

1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ d s ∀s ∈ J1, SK

Note that there are as many second-stage control us
1 as there are

possible realization of the demand d , but only one first-stage
control u0.

Vincent Leclère Two-stage stochastic program 08/12/2021 22 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 22 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Time decomposition of the problem
We presented the generic two-stage problem as

min
u0,u1

E
[
L(u0, ξ,u1)

]

s.t. g(u0, ξ,u1) ≤ 0, P− a.s
u1 � ξ

With L(u0, ξ, u1) = L0(u0) + L1(u0, ξ, u1), it can also be written as

min
u0

L0(u0) + E
[
Q̃(u0, ξ)

]
first stage problem

s.t. g0(u0) ≤ 0
where

Q̃(u0, ξ) := min
u1

L1(u0, ξ, u1) second stage problem

s.t. g1(u0, ξ, u1) ≤ 0

The reformulation always exists, but is not unique
Vincent Leclère Two-stage stochastic program 08/12/2021 23 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Admissible set

For a given decomposition, we set

U0 :=
{
u0 ∈ Rn0 | g0(u0) ≤ 0

}

Ũ1(u0, ξ) :=
{
u1 ∈ Rn1 | g1(u0, ξ, u1) ≤ 0

}

Note that
Ũ1(u0, ξ) is the set of admissible solutions of the second stage
problem
U0 contains the set of admissible solutions of the first stage
problem

Vincent Leclère Two-stage stochastic program 08/12/2021 24 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

We say that we are in a complete recourse framework, if for all
u0 ∈ U0, and almost-all possible outcome ξ, every control u1 is
admissible, i.e.,

P
(
Ũ1(u0, ξ) = Rn1

)
= 1, ∀u0 ∈ U0.

We say that we are in a relatively complete recourse framework, if
for all u0 ∈ U0, and almost-all possible outcome ξ, there exists a
control u1 that is admissible, i.e.,

P
(
Ũ1(u0, ξ) 6= ∅

)
= 1, ∀u0 ∈ U0.

We say that we are in an extended relatively complete recourse
framework, if there exists ε > 0 such that, for all u0 ∈ U0 + εB, and
almost-all possible outcome ξ, there exists a control u1 that is
admissible, i.e.,

P
(
Ũ1(u0, ξ) 6= ∅

)
= 1, ∀u0 ∈ U0 + εB.

Vincent Leclère Two-stage stochastic program 08/12/2021 25 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Recourse assumptions

Obtaining relatively complete recourse

Assume that the two-stage program is given by

min
u0∈U0

{
L0(u0)+E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

with finite value, but not necessarily relatively complete recourse.
Then the program is equivalent to

min
u0∈U0∩U ind

0

{
L0(u0)+E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

where U ind
0 is the set of induced constraints given by

U ind
0 =

{
u0 ∈ Rn0 | P

(
Ũ1(u0, ξ) 6= ∅

)
= 1
}
,

and with this formulation we are in a relatively complete recourse
framework.

Vincent Leclère Two-stage stochastic program 08/12/2021 26 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 26 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Two-stage framework : three information models
Consider the problem

min
u0,u1

E
[
L(u0, ξ,u1)

]

Open-Loop case : u0 and u1 are deterministic. In this case
both controls are choosen without any knowledge of the alea
ξ. The set of control is small, and an optimal control can be
found through specific method (e.g. Stochastic Gradient).
Two-Stage case : u0 is deterministic and u1 is measurable
with respect to ξ. This is the problem tackled by the
Stochastic Programming case.
Anticipative case : u0 and u1 are measurable with respect to
ξ. This case consists in solving one deterministic problem per
possible outcome of the alea, and taking the expectation of
the value of this problems.

Vincent Leclère Two-stage stochastic program 08/12/2021 27 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Splitted formulation
The extended formulation (in a compact way)

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(u0, ξ

s , us
1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

Can be written in a splitted formulation

min
ū0,us

0,{us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

us
0 = us′

0 ∀s, s ′

Vincent Leclère Two-stage stochastic program 08/12/2021 28 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Splitted formulation
The extended formulation (in a compact way)

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(u0, ξ

s , us
1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

Can be written in a splitted formulation

min
ū0,us

0,{us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

us
0 =

∑

s′
πs′us′

0 ∀s

Vincent Leclère Two-stage stochastic program 08/12/2021 28 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Information models for the Newsvendor I

Open-loop :

min
u0,u1

S∑

s=1
πs(cu0 − pu1

)

s.t. u0 ≥ 0
u1 ≤ u0

u1 ≤ d s ∀s ∈ J1,SK

Vincent Leclère Two-stage stochastic program 08/12/2021 29 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Information models for the Newsvendor II

Two-stage :

min
u0,{us

1}s∈J1,SK

S∑

s=1
πs(cu0 − pus

1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ ds ∀s ∈ J1, SK

Vincent Leclère Two-stage stochastic program 08/12/2021 30 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Information models for the Newsvendor III

Anticipative :

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πs(cus

0 − pus
1
)

s.t. us
0 ≥ 0 ∀s ∈ J1,SK

us
1 ≤ u0 ∀s ∈ J1,SK

us
1 ≤ d s ∀s ∈ J1,SK

Vincent Leclère Two-stage stochastic program 08/12/2021 31 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Comparing the information models
The three information models can be written this way :

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πs(cus

0 − pus
1
)

s.t. us
0 ≥ 0 ∀s ∈ J1,SK

us
1 ≤ u0 ∀i ∈ J1,SK

us
1 ≤ d s ∀i ∈ J1, sK

us
0 = us′

0 ∀s, s ′

us
1 = us′

1 ∀s, s ′

Hence, by simple comparison of constraints we have
V anticipative ≤ V 2−stage ≤ V OL.

Vincent Leclère Two-stage stochastic program 08/12/2021 32 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Value of information

The Expected Value of Perfect Information (EVPI) is defined as
EVPI = v2−stage − vanticipative ≥ 0.

Its the maximum amount of money you can gain by getting more
information (e.g. incorporating better statistical model in your
problem)
The Value of Stochastic Solution is defined as

VSS = vOL − v2−stage ≥ 0.

The expected value problem is the value of the deterministic
problem where the randomness is replaced by its expectation

vEV = min
u0,u1

L(u0,E[ξ], u1).

If (uEV
0 , uEV

1 ) is the solution of the EV problem, then
E
[
L(uEV

0 , ξ, uEV
1 )
]
, is known as Expected Value of Expected Value

problem vEEV .
Vincent Leclère Two-stage stochastic program 08/12/2021 33 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Comparison and convexity

Without assumption we have

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative

If additionally L is jointly convex we have

vanticipative = E
[
L(uξ

0 , ξ, u
ξ
1 )
]

≥ L(E
[
uξ

0
]
,E
[
ξ
]
,E
[
uξ

1 )
]

≥ L(uEV
0 ,E

[
ξ
]
, uEV

1 ) = vEV

Hence, under convexity we have,

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative≥ vEV

Vincent Leclère Two-stage stochastic program 08/12/2021 34 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Information Frameworks

Solving the problems

The solution of vEEV is easy to find (one deterministic problem),
and its value is obtained by Monte-Carlo.
vOL can be approximated through specific methods (e.g. SG).
v2−stage is obtained through Stochastic Programming specific
methods. There are two main approaches:

Lagrangian decomposition methods (like Progressive-Hedging
algorithm).
Benders decomposition methods (like L-shaped or
nested-decomposition methods).

vanticipative is difficult to compute exactly but can be estimated
through Monte-Carlo approach by drawing a reasonable number of
realizations of ξ, solving the deterministic problem for each
realization ξi and taking the means of the value of the deterministic
problem.
vEV is easy to compute, but is usefull only in the convex case.

Vincent Leclère Two-stage stochastic program 08/12/2021 35 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Presentation Outline

1 Optimization under uncertainty
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Two-stage stochastic program 08/12/2021 35 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

How to deal with continuous distributions ?
Recall that if ξ as finite support we rewrite the 2-stage problem

min
u0,u1

E
[
L(u0, ξ,u1)

]

s.t. g(u0, ξ,u1) ≤ 0, P− a.s

as

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(u0, ξ

s , us
1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

If we consider a continuous distribution (e.g. a Gaussian), we
would need an infinite number of recourse variables to obtain an
extensive formulation.

Vincent Leclère Two-stage stochastic program 08/12/2021 36 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Simplest idea: sample ξ

First consider the one-stage problem
min
u∈U

E
[
L(u, ξ)

]
(P)

Draw a sample (ξ1, . . . , ξN) (in a i.i.d setting with law ξ).
Consider the empirical probability P̂N = 1

N
∑N

i=1 δξi .
Replace P by P̂N to obtain a finite-dimensional problem that
can be solved.
This means solving

min
u∈U

1
N

N∑

i=1
L(u, ξi ) (PN)

We denote by v̂N (resp. v∗) the value of (PN) (resp. (P)),
and Sn the set of optimal solutions (resp. S∗).

Vincent Leclère Two-stage stochastic program 08/12/2021 37 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Biased estimator
Generically speaking the estimators of the minimum are biased

E
[
v̂N
] ≤ E

[
v̂N+1

] ≤ v∗

proof :
Let (ξi )i∈N be a sequence of iid copies of ξ

Set J(u) := E
[
L(u, ξ)

]
, JN(u) := 1

N
∑N

i=1 L(u, ξi )
We have, for every u′ ∈ U, JN(u′) ≥ infu∈U JN(u).
Taking the expectation yields,

J(u′) = E
[
JN(u′)

]
≥ E

[
inf
u∈U

JN(u)
]

= E
[
v̂N
]
.

We now take the infimum over u′ ∈ U, to obtain
v∗ = inf

u′∈U
J(u′) ≥ E

[
v̂N
]
.

Vincent Leclère Two-stage stochastic program 08/12/2021 38 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Decreasing bias
We now show that the bias is monotonically decreasing. Notice that

JN+1(u) = 1
N + 1

N+1∑

i=1

[ 1
N
∑

j 6=i
L(u, ξj)

]
.

Hence,

E
[
v̂N+1

]
= E

[
inf
u∈U

JN+1(u)
]

= E
[

inf
u∈U

1
N + 1

N+1∑

i=1

[ 1
N
∑

j 6=i
L(u, ξj)

]]

≥ E
[

1
N + 1

N+1∑

i=1
inf

ui∈U

[ 1
N
∑

j 6=i
L(ui , ξj)

]]

= 1
N + 1

N+1∑

i=1
E
[

inf
ui∈U

[ 1
N
∑

j 6=i
L(ui , ξj)

]]

= 1
N + 1

N+1∑

i=1
E
[
v̂N
]

= E
[
v̂N
]

which ends the proof.
Vincent Leclère Two-stage stochastic program 08/12/2021 39 / 43



Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Consistency of estimator

Definition
Let

{
f N
}

N∈N be a sequence of random functions mapping X into
R. We say that f N converges almost surely toward f : X 7→ R
uniformly on X , if

∀ε > 0, ∃N ∈ N, ∀n ≥ N, P
(

sup
x∈X
|f n(x)− f (x)| ≤ ε

)
= 1.

Theorem (Consistency of SAA)
If JN+1 converges almost surely toward J uniformly on U, then v̂N
converges almost surely toward v ].

Vincent Leclère Two-stage stochastic program 08/12/2021 40 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Theorem (Convergence in the compact case)
Assume that

1 U is compact non empty,
2 JN converges uniformly on U toward J,
3 U]

N in non-empty,
4 J is continuous on U.

Then,
v]N → v ] PN -a.s.,

D
(
U]

n,U]
)
→ 0 PN -a.s.

1 can be relaxed in a compact set containing optimal solution
2 usually comes from the uniform law of large number
3 can be obtained if JN is lower semi-continuous with some non-empty but

uniformly bounded level set
4 often rely on a domination theorem.

Vincent Leclère Two-stage stochastic program 08/12/2021 41 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Theorem (Convergence in the convex case)
Assume that

1 j is a.s. convex l.s.c.
2 U is closed convex
3 J is l.s.c, and there exists u ∈ U such that a neighboorhoud of u is

contained in dom(J)
4 S 6= ∅ is bounded
5 the LLN holds

Then,
v]N → v ] PN -a.s.,

D
(
U]

n,U]
)
→ 0 PN -a.s.

Vincent Leclère Two-stage stochastic program 08/12/2021 42 / 43

Optimization under uncertainty Stochastic Programming Approach Information and discretization

Sample Average Approximation

Theorem (Convergence speed)
Assume that,

E
[
j(u, ξ)2] <∞,

u 7→ j(u, ξ) is Lipschitz-continuous with constant L(ξ) with
E
[
L(ξ)2] <∞,

U is compact, U] =
{

u]
}

.
Then,

v]N = JN(u]) + o( 1√
N ),

√
N
(
v]N − v ]

)
⇒ N (0, σ2(u])),

where σ2(u) := E
[(

j(u, ξ)− E
[
j(u, ξ)

])2].

The unicity of solution assumption can be relaxed.
Good reference for precise results : Lectures on Stochastic Programming
(Dentcheva, Ruszczynski, Shapiro) chap. 5.

Vincent Leclère Two-stage stochastic program 08/12/2021 43 / 43



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Stochastic Dynamic Programming
Bellman Operators

V. Leclère

December 15, 2021

V. Leclère Dynamic Programming 15/12/2020 1 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 2 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 2 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Where do we come from: two-stage programming

u0

(ξ1
1 , p1)

u1,1

(ξ2
1 , p2)

u1,2

(ξ3
1 , p3)

u1,3

(ξ4
1 , p4)

u1,4

(ξ5
1 , p5) u1,5

(ξ6
1 , p6)

u1,6

(ξ7
1 , p7)

u1,7
(ξ8

1 , p8)

u1,8 We take decisions in two stages

u0 ; ξ1 ; u1 ,

with u1: recourse decision .

On a tree, it resumes to
solve the extensive formulation:

min
u0,u1,s

∑

s∈S
πs
[〈
cs , u0

〉
+
〈
ps , u1,s

〉]
.

We have as many u1,s as scenarios!

V. Leclère Dynamic Programming 15/12/2020 3 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Extending two-stage to multistage programming

u0

(ξ1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(ξ2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(ξ3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(ξ4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2 min

u
E
(
j(u, ξ)

)

U = (u0, · · · ,UT )

ξ = (ξ1, · · · , ξT )

We take decisions in T stages

ξ0 ; u0 ; ξ1 ; u1 ; · · ·; ξT ; uT .

V. Leclère Dynamic Programming 15/12/2020 4 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Multistage extensive formulation approach

u0

(ξ1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(ξ2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(ξ3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(ξ4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2

Assume that ξt ∈ Rnξ can take nξ values
and that Ut(x) ⊂ Rnu .

Then, considering the extensive formulation
approach, we have

nTξ scenarios.

(nT+1
ξ − 1)/(nξ − 1) nodes in the tree.

Number of variables in the optimization
problem is roughly
nu × (nT+1

ξ − 1)/(nξ − 1) ≈ nun
T
ξ .

The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!

V. Leclère Dynamic Programming 15/12/2020 5 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Illustrating extensive formulation with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart

5 interconnected dams

5 controls per timesteps

52 timesteps (one per week, over one
year)

nξ = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.

V. Leclère Dynamic Programming 15/12/2020 6 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 6 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Optimization Problem

We want to solve the following optimization problem

min E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
(1a)

s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0 (1b)

ut ∈ Ut(x t) (1c)

σ(ut) ⊂ Ft := σ
(
ξ0, · · · , ξt

)
(1d)

Where

constraint (1b) is the dynamic of the system ;

constraint (1c) refer to the constraint on the controls;

constraint (1d) is the information constraint : ut is choosen
knowing the realisation of the noises ξ0, . . . , ξt but without
knowing the realisation of the noises ξt+1, . . . , ξT−1.

V. Leclère Dynamic Programming 15/12/2020 7 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Information structure I

In Problem (1), constraint (1d) is the information constraint.
There are different possible information structure.

If constraint (1d) reads σ(ut) ⊂ F0, the problem is open-loop,
as the controls are choosen without knowledge of the
realisation of any noise.

If constraint (1d) reads σ(ut) ⊂ Ft , the problem is said to be
in decision-hazard structure as decision ut is chosen without
knowing ξt+1.

If constraint (1d) reads σ(ut) ⊂ Ft+1, the problem is said to
be in hazard-decision structure as decision ut is chosen with
knowledge of ξt+1 (in which case we have ut ∈ Ut(x t , ξt+1))

If constraint (1d) reads σ(ut) ⊂ FT−1, the problem is said to
be anticipative as decision ut is chosen with knowledge of all
the noises.

V. Leclère Dynamic Programming 15/12/2020 8 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Information structure II

Be careful when modeling your information structure:

Open-loop information structure might happen in practice
(you have to decide on a planning and stick to it). If the
problem does not require an open-loop solution then it might
be largely suboptimal (imagine driving a car eyes closed...). In
any case it yields an upper-bound of the problem.

In some cases decision-hazard and hazard-decision are both
approximation of the reality. Hazard-decision yield a lower
value then decision-hazard.

Anticipative structure is never an accurate modelization of the
reality. However it can yield a lower-bound of your
optimization problem relying on deterministic optimization
and Monte-Carlo.

We are going to assume Hazard-Decision structure

V. Leclère Dynamic Programming 15/12/2020 9 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 9 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Bounds and heuristics

Due to the size of the extensive formulation of multistage
programm we cannot hope to numerically solve them without
further assumptions on the problem.

However, there are a few ideas we can use to get

heuristics policies (that is non-optimal but ”reasonable”
solution), and thus upper bounds (estimated by Monte Carlo)
lower bounds to guarantee quality of heuristics

We can get these through:

deterministic approximation
two-stage approximations
linear decision rules
...

V. Leclère Dynamic Programming 15/12/2020 10 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Anticipative lower bound

If we relax the measurability constraint by assuming that ut is
measurable w.r.t σ(ξ0, . . . , ξT ), that is knows the whole
scenario we get the anticipative solution :

E
[

min
u

T∑

t=0

Lt(x t ,ut , ξt+1) + K (xT )
]

This can be computed by solving |Ω| deterministic
optimization problems.

As |Ω| is often too large, this lower bound is estimated by
Monte-Carlo :

draw N scenarios (e.g. N = 1000)
solve each deterministic problem
average their value to estimate the lower bound

V. Leclère Dynamic Programming 15/12/2020 11 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Deterministic heuristic

A natural heuristic consists in looking for a deterministic
solution (we stick to the plan).

The first heuristic consists in simply replacing ξt+1 by an
estimation (often its expectation E[ξt+1]), and solve a
deterministic problem.

A more advanced heuristic consists in looking for optimal
open-loop solution (e.g. by using Stochastic Gradient
algorithms).

V. Leclère Dynamic Programming 15/12/2020 12 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Model Predictive Control

A very classical heuristic, often very efficient if the
stochasticity is not too important is the so-called Model
Predictive Control (MPC).

MPC works in the following way :

at time t0, being in x0, solve the deterministic problem

min
T−1∑

t=t0

Lt
(
xt , ut , ξ̂t+1

)
+ K

(
xT
)

s.t. xt+1 = ft(xt , ut , ξ̂t+1), xt0 = x0

ut ∈ Ut(xt)

where ξ̂t is your best estimate of ξt (its expectation by default)
apply ut0 and get xt0+1

update your estimation of ξ, set x0 = xt0+1 and t0 = t0 + 1

V. Leclère Dynamic Programming 15/12/2020 13 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Two-stage lower-bound

We can refine the anticipative lower bound by relaxing all
measurability constraint except the one on u0.

We thus obtain a two-stage programm u0 being the first stage
control, and all the other ut knowing the whole scenario are
second-stage variable.

We thus have a 2-stage program with |Ω| second stage
(vector) variables whose value is a lower-bound to the original
problem.

This value can be approximated by SAA :

draw N scenarios
write a 2-stage programm with these scenarios, with u0 as first
stage control and (u1, . . . , uT−1) as recourse
its value is an estimation of the 2-stage lower-bound

V. Leclère Dynamic Programming 15/12/2020 14 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

2-stage repeated heuristic

We can adapt the MPC approach by solving two-stage
programm instead of deterministic one.

The procedure goes as follows:

at time t0 in stage x0, draw N scenarios
approximate the problem on [t0,T ] by a two-stage programm
with ut0 as first stage variable, and (ut0+1, . . . , uT−1) as
recourse
apply ut0 and get xt0+1

set x0 = xt0+1 and t0 = t0 + 1

V. Leclère Dynamic Programming 15/12/2020 15 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Linear Decision Rules

Another way of getting heuristics consists in looking for
solution ut = Φt(ξ0, . . . , ξt+1) where Φ is in a specific class
of function.

Classically we can look for Φt in the class of affine functions.

In which case, a multistage linear stochastic programm turns
into a large one-stage stochastic linear programm, which can
be approximated by SAA to get a reasonable LP.

Don’t forget to evaluate the obtained heuristic by Monte
Carlo on new scenarios.

V. Leclère Dynamic Programming 15/12/2020 16 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 16 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by
its dynamic

x t+1 = ft(x t ,ut , ξt+1)

and initial state
x0 = ξ0

The variables

x t is the state of the system,

ut is the control applied to the system at time t,

ξt is an exogeneous noise.

Usually, x t ∈ Xt and ut beglongs to a set depending upon the
state: ut ∈ Ut(x t).

V. Leclère Dynamic Programming 15/12/2020 17 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Examples

Stock of water in a dam:

x t is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
ξt+1 is the inflow of water in [t, t + 1[.

Boat in the ocean:

x t is the position of the boat at time t,
ut is the direction and speed chosen for [t, t + 1[,
ξt+1 is the wind and current for [t, t + 1[.

Subway network:

x t is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
ξt+1 is the delay due to passengers and incident on the
network for [t, t + 1[.

V. Leclère Dynamic Programming 15/12/2020 18 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

More considerations about the state

Physical state: the physical value of the controlled system.
e.g. amount of water in your dam, position of your boat...

Information state: physical state and information you have
over noises. e.g.: amount of water and weather forecast...

Knowledge state: your current belief over the actual
information state (in case of noisy observations). Represented
as a distribution law over information states.

The state in the Dynamic Programming sense is the information
required to define an optimal solution.

V. Leclère Dynamic Programming 15/12/2020 19 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Optimization Problem

We want to solve the following optimization problem

min
uΦ

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]

s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)
ut = Φ(ξ0, · · · , ξt+1)

1 We want to minimize the expectation of the sum of costs.

2 The system follows a dynamic given by the function ft .

3 There are constraints on the controls.

4 The controls are functions of the past noises
(= non-anticipativity).

V. Leclère Dynamic Programming 15/12/2020 20 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Optimization Problem with independence of noises

If noises at time independent, the optimization problem is
equivalent to

min
π

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]

s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

ut = πt(x t , ξt+1)

V. Leclère Dynamic Programming 15/12/2020 21 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Keeping only the state

For notational ease, we want to formulate Problem (1) only with states.
Let Xt(xt , ξt+1) be the reachable states, i.e.,

Xt(xt , ξt+1) :=
{
xt+1 ∈ Xt+1 | ∃ut ∈ Ut(xt , ξt+1), xt+1 = ft(xt , ut , ξt+1)

}
.

And ct(xt , xt+1, ξt+1) the transition cost from xt to xt+1, i.e.,

ct(xt , xt+1, ξt+1) := min
ut∈Ut(xt ,ξt+1)

{
Lt(xt , ut , ξt+1) | xt+1 = ft(xt , ut , ξt+1)

}
.

Then, under independance of noises, the optimization problem reads

min
ψ

E
[ T−1∑

t=0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), x0 = ξ0

x t+1 = ψt(x t , ξt+1)

V. Leclère Dynamic Programming 15/12/2020 22 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 22 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the
property that whatever the
initial state and initial deci-
sion are, the remaining de-
cisions must constitute an
optimal policy with regard
to the state resulting from
the first decision (Richard
Bellman)

V. Leclère Dynamic Programming 15/12/2020 23 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy,
suppose that the fastest
route from Los Angeles
to Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston. (Dim-
itri P. Bertsekas)

V. Leclère Dynamic Programming 15/12/2020 24 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Idea behind dynamic programming

If noises are time independent, then

1 The cost to go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position,
starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:
At time t, Vt+1 gives the cost of the future. Dynamic

Programming is a time decomposition method.

V. Leclère Dynamic Programming 15/12/2020 25 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming Principle

Assume that the noises ξt are time-independent and exogeneous.
The Bellman’s equation writes





VT (x) = K (x)

V̂t(x , ξ) = min
y∈Xt(x ,ξ)

ct(x , y , ξt+1) + Vt+1(y)

Vt(x) = E
[
V̂t(x , ξt+1)

]

An optimal state trajectory is obtained by x t+1 = ψV
t

(
x t

)
, with

ψV
t (x , ξ) ∈ arg min

y∈Xt(x ,ξ)
ct(x , y , ξ)︸ ︷︷ ︸
current cost

+ Vt+1(y)︸ ︷︷ ︸
future costs

,

V. Leclère Dynamic Programming 15/12/2020 26 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Interpretation of Bellman Value Function

The Bellman’s value function Vt0 (x) can be interpreted as the value of
the problem starting at time t0 from the state x .
More precisely we have

Vt0 (x) = min E
[ T−1∑

t=t0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]

s.t. x t+1 = ft(x t ,ut , ξt+1), x t0 = x

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)

or

min
ψ

E
[ T−1∑

t=t0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), xt0 = x

x t+1 = ψt(x t)

V. Leclère Dynamic Programming 15/12/2020 27 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 27 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Optimization Problem

Recall that we want to solve the following optimization problem

min
ψ

E
[ T−1∑

t=0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), x0 = ξ0

x t+1 = ψt(x t)

With Bellman’s equation reading





VT (x) = K (x)

V̂t(x , ξ) = min
y∈Xt(x ,ξ)

ct(x , y , ξ) + Vt+1(y)

Vt(x) = E
[
V̂t(x , ξt+1)

]

V. Leclère Dynamic Programming 15/12/2020 28 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Bellman operator

For any time t, and any function R mapping the set of states and noises
X× Ξ into R, we define




B̂t(R)(x , ξ) := min

y∈Xt(x,ξ)
ct(x , y , ξ) + R(y)

Bt(R)(x) := E
(
B̂t(R)(x , ξt+1)

)

Thus the Bellman equation simply reads

{
VT = K
Vt = Bt(Vt+1)

Further, any estimation R of the value functions yields an admissible
trajectory given by

ψR
t (x , ξ) ∈ arg min

y∈X (x,ξ)

ct(x , y , ξ) + R t+1(y)

optimal if Rt = Vt .

V. Leclère Dynamic Programming 15/12/2020 29 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Properties of the Bellman operator

Assume that ξt are finitely supported

Monotonicity:
R ≤ R ⇒ Bt

(
R
)
≤ Bt

(
R
)

Convexity: if ct is jointly convex in (x , y) for all ξ, R is convex,
gr(Xt) is convex then

x 7→ Bt
(
R
)
(x) is convex

Polyhedrality: for any polyhedral function R,
if ct is also polyhedral for all ξ, and gr(Xt) is polyhedral, then

x 7→ Bt
(
R
)
(x) is polyhedral

V. Leclère Dynamic Programming 15/12/2020 30 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Computing upper bounds

In the convex case we can compute exact upper-bound on the
value of the stochastic optimization problem.

For all t ≤ T , select points {xnt }n≤N in Xt .

For t = T , define vnT = K (xnt ).

Iteratively backward for t = T ..1 :

V̄t(x) := min
α∈∆n

{∑N
n=1 α

nvn
t

∣∣∣
∑N

n=1 α
nxnt = x

}

where ∆n =
{
α ∈ Rn | ∑n αn = 1, αn ≥ 0

}
.

Compute vn
t−1 = Bt−1(V̄t)(xnt−1)

For all t, V̄t ≥ Vt , and in particular B0

(
V̄1

)
(x0) is an upper

bound on the value of our problem.

V. Leclère Dynamic Programming 15/12/2020 31 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 31 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ Xt do
for ξ ∈ Ξt do

V̂t(x , ξ) =∞;
for y ∈ Xt(x , ξ) do

vy = ct(x , y , ξ) + Vt+1(y);

if vy < V̂t(x , ξ) then

V̂t(x , ξ) = vy ;
ψt(x , ξ) = y ;

Vt(x) = Vt(x) + P(ξ)V̂t(x , ξ)

Algorithm 1: Classical stochastic dynamic programming algo-
rithm

V. Leclère Dynamic Programming 15/12/2020 32 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

3 curses of dimensionality

Complexity = O(T × |Xt | × |Xt | × |Ξt |)
Linear in the number of time steps, but we have 3 curses of
dimensionality :

1 State. Complexity is exponential in the dimension of Xt

e.g. 3 independent states each taking 10 values leads to a
loop over 1000 points.

2 Decision. Complexity is exponential in the dimension of Xt .
 due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of
Ξt .
 due to expectation computation. Can be accelerated
through Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.

V. Leclère Dynamic Programming 15/12/2020 33 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Illustrating dynamic programming with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart

V. Leclère Dynamic Programming 15/12/2020 34 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with
52 timesteps (common in energy management) plus 5 controls and
5 independent noises.

1 We discretize each state’s dimension in 100 values:
|Xt | = 1005 = 1010

2 We discretize each control’s dimension in 100 values:
|Ut | = 1005 = 1010

3 We use optimal quantization to discretize the noises’ space in
10 values: |Ξt | = 10

Number of flops: O(52× 1010 × 1010 × 10) ≈ O(1023).
In the TOP500, the best computer computes 1017 flops/s.
Even with the most powerful computer, it takes at least 12 days to
solve this problem.

V. Leclère Dynamic Programming 15/12/2020 35 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Contents

1 Multistage stochastic programming
From two-stage to multistage programming
Information structure
Bounds and heuristics

2 Dynamic Programming
Stochastic optimal control problem
Dynamic Programming principle
Bellman Operators

3 Practical aspects of Dynamic Programming
Curses of dimensionality
Numerical techniques

V. Leclère Dynamic Programming 15/12/2020 35 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Computing a decision online

Algorithm: Offline value functions precomputation + Online open loop
reoptimization

Offline: We produce value functions with Bellman equation:

Vt(x) = E
[

min
y∈Xt(x,ξt+1)

ct(x , y , ξt+1) + Vt+1(y)
]

Online: At time t, knowing xt and ξt+1 we plug the computed value
function Vt+1 as future cost

xt+1 ∈ arg min
y∈Xt(xt ,ξt+1)

ct(xt , y , ξt+1) + Vt+1(y)

This can be extended to approximate value function Ṽt computed in any
way.

V. Leclère Dynamic Programming 15/12/2020 36 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming : Discretization-Interpolation

When the state space is continuous, the DP equation holds :

Vt(x) = E
[

min
y∈Xt(x ,ξt+1)

ct(x , y , ξt+1) + Vt+1(y)
]
.

But computation is impractical in a continuous space.
Simplest solution : discretization and interpolation.

We choose a finite set XD
t ⊂ Xt where we will compute (an

approximation of) the Bellman value Vt .

We approximate the Bellman value at time t by interpolating
these value.

V. Leclère Dynamic Programming 15/12/2020 37 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming : Discretization-Interpolation

Data: Problem parameters, discretization,
one-stage solver, interpolation operator;

Result: approximation of optimal value;
ṼT ≡ K ;
for t : T − 1→ 0 do

for x ∈ XD
t do

Ṽt(x) := E
[

min
y∈Xt(x ,ξt+1)

ct(x , y , ξt+1) + Ṽt+1(y)
]
;

Define Ṽt by interpolating {Ṽt(x) | x ∈ XD
t };

Algorithm 2: Dynamic Programming Algorithm (Continuous)

V. Leclère Dynamic Programming 15/12/2020 38 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Independence of noises

The Dynamic Programming equation requires only the
time-independence of noises.

This can be relaxed if we consider an extended state.

Consider a dynamic system driven by an equation

y t+1 = ft(y t ,ut , εt+1)

where the random noise εt is an AR-1 process :

εt = αtεt−1 + βt + ξt ,

{ξt}t∈Z being independent.

Then y t is called the physical state of the system and DP can
be used with the information state x t = (y t , εt).

Generically speaking, if the noise ξt is exogeneous (not
affected by decisions ut), then we can always apply Dynamic
Programming with the state (x t , ξ1, . . . , ξt).

V. Leclère Dynamic Programming 15/12/2020 39 / 41

Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

State augmentation limits

Because of the curse of dimensionality it might be impossible to
take into account correlation by augmenting the state variable.

Practitioners often ignore noise dependence for the value functions
computation but use dependence information during online
reoptimization.

V. Leclère Dynamic Programming 15/12/2020 40 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Conclusion

Multistage stochastic programming fails to handle large
number of timesteps.

Dynamic Programming overcomes this difficulty while
compressing information inside a state x .

Dynamic Programming computes backward a set of value
functions

{
Vt

}
, corresponding to the optimal cost of being at

a given position at time t.

Numerically, DP is limited by the curse of dimensionality and
its performance are deeply related to the discretization of the
look-up table used.

Other methods exist to compute the value functions without
look-up table (Approximate Dynamic Programming, SDDP).

V. Leclère Dynamic Programming 15/12/2020 41 / 41

Independence of noises: AR-1 case

Consider a dynamic system driven by an equation
y t+1 = ft(y t ,ut , εt+1) where the random noise εt is an AR-1
process : εt = αtεt−1 + βt + ξt+1, {ξt}t∈Z being
independent.

Define the information state x t = (y t , εt).

Then we have

x t+1 =

(
ft(y t ,ut , αtεt + βt + ξt+1)

αtεt + βt + ξt+1

)
= f̃t(x t ,ut , ξt+1)

And we have the following DP equation

Vt(
y
ε ) = min

u∈Ut(x)
E
[
Lt(y , u, αtε+ βt + ξt+1︸ ︷︷ ︸

”εt+1”

)+Vt+1◦f̃t
(
x , u, ξt+1

)
︸ ︷︷ ︸

”x t+1”

]

V. Leclère Dynamic Programming 15/12/2020 42 / 41

DP on a Markov Chain

Sometimes it is easier to represent a problem as a controlled
Markov Chain

Dynamic Programming equation can be computed directly,
without expliciting the control.

Let’s work out an example...

V. Leclère Dynamic Programming 15/12/2020 43 / 41

Controlled Markov Chain

A controlled Markov Chain is controlled stochastic dynamic
system with independent noise (w t)t∈Z, where the dynamic
and the noise are left unexplicited.

What is given is the transition probability

πut (x , y) := P
(
x t+1 = y | x t = x ,ut = u

)
.

In this case the cost are given as a function of the current
stage, the next stage and the control.

The Dynamic Programming Equation then reads (assume
finite state)

Vt(x) = min
u

∑

y∈Xt+1

πut (x , y)
[
Lut (x , y) + Vt+1(y)

]
.

V. Leclère Dynamic Programming 15/12/2020 44 / 41



Example

Consider a machine that has two states : running (R) and broken
(B). If it is broken we need to fix it (F) for a cost of 100. If it is
running there are two choices: maintaining it (M), or not
maintaining (N). If we maintain, the cost is 25 and the machine
stay running with probability πM(R,R) = 1; if we do not maintain
there is a probability of πN(R,B) = 0.5 of breaking it (or keep it
running). We need to have it running for 3 periods.

V. Leclère Dynamic Programming 15/12/2020 45 / 41

Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 50, 0 + (50 + 125)/2
}

75 min
{

25 + 25, 0 + (25 + 100)/2
}

50 min
{

25 + 0, 0 + (0 + 100)/2
}

25 min
{

25 + 0, 0 + (0 + 0)/2
}

0 0
B 100 + 50150 100 + 25125 100 + 0100 100 + 0100 0

V. Leclère Dynamic Programming 15/12/2020 46 / 41



Lagrangian decomposition L-Shaped decomposition method Multistage program

Stochastic Optimization
Decomposition Methods for Two-stage problems

V. Leclère

January 5th 2022

Vincent Leclère OS - 5 05/01/2022 1 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Presentation Outline

1 Lagrangian decomposition

2 L-Shaped decomposition method

3 Multistage program

Vincent Leclère OS - 5 05/01/2022 1 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Two-stage Problem
The extensive formulation of

min
u0,u1

E
[
L(u0, ξ,u1)

]

s.t. g(u0, ξ,u1) ≤ 0, P− a.s
σ(u1) ⊂ σ(ξ)

is

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(u0, ξ

s , us
1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1, SK.

It is a deterministic problem that can be solved with standard tools
or specific methods.

Vincent Leclère OS - 5 05/01/2022 2 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Splitting variables
The extended Formulation (in a compact formulation)

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1,SK.

Can be written in a splitted formulation

min
ū0{us

0,us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1,SK

us
0 = us′

0 ∀s, s ′

Vincent Leclère OS - 5 05/01/2022 3 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Splitting variables
The extended Formulation (in a compact formulation)

min
u0,{us

1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(u0, ξ
s , us

1) ≤ 0, ∀s ∈ J1,SK.

Can be written in a splitted formulation

min
ū0{us

0,us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1,SK

us
0 =

∑

s′
πs′us′

0 ∀s

Vincent Leclère OS - 5 05/01/2022 3 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Dualizing non-anticipativity constraint I

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1,SK

us
0 =

∑

s′

πs′ us′
0 ∀s

is equivalent to

min
{us

0,us
1}s∈J1,SK

max
{λs}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1) + πsλs
(

us
0 −

∑

s′

πs′ us′
0

)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

Vincent Leclère OS - 5 05/01/2022 4 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Dualizing non-anticipativity constraint I

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1,SK

us
0 =

∑

s′

πs′ us′
0 ∀s

is equivalent to

min
{us

0,us
1}s∈J1,SK

max
{λs}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

+
S∑

s=1
πsλsus

0 −
∑

s′

E
[
λ
]
πs′ us′

0

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

Vincent Leclère OS - 5 05/01/2022 4 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Dualizing non-anticipativity constraint I

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1,SK

us
0 =

∑

s′

πs′ us′
0 ∀s

is equivalent to

min
{us

0,us
1}s∈J1,SK

max
{λs}s∈J1,SK

S∑

s=1
πsL(us

0, ξ
s , us

1)

+
S∑

s=1
πs
(
λs − E

[
λ
])

us
0

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

Vincent Leclère OS - 5 05/01/2022 4 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Dualizing non-anticipativity constraint II
Thus, the dual problem reads

max
λ:E[λ]=0

min
{us

0,us
1}s∈J1,SK

S∑

s=1
πs
(

L(us
0, ξ

s , us
1) +

(
λs − E

[
λ
])

us
0
)

s.t g(us
0, ξ

s , us
1) ≤ 0, ∀s ∈ J1, SK

The inner minimization problem, for λ given, can decompose
scenario by scenario, by solving S deterministic problem

min
{us

0,us
1}

L(us
0, ξ

s , us
1) + λsus

0

s.t g(us
0, ξ

s , us
1) ≤ 0

Vincent Leclère OS - 5 05/01/2022 5 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Price of information

By weak duality, any λ such that E
[
λ
]

= 0 will give a lower
bound on the 2-stage problem, computed as

S∑

s=1
πs min

us
0,us

1

(
L(us

0, ξ
s , us

1) + λsus
0
)

s.t g(us
0, ξ

s , us
1) ≤ 0

λ = 0 lead to the anticipative lower-bound
If problem is convex, and under some qualification
assumptions, there exists an optimal λ∗, called the price of
information, such that the lower bound is tight.

Vincent Leclère OS - 5 05/01/2022 6 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Progressive Hedging Algorithm
The progressive hedging algorithm build on this decomposition in
the following way.

1 Set a price of information {λs}s∈J1,SK such that E
[
λ
]

= 0
2 For each scenario solve

min
us

0,us
1

L(us
0, ξ

s , us
1) + λsus

0+ρ‖us
0 − ū0‖2

s.t g(us
0, ξ

s , us
1) ≤ 0

3 Compute the mean first control ū0 := ∑S
s=1 π

sus
0

4 Update the price of information with

λs := λs + ρ(us
0 − ū0)

5 Go back to 2.
Vincent Leclère OS - 5 05/01/2022 7 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Convergence of Progressive Hedging

Theorem
Assume that L and g are convex lsc in (u0, u1) for all ξ, and that,
for all s ∈ S, there exists (us

0, us
1) such that L(us

0, ξ
s , us

1) < +∞
and g(us

0, ξ
s , us

1) < 0.
Then, the progressive hedging algorithm converges toward an
optimal primal solution, and the price of information converges
toward an optimal price of information.

Moreover we can show that

εk =
√
‖(uk

0 , uk
1 )− (u]0, u

]
1)‖2

2 + 1
ρ2 ‖λ− λ]‖2

2,

is a decreasing sequence.

Vincent Leclère OS - 5 05/01/2022 8 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Bounds in Progressive Hedging

At any iteration of the PH algorithm, we have a collection of
primal solution {(us

0, us
1)}s∈S , and a price of information

{λs}s∈S .
We have a lower bound on the value of the stochastic
programm given by

LBPH =
∑

s∈S
πs[L(us

0, ξ
s , us

1) + λsus
0
]
,

and an upper bound given by

UBPH =
∑

s∈S
πsL(ū0, ξ

s , us
1(u0)).

Vincent Leclère OS - 5 05/01/2022 9 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Presentation Outline

1 Lagrangian decomposition

2 L-Shaped decomposition method

3 Multistage program

Vincent Leclère OS - 5 05/01/2022 9 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Linear 2-stage stochastic program
Consider the following problem

min E
[
c>u0 + q>u1

]

s.t. Au0 = b, u0 ≥ 0
Tu0 + W u1 = h, u1 ≥ 0, P− a.s.
u0 ∈ Rn, σ(u1) ⊂ σ(q,T ,W ,h︸ ︷︷ ︸

ξ

)

Which we rewrite
min
u0≥0

c>u0 + E
[
Q(u0, ξ)

]

s.t. Au0 = b
with

Q(u0, ξ) := min
u1≥0

q>ξ u1

s.t. Wξu1 = hξ − Tξu0

Vincent Leclère OS - 5 05/01/2022 10 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Linear 2-stage stochastic program : Extensive Formulation
The associated extensive formulation read

min c>u0 +
S∑

s=1
πs qs · us

1

s.t. Au0 = b, u0 ≥ 0
T su0 + W sus

1 = hs , us
1 ≥ 0,∀s

Which we rewrite

min
u0

c>u0 +
S∑

s=1
πsQs(u0)

s.t. Au0 = b, u0 ≥ 0
with

Qs(u0) := min
u1≥0

qs · u1

s.t. W su1 = hs − T su0

Vincent Leclère OS - 5 05/01/2022 11 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Relatively complete recourse

We assume here relatively complete recourse. Without this
assumption we would need feasability cuts.
Here, relatively complete recourse means that, for u0 ≥ 0 :

Au0 = b =⇒ Qs(u0) < +∞, ∀s ∈ J1, SK

Vincent Leclère OS - 5 05/01/2022 12 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

min
u0,(θs )s∈S

c>u0 +
∑

s
πsθs

s.t. Au0 = b, u0 ≥ 0
θs ≥ Qs(u0)θs ≥ αs

k · u0 + βs
k ∀k, ∀s

Note that Qs(u0) is a polyhedral function of u0, hence
θs ≥ Qs(u0) can be rewritten θs ≥ αs

k · u0 + βs
k ,∀k.

The decomposition approach consists in constructing iteratively
cut coefficients αs

k and βs
k .

Vincent Leclère OS - 5 05/01/2022 13 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Obtaining (optimality) cuts I

Recall that

Qs(u0) := min
us

1∈Rn
qs · us

1

s.t. W sus
1 = hs − T su0, us

1 ≥ 0

can also be written (through strong duality by relatively complete
recourse assumption)

(Du0) Qs(u0) = max
λs∈Rm

λs · (hs − T su0
)

s.t. (W s)>λs ≤ qs

Vincent Leclère OS - 5 05/01/2022 14 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Obtaining (optimality) cuts II

(Du0) Qs(u0) = max
λs∈Rm

λs · (hs − T su0
)

s.t. (W s)>λs ≤ qs

admits for optimal solution λs
u0 .

Consider another control u′0, we have

(Du′
0
) Qs(u′0) = max

λs∈Rm
λs · (hs − T su′0

)

s.t. (W s)>λs ≤ qs

As λs
u0 is admissible for (Du0) it is also admissible for (Du′

0
), hence

Qs(u′0) ≥ λs
u0 ·

(
hs − T su′0

)
.

Vincent Leclère OS - 5 05/01/2022 15 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Obtaining (optimality) cuts III

To sum up we have seen that, for any admissible first stage
solution, we can construct an exact cut for Qs by solving the dual
of the second stage problem.

More precisely, let uk
0 ≥ 0 be such that Auk

0 = b. Let λs
k be an

optimal dual solution. Then, setting

αs
k := −(T s)>λs

k and βs
k := (λs

k)>hs

we have
{

Qs(u′0) ≥ αs
k · u′0 + βs

k ∀u′0 ≥ 0,Au′0 = b
Qs(uk

0 ) = αs
k · uk

0 + βs
k

Vincent Leclère OS - 5 05/01/2022 16 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

L-shaped method (multi-cut version)
1 We have a collection of K ×S cuts, such that Qs(u0) ≥ αs

k ·u0 +βs
k .

2 Solve the master problem, with optimal primal solution uK+1
0 .

min
u0≥0

c>u0 +
S∑

s=1
πsθs

s.t. Au0 = b
θs ≥ αs

ku0 + βs
k ∀k ∈ J1,KK, ∀s ∈ J1, SK

3 Solve S slave problems, with optimal dual solution λs
K+1

Qs(uK+1
0 ) = min

us
1∈Rn

qs · us
1

s.t. W sus
1 = hs − T suK+1

0 , us
1 ≥ 0

Qs(uK+1
0 ) = max

λs∈Rm
λs ·

(
hs − T suK+1

0
)

s.t. W s · λs ≤ qs

4 construct S new cuts with
αs

K+1 := −(T s)>λs
K+1, βs

K+1 := hs · λs
K+1

Vincent Leclère OS - 5 05/01/2022 17 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

L-shaped method (multi-cut version) : bounds

At any iteration of the L-shaped method we can easily determine
upper and lower bound over our problem.
Indeed, uK

0 is an admissible firt stage solution, and Qs(uK
0 ) is the

value of a slave problem. Thus the value of admissible solution uk
0 is

simply given by

UB = c>uK
0 +

S∑

s=1
πsQs(uK

0 ).

Furthermore, Qs
K (u0) ≥ maxk≤K αs

k · u0 + βs
k , thus the value of the

master problem is always a lower bound over the value of the SP
problem :

LB = c>uK
0 +

S∑

s=1
πsθs

K .

Vincent Leclère OS - 5 05/01/2022 18 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

L-shaped method (single-cut version)
1 We have a collection of K cuts, such that

Q(u0) :=
∑

s∈S Qs(u0) ≥ αk · u0 + βk .
2 Solve the master problem, with optimal primal solution uK+1

0 .
min
u0≥0

c>u0 + θ

s.t. Au0 = b
θ ≥ αku0 + βk ∀k ∈ J1,KK

3 Solve S slave dual problems, with optimal dual solution λs
K+1

max
λs∈Rm

λs ·
(
hs − T suK+1

0
)

s.t. W s · λs ≤ qs

4 construct new cut with

αK+1 := −
S∑

i=1
πs (T s)>λs , βK+1 :=

S∑

i=1
πs hs · λs .

Vincent Leclère OS - 5 05/01/2022 19 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Feasibility cuts

Without the relatively complete recourse assumption we cannot
guarantee that Q(u0) < +∞, however we still have that Q is
polyhedral, thus so is dom(Q).
Without RCR we need to add feasibility cuts in the following way:

If, Qs(uk
0 ) = +∞, then we can find an unbounded ray of the

dual problem

max
λs∈Rm

λs ·
(
hs − T suk

0
)

s.t. W s · λs ≤ qs

more precisely a vector λ̄k such that, for all t ≥ 0
W s · tλ̄k ≤ qs .
Then, for u0 to be admissible, we need that

λ̄k ·
(
hs − T su0

)
≤ 0

which is a feasibility cut.
Vincent Leclère OS - 5 05/01/2022 20 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Convergence

Theorem
In the linear case, the L-Shaped algorithm terminates in finitely
many steps, yielding the optimal solution.

The proof is done by noting that only finitely many cuts can be
added, and not being able to add a cut prove that the algorithm
has converged.

Vincent Leclère OS - 5 05/01/2022 21 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Comparison of Progressive Hedging and L-shaped

Progressive Hedging L-Shaped
problems convex continuous linear, 1st stage integer
sol. at it. k non-admissible splitted solutions admissible primal solution
Bounds LB free, UB easy LB and UB free
Convergence asymptotic finite
Complexity fixed : S deterministic problem increasing for master problem,

fixed for slave problem
Implem. easy from deterministic solver built from scratch

Vincent Leclère OS - 5 05/01/2022 22 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Presentation Outline

1 Lagrangian decomposition

2 L-Shaped decomposition method

3 Multistage program

Vincent Leclère OS - 5 05/01/2022 22 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Where do we come from: two-stage programming

u0

(ξ1
1 , p1)

u1,1

(ξ2
1 , p2)

u1,2

(ξ3
1 , p3)

u1,3

(ξ4
1 , p4)

u1,4

(ξ5
1 , p5) u1,5

(ξ6
1 , p6)

u1,6

(ξ7
1 , p7)

u1,7
(ξ8

1 , p8)

u1,8

We take decisions in two stages

u0 ; ξ1 ; u1 ,

with u1: recourse decision .

On a tree, it means
solving the extensive formulation:

min
u0,u1,s

c0u0 +
∑

s∈S
ps
[〈

cs , u1,s
〉]
.

Vincent Leclère OS - 5 05/01/2022 23 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Extending two-stage to multistage programming

u0

(ξ1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(ξ2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(ξ3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(ξ4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2

We want to minimize minu E
[
c(u, ξ)

]

Where we take decisions in T stages

u0 ; ξ1 ; u1 ; · · ·; ξT ; uT .

It can be represented on a tree T , where a
node n of depth t represent a realisation
of (ξ1, . . . , ξt), and to which is attached a
probability pn.
Then, the extensive formulation reads

min
{un}n∈T

∑

n∈T
pncn(un)

Vincent Leclère OS - 5 05/01/2022 24 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Compact and splitted extended formulation

Consider a tree of depth T . A scenario s = (n1, . . . , nT ) is a
sequence of node, where each element is a descendent of the
previous one. A scenario s ∈ S is uniquely defined by its last
element, which is a leaf of the tree.
Let πs be the probability of the leaf defining scenario s.
The compact formulation of the multistage problem reads

min
{un}n∈T

∑

n∈T
πncn(un) =

∑

s∈S
πs
∑

n∈S
cn(un)

The splitted extended formulation reads

min
{us,t}s∈S,t∈J0,TK

∑

s∈S
πs

T∑

t=0
cs,t(us,t)

s.t. us,t = us′,t ∀t,∀n ∈ Nt ,∀s, s ′ 3 n
where Nt is the set of nodes of depth t

Vincent Leclère OS - 5 05/01/2022 25 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Introducing the non-anticipativity constraint

We do not know what holds behind the door.

Non-anticipativity
At time t, decisions are taken sequentially, only knowing the past
realizations of the perturbations.

Mathematically, this is equivalent to say that at time t,
the decision ut is

1 a function of past noises
ut = πt(ξ0, · · · , ξt) ,

2 taken knowing the available information,
σ(ut) ⊂ σ(ξ0, · · · , ξt) .

Vincent Leclère OS - 5 05/01/2022 26 / 29



Lagrangian decomposition L-Shaped decomposition method Multistage program

Multistage extensive formulation approach

u0

(ξ1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(ξ2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(ξ3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(ξ4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2

Assume that ξt ∈ Rnξ can take nξ values
and that Ut(x) can take nu values.
Then, considering the extensive formulation
approach, we have

nT
ξ scenarios.

(nT +1
ξ − 1)/(nξ − 1) nodes in the tree.

Number of variables in the optimization
problem is roughly
nu × (nT +1

ξ − 1)/(nξ − 1) ≈ nunT
ξ .

The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!

Vincent Leclère OS - 5 05/01/2022 27 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

Illustrating extensive formulation with the damsvalley
example

5 interconnected dams
5 controls per timesteps
52 timesteps (one per week, over one
year)
nξ = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.

Vincent Leclère OS - 5 05/01/2022 28 / 29

Lagrangian decomposition L-Shaped decomposition method Multistage program

2-stage approach
The 2-stage approach consists in approximating the multistage program
by a two-stage programm :

relax all non-anticipativity constraints except the ones on u0, this
turn the tree into a scenario fan (same number of scenario),
it means that all decision (u1, . . . , uT−1) are anticipative (not u0).
reduce the number of scenarios by sampling, and solve the SAA
approximation of the 2-stage relaxation.

Denote v ] the value of the multistage problem, v 2SA the value of the
2-stage relaxation, and v 2SA

m the (random) value of the SAA of the
2-stage relaxation. Then we have

v 2SA ≤ v ]

v 2SA
m → v 2SA

E
[
v 2SA

m
]
≤ v 2SA

Vincent Leclère OS - 5 05/01/2022 29 / 29



Kelley’s algorithm Deterministic case Stochastic case Conclusion

An Introduction to
Stochastic Dual Dynamic Programming (SDDP).

V. Leclère (CERMICS, ENPC)

12/01/2022

V. Leclère Introduction to SDDP 12/01/2022 1 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Introduction

Large scale stochastic optimization problems are hard to solve

Different ways of attacking such problems:

decompose the problem and coordinate solutions
construct easily solvable approximations (Linear Programming)
find approximate value functions or policies

Behind the name SDDP, Stochastic Dual Dynamic
Programming, one finds three different things:

a class of algorithms,
based on specific mathematical assumptions
a specific implementation of an algorithm
a software implementing this method,
and developed by the PSR company

V. Leclère Introduction to SDDP 12/01/2022 2 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Setting

Multi-stage stochastic optimization problems with finite
horizon.

Continuous, finite dimensional state and control.

Convex cost, linear dynamic.

Discrete, stagewise independent noises.

V. Leclère Introduction to SDDP 12/01/2022 3 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 4 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

J(x)

V. Leclère Introduction to SDDP 12/01/2022 5 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Kelley algorithm

Data: Convex objective function J, Compact set X , Initial
point x0 ∈ X

Result: Admissible solution x (k), lower-bound v (k)

Set J(0) ≡ −∞ ;
for k ∈ N do

Compute a subgradient α(k) ∈ ∂J(x (k)) ;

Define a cut C(k) : x 7→ J(x (k)) + 〈α(k), x − x (k)〉;
Update the lower approximation J(k+1) = max{J(k), C(k)} ;

Solve (P(k)) : min
x∈X

J(k+1)(x);

Set v (k) = val(P(k));

Select x (k+1) ∈ sol(P(k));

end
Algorithm 1: Kelley’s cutting plane algorithm

V. Leclère Introduction to SDDP 12/01/2022 6 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 6 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Problem considered

We consider an optimal control problem in discrete time
with finite horizon T

min
x∈RnT

T−1∑

t=0

ct(xt , xt+1) + K (xT )

s.t. (xt , xt+1) ∈ Pt , x0 given

xt ∈ Xt

We assume that Pt ⊂ Rn × Xt+1 is convex, and Xt convex compact

the transition costs ct(xt , xt+1) and the final cost K (xT ) are convex

For example, xt follow a dynamic xt+1 = ft(xt , ut), with

ft affine, ut ∈ Ut(xt) is convex compact

ct(xt , xt+1) = min
{
Lt(xt , ut) | ut ∈ Ut(xt), ft(xt , ut) = xt+1

}
,

where Lt is a convex instantaneous cost function

V. Leclère Introduction to SDDP 12/01/2022 7 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 7 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Introducing Bellman’s function

We look for solutions as policies, where a policy is a sequence of
functions π = (π1, . . . , πT−1) giving for any state x a control u
This problem can be solved by dynamic programming,
thanks to the Bellman function that satisfies





VT (x) = K (x),

Ṽt(x) = min
y :(x,y)∈Pt

{
ct(x , y) + Vt+1(y)

}

Vt = Ṽt + IXt

Indeed, an optimal policy for the original problem is given by

πt(x) ∈ arg min
xt+1

{
ct(x , xt+1) + Vt+1(xt+1)

∣∣ (xt , xt+1) ∈ Pt

}

V. Leclère Introduction to SDDP 12/01/2022 8 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Introducing Bellman’s operator

We define the Bellman operator

Bt(A) : x 7→ min
y :(x ,y)∈Pt

{
ct(x , y) + A(y)

}

With this notation, the Bellman Equation reads

{
VT = K ,
Vt = Bt(Vt+1) + IXt

Any approximate cost function V̆t+1 induce an admissible policy

π
V̆t+1
t : x 7→ arg minBt

(
V̆t+1

)
(x).

By Dynamic Programming, π
Vt+1
t is optimal.

V. Leclère Introduction to SDDP 12/01/2022 9 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Properties of the Bellman operator

Monotonicity:

V ≤ V ⇒ Bt
(
V
)
≤ Bt

(
V
)

Convexity: if ct is jointly convex, P and X are closed convex,
V is convex then

x 7→ Bt
(
V
)
(x) is convex

Polyhedrality: for any polyhedral function V ,
if ct is also polyhedral, and Pt and Xt are polyhedron, then

x 7→ Bt
(
V
)
(x) is polyhedral

V. Leclère Introduction to SDDP 12/01/2022 10 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Duality property

Consider J : X× U→ R jointly convex, and define

ϕ(x) = min
u∈U

J(x , u)

Then we can obtain a subgradient α ∈ ∂ϕ(x0)
as the dual multiplier of

min
x ,u

J(x , u),

s.t. x0 − x = 0 [α]

(This is the marginal interpretation of the multiplier)

In particular, we have that

ϕ(·) ≥ ϕ(x0) + 〈α, · − x0〉

V. Leclère Introduction to SDDP 12/01/2022 11 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 11 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

General idea

The SDDP algorithm recursively constructs
an approximation of each Bellman function Vt

as the supremum of affine functions

At stage k , we have a lower approximation V
(k)
t of Vt

and we want to construct a better approximation

We follow an optimal trajectory (x
(k)
t )t of the approximated

problem, and add a so-called “cut” to improve each Bellman
function

V. Leclère Introduction to SDDP 12/01/2022 12 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Deterministic SDDP

V0

x

t=0

V1

x

t=1

K

x

t=2

Final Cost V2 = K
Real Bellman function V1 = B1(V2)
Real Bellman function V0 = B0(V1)

V. Leclère Introduction to SDDP 12/01/2022 13 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Deterministic SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x2
2

x

t=2

Assume that we have lower polyhedral approximations of Vt

We apply π
V

(2)
1

0 to x0 and obtain x
(2)
1

We apply π
V

(2)
1

1 to x
(2)
1 and obtain x

(2)
2

V. Leclère Introduction to SDDP 12/01/2022 13 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Deterministic SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x2
2

x

t=2

Compute a cut for K at x
(2)
2

Add the cut to V
(2)
2 which gives V

(3)
2

A new lower approximation of V1 is B1(V
(3)
2 )

We only compute the face active at x
(2)
1

V. Leclère Introduction to SDDP 12/01/2022 13 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

DDP description

Data: Starting point, initial lower approximation
Result: optimal trajectory and value function;
VT ≡ K ;
for k = 1, 2, . . . do

set x
(k)
0 = x0

/* Forward pass : compute trajectory */

for t = 0, . . . ,T − 1 do

find x
(k)
t+1 ∈ arg minBt(V (k)

t+1)(x
(k)
t ) ;

end
/* Backward pass : update cuts */

for t = T − 1, . . . , 0 do

Solve Bt(V (k+1)
t+1 )(x

(k)
t ) to compute C(k+1)

t ;

Update lower approximations : V
(k+1)
t := max{V (k)

t , C(k+1)
t };

end

end
Algorithm 2: Deterministic Dual Dynamic Programming

V. Leclère Introduction to SDDP 12/01/2022 14 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Detailing forward pass

From t = 0 to t = T − 1 we have to solve T one-stage problem of
the form

x
(k)
t+1 ∈ arg min

y
ct(x

(k)
t , y) + V

(k)
t+1(y)

(x
(k)
t , y) ∈ Pt

We only need to keep the trajectory (x
(k)
t )t∈J0,TK.

V. Leclère Introduction to SDDP 12/01/2022 15 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Detailing Backward pass

From t = T − 1 to t = 0 we have to solve T one-stage problem of
the form

θ
(k+1)
t = min

x,y
ct(x , y) + V

(k+1)
t+1 (y)

(x , y) ∈ Pt

x = x
(k)
t [α

(k+1)
t ]

By construction, we have that

θ
(k+1)
t = Bt

(
V

(k+1)
t+1

)(
x

(k)
t

)
, α

(k+1)
t ∈ ∂Bt

(
V

(k+1)
t+1

)(
x

(k)
t

)
.

Which means

C(k+1)
t := θ

(k+1)
t +〈α(k+1)

t , ·−x (k)
t 〉 ≤ Bt

(
V

(k+1)
t+1

)
≤ Bt

(
Vt+1

)
= Ṽt ≤ Vt

V. Leclère Introduction to SDDP 12/01/2022 16 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 16 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Initialization and stopping rule

To initialize the algorithm, we need a lower bound V
(0)
t for

each value function Vt . This lower bound can be computed
backward by arbitrarily choosing a point xt and using the
standard cut computation.

At any step k we have an admissible, non optimal trajectory

(x
(k)
t )t , with

an upper bound

T−1∑

t=0

ct
(
x

(k)
t , x

(k)
t+1

)
+ K

(
x

(k)
T

)

a lower bound V
(k)
0 (x0)

A reasonable stopping rule for the algorithm is given by
checking that the (relative) difference between the upper and
lower bounds is small enough

V. Leclère Introduction to SDDP 12/01/2022 17 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 17 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Extended Relatively Complete Recourse

We say that we are in a relatively complete recourse framework if

∀t, ∀xt ∈ Xt , ∃xt+1 ∈ Xt+1 such that (xt , xt+1) ∈ Pt .

We say that we are in a extended relatively complete recourse
framework if there exists ε > 0 such that

∀t, ∀xt ∈ Xt + εB, ∃xt+1 ∈ Xt+1 such that (xt , xt+1) ∈ Pt .

RCR is required for the algorithm to run (otherwise we could find
non-finite problems, and would require some feasability cuts
mechanisms).

ERCR is required for the convergence proof as the way of ensuring
that the multipliers αk

t remains bounded.

V. Leclère Introduction to SDDP 12/01/2022 18 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Technical lemmas

Lemma

Let f : X → R where X is compact. Let (f k)k∈N be a sequence of
functions such that

f k ≤ f k+1 ≤ f

f k are Lipschitz continuous uniformly in k

Consider a sequence (xk)k∈N of points of X such that
f (xk)− f k+1(xk)→ 0. Then, we also have f (xk)− f k(xk)→ 0.

Lemma

Under convexity assumptions, compactness of Xt , and ERCR the SDDP
algorithm is well defined and

i) for all t, Vt is convex and Lipschitz

ii) for all t, k, and x ∈ Xt , V
k
t ≤ Vt

iii) There exists L > 0 such that ‖αk
t ‖ ≤ L, thus V k

t is L-Lipschitz
V. Leclère Introduction to SDDP 12/01/2022 19 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Convergence result

Theorem

Let K and ct be convex functions, Xt and Pt be closed convex
sets, and Xt bounded. Assume that we have extended relatively
complete recourse. Then, for every t, we have

lim
k

V
(k)
t (x

(k)
t )− Vt(x

(k)
t ) = 0.

Further, the cost associated to πV
(k)
t converges toward the optimal

value of the problem.
In other words, the upper and lower bounds are both converging.

V. Leclère Introduction to SDDP 12/01/2022 20 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 20 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

What’s new ?

Now we introduce random variables ξt in our problem,
which complexifies the algorithm in different ways:

we need some probabilistic assumptions

for each stage k we need to do a forward phase, for each
sequence of realizations of the random variables, that yields a

trajectory (x
(k)
t )t , and a backward phase that gives a new cut

we cannot compute an exact upper bound for the problem
value

V. Leclère Introduction to SDDP 12/01/2022 21 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Problem statement

We consider the optimization problem

min E
[ T−1∑

t=0

ct(x t , x t+1, ξt+1) + K (xT )
]

s.t. (x t , x t+1) ∈ Pt(ξt+1)

x t ∈ Xt , x0 = x0

x t � σ(ξ1, . . . , ξt)

under the crucial assumption that (ξt)t∈{1,··· ,T} is a white noise

 we are in an hazard-decision framework.

V. Leclère Introduction to SDDP 12/01/2022 22 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by dynamic
programming, where the Bellman functions satisfy





VT = K

V̂t(x , ξ) = min
(x,y)∈Pt(ξ)

ct(x , y , ξ) + Vt+1(y)

Ṽt(x) = E
[
V̂t(x , ξt)

]

Vt = Ṽt + IXt

Indeed, an optimal policy for this problem is given by

πt(x , ξ) ∈ arg min
(x,y)∈Pt(ξ)

{
ct(x , y , ξ) + Vt+1(y)

}

V. Leclère Introduction to SDDP 12/01/2022 23 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Bellman operator

For any time t, and any function A mapping the set of states and noises
X× Ξ into R, we define




B̂t(A)(x , ξ) := min

(x,y)∈Pt(ξ)
ct(x , y , ξ) + A(y)

Bt(A)(x) := E
[
B̂t(A)(x , ξt)

]

Thus the Bellman equation simply reads





VT = K
Vt = Bt(Vt+1)︸ ︷︷ ︸

Ṽt

+IXt

The Bellman operators have the same properties as in the deterministic

case

V. Leclère Introduction to SDDP 12/01/2022 24 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 24 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Computing cuts (1/2)

Suppose that we have V
(k+1)
t+1 ≤ Vt+1

θ̂
(k+1)
t (ξ) = min

x,y
ct(x , y , ξ) + V

(k+1)
t+1 (y)

s.t x = x
(k)
t [α̂

(k+1)
t (ξ)]

(x , y) ∈ Pt(ξ)

This can also be written as

θ̂
(k+1)
t (ξ) = B̂t

[
V

(k+1)
t+1

]
(x , ξ)

α̂
(k+1)
t (ξ) ∈ ∂x B̂t

[
V

(k+1)
t+1

]
(x , ξ)

Thus, for all ξ, Ĉ(k+1),ξ
t : x 7→ θ̂

(k+1)
t (ξ) +

〈
α̂

(k+1)
t (ξ), x − x

(k)
t

〉
satisfy

Ĉ(k+1),ξ
t (x) ≤ B̂t

[
V

(k+1)
t+1

]
(x , ξ) ≤ B̂t

[
Vt+1

]
(x , ξ) = V̂t(x , ξ)

V. Leclère Introduction to SDDP 12/01/2022 25 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Computing cuts (2/2)

Thus, we have an affine minorant of V̂t(x , ξt) for each realization of ξt
Replacing ξ by the random variable ξt and taking the expectation yields
the following affine minorant

C(k+1) := θ
(k+1)
t +

〈
α

(k+1)
t , · − x

(k)
t

〉
≤ Vt

where





θ
(k+1)
t := E

[
θ̂

(k+1)
t (ξt)

]
= Bt

[
V

(k)
t+1

]
(x)

α
(k+1)
t := E

[
α̂

(k+1)
t (ξt)

]
∈ ∂Bt

[
V

(k)
t+1

]
(x)

V. Leclère Introduction to SDDP 12/01/2022 26 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 26 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x

t=0

V1

x

t=1

K

x

t=2

Final Cost V2 = K
Real Bellman function V1 = B1(V2)
Real Bellman function V0 = B0(V1)

V. Leclère Introduction to SDDP 12/01/2022 27 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x2
2

x

t=2

Apply π
V

(2)
1

0 to x0 and obtain X (2)
1

Draw a random realisation x
(2)
1 of X (2)

1

We apply π
V

(2)
1

1 to x
(2)
1 and obtain X (2)

2

Draw a random realisation x
(2)
2 of X (2)

2

V. Leclère Introduction to SDDP 12/01/2022 27 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x2
2

x

t=2

Compute a cut for K at x
(2)
2

Add the cut to V
(2)
2 which gives V

(3)
2

A new lower approximation of V1 is B1(V
(3)
2 )

Compute the face active at x
(2)
1

V. Leclère Introduction to SDDP 12/01/2022 27 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

SDDP description

for k = 1, 2, . . . do

set V
(k+1)
T ≡ K ; x

(k)
0 = x0 ;

draw (ξ
(k)
t )t∈J1,TK ;

/* Forward pass : compute trajectory */

for t = 0, . . . ,T − 1 do

find x
(k)
t+1 ∈ arg min B̂t(V (k)

t+1)(x
(k)
t , ξ

(k)
t ) ;

end
/* Backward pass : update cuts */

for t = T − 1, . . . , 0 do
for ξ ∈ Ξt do

Solve B̂t(V (k+1)
t+1 )(x

(k)
t , ξ) to compute Ĉ(k+1),ξ

t ;
end

end

Compute averaged cut : C(k+1)
t ;

Update lower approximation : V
(k+1)
t := max{V (k)

t , C(k+1)
t };

end
Algorithm 3: Stochastic Dual Dynamic Programming

V. Leclère Introduction to SDDP 12/01/2022 28 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Detailing forward pass

From t = 0 to t = T − 1 we have to solve T one-stage problem of
the form

x
(k)
t+1 ∈ arg min

y
ct(x

(k)
t , y , ξ

(k)
t ) + V

(k)
t+1(y)

(x
(k)
t , y) ∈ Pt

We only need to keep the trajectory (x
(k)
t )t∈J0,TK.

V. Leclère Introduction to SDDP 12/01/2022 29 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Detailing Backward pass

For each t = T − 1→ 0 we solve Ξt one-stage problem

θ̂
(k+1)
t (ξ) = min

y
ct(x

(k)
t , y , ξ) + V

(k+1)
t+1 (y)

(x
(k)
t , y) ∈ Pt

x = x
(k)
t [α̂

(k+1)
t (ξ)]

By construction, we have that

θ̂
(k+1)
t (ξ) = Bt

(
V

(k)
t+1

)(
x

(k)
t , ξ

)
, α̂

(k+1)
t (ξ) ∈ ∂Bt

(
V

(k)
t+1

)(
x

(k)
t , ξ

)
.

We average the coefficients

θ
(k+1)
t = E

[
θ̂

(k+1)
t (ξ)

]
, α

(k+1)
t = E

[
α̂

(k+1)
t (ξ)

]

Which means

C(k+1)
t := θ

(k+1)
t +〈α(k+1)

t , ·−x (k)
t 〉 ≤ Bt

(
V

(k+1)
t+1

)
≤ Bt

(
Vt+1

)
= Ṽt ≤ Vt

V. Leclère Introduction to SDDP 12/01/2022 30 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Recall on CLT

Let {Ci}i∈N be a sequence of identically distributed random
variables with finite variance.

Then the Central Limit Theorem ensures that

√
n
(∑n

i=1 C i

n
− E[C 1]

)
=⇒ G ∼ N (0,Var [C 1]) ,

where the convergence is in law.

In practice it is often used in the following way.
Asymptotically,

P
(
E
[
C1

]
∈
[
C̄n −

1.96σn√
n

, C̄n +
1.96σn√

n

])
' 95% ,

where C̄n =
∑n

i=1 C i

n is the empirical mean and

σn =

√∑n
i=1(C i−C̄n)2

n−1 the empirical standard deviation.

V. Leclère Introduction to SDDP 12/01/2022 31 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Bounds

Exact lower bound on the value of the problem: V
(k)
0 (x0).

Exact upper bound on the value of the problem:

E
[ T−1∑

t=0

ct(x
(k)
t , x (k)

t+1, ξt+1) + K (XT )
]

where X (k)
t is the trajectory induced by V

(k)
t .

This bound cannot be computed exactly,
but can be estimated by Monte-Carlo method as follows

Draw N scenarios
{
ξn1 , . . . , ξ

n
T

}
.

Simulate the corresponding N trajectories x
(k),n
t ,

and the total cost for each trajectory C (k),n.
Compute the empirical mean C̄ (k),N and standard dev. σ(k),N .
Then, with confidence 95% the upper bound on the problem is
[
C̄ (k),N − 1.96σ(k),N

√
N

, C̄ (k),N +
1.96σ(k),N

√
N︸ ︷︷ ︸

UBk

]

V. Leclère Introduction to SDDP 12/01/2022 32 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Stopping rule

One stopping test consist in fixing an a priori relative gap ε,
and stopping if

UBk − V
(k)
0 (x0)

V
(k)
0 (x0)

≤ ε

in which case we know that the solution is ε-optimal with
probability 97.5%.

It is not necessary to evaluate the gap at each iteration.

To alleviate the computational load, we can estimate the
upper bound by using the trajectories of the recent forward
phases.

Another more practical stopping rule consists in stopping after
a given number of iterations or fixed computation time.

V. Leclère Introduction to SDDP 12/01/2022 33 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 33 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Non-independent inflows

In most cases the stagewise independence assumption is not
realistic.

One classical way of modelling dependencies consists in
considering that the inflows It follow an AR-k process

It = α1It−1 + · · ·+ αk It−k + θt + ξt

where ξt is the residual, forming an independent sequence.

The state of the system is now (Xt , It−1, . . . , I(t−k)).

V. Leclère Introduction to SDDP 12/01/2022 34 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Implementations and numerical tricks

We can play with the number of forward / backward pass.
Classically we do 200 forward passes in parallel, before computing
cuts.

Instead of averaging the cuts, we can keep one cut per alea, for a
multicut version. In other word instead of representing Vt we
represent V̂t .

Early forward passes are not really usefull, selecting (randomly or by
hand) a few trajectory can save some workload.

Cut pruning (eliminating useless cuts) is easy to implement and
pretty efficient.

Adding some regularization term in the forward pass has shown
some numerical improvement but is not yet fully understood.

V. Leclère Introduction to SDDP 12/01/2022 35 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Cut Selection methods I

Let V
(k)
t be defined as max`≤k C(`)

t

For j ≤ k , if

min
x ,α

α− C(j)
t (x)

s.t. α ≥ C(`)
t (x) ∀` 6= j

is non-negative, then cut j can be discarded without

modifying V
(k)
t

this technique is exact but time-consuming.

V. Leclère Introduction to SDDP 12/01/2022 36 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Cut Selection methods II

Instead of comparing a cut everywhere, we can choose to
compare it only on the already visited points.

The Level-1 cut method goes as follow:

keep a list of all visited points x
(`)
t for ` ≤ k.

for ` from 1 to k , tag each cut that is active at x
(`)
t .

Discard all non-tagged cut.

V. Leclère Introduction to SDDP 12/01/2022 37 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 37 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Coherent Risk Measure I

To take into account some risk aversion we can replace the
expectation by a risk measure. A risk measure is a function giving
to a random cost X a determinitic equivalent ρ(X ) A Coherent
Risk Measure ρ : L∞

(
Ω,F ,P

)
→ R is a functionnal satisfying

Monotonicity: if X ≥ Y then ρ(X ) ≥ ρ(Y ),

Translation equivariance: for c ∈ R we have
ρ(X + c) = ρ(X ) + c ,

Convexity: for t ∈ [0, 1], we have

ρ(tX + (1− t)Y ) ≤ tρ(X ) + (1− t)ρ(Y ),

Positive homogeneity: for α ∈ R+, we have ρ(αX ) = αρ(X ).

V. Leclère Introduction to SDDP 12/01/2022 38 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Coherent Risk Measure II

From convex analysis we obtain the main theorem over coherent
risk measure.

Theorem

Let ρ be a coherent risk measure, then there exists a (convex) set
of probability P such that

∀X , ρ(X ) = sup
Q∈P

EP[X ].

V. Leclère Introduction to SDDP 12/01/2022 39 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Average Value at Risk I

One of the most practical and used coherent risk measure is the
Average Value at Risk at level α. Roughly, it is the expectation of
the cost over the α-worst cases. For a random variable X
admitting a density, we define de value at risk of level α, as the
quantile of level α, that is

VaRα(X ) = inf
{
t ∈ R | P

(
X ≥ t

)
≤ α

}
.

And the average value at risk is

AVaRα(X ) = E
[
X
∣∣ X ≥ VaRα(X )

]

V. Leclère Introduction to SDDP 12/01/2022 40 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Average Value at Risk II

One of the best aspect of the AVaR, is the following formula

AVaRα(X ) = min
t∈R

{
t +

E
[
X − t

]+

α

}
.

Indeed it allow to linearize the AVaR.

V. Leclère Introduction to SDDP 12/01/2022 41 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

SDDP and risk

The problem studied was risk neutral

However a lot of works has been done recently about how to
solve risk averse problems

Most of them are using AVAR, or a mix between AVAR and
expectation either as objective or constraint

Indeed AVAR can be used in a linear framework by adding
other variables

Another easy way is to use “composed risk measures”

Finally a convergence proof with convex costs (instead of
linear costs) exists, although it requires to solve non-linear
problems

V. Leclère Introduction to SDDP 12/01/2022 42 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 12/01/2022 42 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Assumptions

Noises are time-independent, with finite support.

Xt is convex compact, Pt is closed convex.

Costs are convex and lower semicontinuous.

We are in a strong relatively complete recourse framework.

Remark, if we take the tree-view of the algorithm

stage-independence of noise is not required to have theoretical
convergence

node-selection process should be admissible (e.g. independent,
SDDP, CUPPS...)

V. Leclère Introduction to SDDP 12/01/2022 43 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Convergence result

Theorem

With the preceding assumption, we have that the upper and lower
bound are almost surely converging toward the optimal value, and
we can obtain an ε−optimal strategy for any ε > 0.

More precisely, if we call V
(k)
t the outer approximation of the

Bellman function Vt at step k of the algorithm, and π
(k)
t the

corresponding strategy, we have

V
(k)
0 (x0)→k V0(x0)

and

E
[
ct
(
x (k)
t , x (k)

t+1, ξt
)

+ V
(k)
t+1(x (k)

t+1)
]
− Vt(x

(k)
t )→k 0.

V. Leclère Introduction to SDDP 12/01/2022 44 / 46

Kelley’s algorithm Deterministic case Stochastic case Conclusion

Conclusion

SDDP is an algorithm, more precisely a class of algorithms, that

exploits convexity of the value functions (from convexity of
costs...)

does not require state discretization

constructs outer approximations of Vt , those approximations
being precise only “in the right places”

gives bounds:

“true” lower bound V
(k)
0 (x0)

estimated (by Monte-Carlo) upper bound

constructs linear-convex approximations, thus enabling to use
linear solver like CPLEX

can be shown to display asymptotic convergence

V. Leclère Introduction to SDDP 12/01/2022 45 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Bibliography

R. Van Slyke and R. Wets (1969).
L-shaped linear programs with applications to optimal control
and stochastic programming.
SIAM Journal on Applied Mathematics

M. Pereira, L.Pinto (1991).
Multi-stage stochastic optimization applied to energy planning
Mathematical Programming

A. Shapiro (2011).
Analysis of stochastic dual dynamic programming method.
European Journal of Operational Research.

P.Girardeau, V.Leclère, A. Philpott (2014).
On the convergence of decomposition methods for multi-stage
stochastic convex programs.
Mathematics of Operations Research.

V. Leclère Introduction to SDDP 12/01/2022 46 / 46


