Stochastic Optimization
 Recalls on convex analysis

V. Leclère

November 242021

November 242021
École des Ponts ParisTech
Vincent Leclère

[^0]- Uncertainty is present in most optimization problem, sometimes taken into account.
- Two major way of taking uncertainty into account :
- Robust approach: assuming that uncertainty belongs in some set C, and will be chosen adversarily.
- Stochastic approach: assuming that uncertainty is a random variable with known law.
- We will take the stochastic approach, considering the multi-stage approach : a first decision is taken, then part of the uncertainty is revealed, before taking a second decision and so on.
- The stochastic optimization course is in two part
- Evaluation have 2 components :
- Practical works to be done in between classes and sent to vincent.leclere@enpc.fr
- Written exam ith theoretical and modelling questions
- Practical work will be done in Julia (www.julialang.com)using jupyter notebook
- Instructions for installing julia / jupyter and using the library can be found at https://github.com/leclere/TP-Saclay
- Practical work will be posted thereOverview of the course
(2) Convex sets and functions
- Fundamental definitions and results
- Convex function and minimization
- Subdifferential and Fenchel-Transform
- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality
- C is a convex set iff

$$
\forall x_{1}, x_{2} \in C, \quad\left[x_{1}, x_{2}\right] \subset C .
$$

- If for all $i \in I, C_{i}$ is convex, then so is $\cap_{i \in I} C_{i}$
- $C_{1}+C_{2}$, and $C_{1} \times C_{2}$ are convex
- For any set X the convex hull of X is the smallest convex set containing X,

$$
\operatorname{conv}(X):=\left\{t x_{1}+(1-t) x_{2} \quad \mid \quad x_{1}, x_{2} \in C, \quad t \in[0,1]\right\} .
$$

- The closed convex hull of X is the intersection of all half-spaces containing X.

Fundamental definitions and results

Separation

Let X be a Banach space, and X^{*} its topological dual (i.e. the set of all continuous linear form on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, $\operatorname{int}(A) \neq \emptyset$, then there exists a separating hyperplane $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$ such that

$$
\left\langle x^{*}, a\right\rangle \leq \alpha \leq\left\langle x^{*}, b\right\rangle \quad \forall a, b \in A \times B .
$$

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is closed, and B is compact (e.g. a point), then there exists a strict separating hyperplane $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$ such that, there exists $\varepsilon>0$,

$$
\left\langle x^{*}, a\right\rangle+\varepsilon \leq \alpha \leq\left\langle x^{*}, b\right\rangle-\varepsilon \quad \forall a, b \in A \times B .
$$

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is convex if its epigraph is convex.
- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iff

$$
\forall t \in[0,1], \quad \forall x, y \in X, \quad f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

- If f, g convex, $\lambda>0$, then $\lambda f+g$ is convex.
- If f convex non-decreasing, g convex, then $f \circ g$ convex.
- If f convex and a affine, then $f \circ a$ is convex.
- If $\left(f_{i}\right)_{i \in I}$ is a family of convex functions, then sup ${ }_{i \in I} f_{i}$ is convex.

Convex functions : further definitions and properties

- The domain of a convex function is $\operatorname{dom}(f)=\{x \in X \mid f(x)<+\infty\}$.
- The level set of a convex function is $\operatorname{lev}_{\alpha}(f)=\{x \in X \mid f(x) \leq \alpha\}$
- A function is lower semi continuous (lsc) iff for all $\alpha \in \mathbb{R}, \operatorname{lev}_{\alpha}$ is closed.
- The domain and the level sets of a convex function are convex.
- A convex function is proper if it never takes $-\infty$, and $\operatorname{dom}(f) \neq \emptyset$.
- A function is coercive if $\lim _{\|x\| \rightarrow \infty} f(x)=+\infty$.
- A polyhedra is a finite intersection of half-spaces, thus convex.
- A polyhedral function is a function whose epigraph is a polyhedra.
- Finite intersection, cartesian product and sum of polyhedra is polyhedra.
- In particular a polyhedral function is convex Isc, with polyhedral domain and level sets.
- If $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is polyhedral, then it can be written as

$$
\begin{array}{rll}
f(x)=\min _{\theta} & \theta & \\
\text { s.t. } & \alpha_{\kappa}^{\top} x+\beta_{\kappa} \leq \theta & \forall \kappa \leq k \\
& \gamma_{\kappa} \top x+\delta_{\kappa} \leq 0 & \forall \kappa \leq k^{\prime}
\end{array}
$$

Convex sets and functions

Convex functions : polyhedral approximations

- f is convex iff it is above all its tangeant.
- Let $\left\{x_{\kappa}, g_{\kappa}\right\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq\left\langle g_{\kappa}, \cdot-x_{\kappa}\right\rangle+f\left(x_{\kappa}\right)$, then

$$
\underline{\mathrm{f}}_{k}: x \mapsto \max _{\kappa \leq k}\left\langle g_{\kappa}, x-x_{\kappa}\right\rangle+f\left(x_{\kappa}\right)
$$

is a polyhedral outer-approximation of f.

- Let $\left\{x_{\kappa}\right\}_{\kappa \leq k}$ be a collection of point in $\operatorname{dom}(f)$. Then,

$$
\bar{f}_{k}: x \mapsto \min _{\sigma \in \Delta_{k}}\left\{\sum_{\kappa=1}^{k} \sigma_{\kappa} f\left(x_{\kappa}\right) \mid \sum_{\kappa=1}^{k} \sigma_{\kappa} x_{\kappa}=x\right\}
$$

is a polyhedral inner-approximation of f.

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is strictly convex iff
$\forall t \in] 0,1[, \quad \forall x, y \in X, \quad f(t x+(1-t) y)<t f(x)+(1-t) f(y)$.
- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall x, y \in X$

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\alpha}{2}\|y-x\|^{2}
$$

- If $f \in C^{1}\left(\mathbb{R}^{n}\right)$
- $\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0$ iff f convex
- if strict inequality holds, then f strictly convex
- If $f \in C^{2}\left(\mathbb{R}^{n}\right)$,
- $\nabla^{2} f \succcurlyeq 0$ iff f convex
- if $\nabla^{2} f \succ 0$ then f strictly convex
- if $\nabla^{2} f \succcurlyeq \alpha l$ then f is α-convex

Overview of the course
oon
Convex function and minimization

Presentation Outline
${ }_{\circ}^{\circ}$

Subdifferential of convex function

Partial infimum

Let X be a Banach space, $f: X \rightarrow \overline{\mathbb{R}}$.

- X^{*} is the topological dual of X, that is the set of continuous linear form on X.
- The subdifferential of f at $x \in \operatorname{dom}(f)$ is the set of slopes of all affine minorants of f exact at x

$$
\partial f(x):=\left\{x^{*} \in X^{*} \quad \mid \quad f(\cdot) \geq\left\langle x^{*}, \cdot-x\right\rangle+f(x)\right\} .
$$

- If f is convex and derivable at x then

$$
\partial f(x)=\{\nabla f(x)\}
$$

Let $f: X \times Y \rightarrow \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$
v(x)=\inf _{y \in Y} f(x, y)
$$

then v is convex.
If v is proper, and $v(x)=f\left(x, y^{\sharp}(x)\right)$ then

$$
\partial v(x)=\left\{g \in X^{*} \quad \left\lvert\, \quad\binom{g}{0} \in \partial f\left(x, y^{\sharp}(x)\right)\right.\right\}
$$

proof:

$$
\begin{aligned}
g \in \partial v(x) & \Leftrightarrow \forall x^{\prime}, \quad v\left(x^{\prime}\right) \geq v(x)+\left\langle g, x^{\prime}-x\right\rangle \\
& \Leftrightarrow \forall x^{\prime}, y^{\prime} \quad f\left(x^{\prime}, y^{\prime}\right) \geq f\left(x, y^{\sharp}(x)\right)+\left\langle\binom{ g}{0},\binom{x^{\prime}}{y^{\prime}}-\binom{x}{y^{\sharp}(x)}\right\rangle \\
& \Leftrightarrow \quad\binom{g}{0} \in \partial f\left(x, y^{\sharp}(x)\right)
\end{aligned}
$$

Vincent Leclère

Fenchel transform

- Assume f convex, then f is continuous on the relative interior of its domain, and Lipschtiz on any compact contained in the relative interior of its domain.
- A proper convex function is subdifferentiable on the relative interior of its domain
- Assume $f: X \rightarrow \overline{\mathbb{R}}$ is convex, and consider $A \subset X$.
- If f is L-Lipschitz on A then $\partial f(x) \subset B(0, L), \quad \forall x \in r i(A)$
- If $\partial f(x) \subset B(0, L), \quad \forall x \in A+\varepsilon B(0,1)$ then f is L-Lipschitz on A then

Let X be a Banach space, $f: X \rightarrow \overline{\mathbb{R}}$ convex proper.

- The Fenchel transform of f, is $f^{*}: X^{*} \rightarrow \overline{\mathbb{R}}$ with

$$
f^{*}\left(x^{*}\right):=\sup _{x \in X}\left\langle x^{*}, x\right\rangle-f(x)
$$

- f^{*} is convex Isc as the supremum of affine functions.
- $f \leq g$ implies that $f^{*} \geq g^{*}$.
- If f is proper convex Isc, then $f^{* *}=f$, otherwise $f^{* *} \leq f$.

Fenchel transform and subdifferential

Presentation Outline

- By definition $f^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle-f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x)+f^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle$.
- Recall that $x^{*} \in \partial f(x)$ iff for all $x^{\prime}, f\left(x^{\prime}\right) \geq f(x)+\left\langle x^{*}, x^{\prime}-x\right\rangle$ iff

$$
\left\langle x^{*}, x\right\rangle-f(x) \geq\left\langle x^{*}, x^{\prime}\right\rangle-f\left(x^{\prime}\right) \quad \forall x^{\prime}
$$

that is

$$
x^{*} \in \partial f(x) \Leftrightarrow x \in \underset{x^{\prime} \in X}{\arg \max }\left\{\left\langle x^{*}, x^{\prime}\right\rangle-f\left(x^{\prime}\right)\right\} \Leftrightarrow f(x)+f^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle
$$

- From Fenchel-Young equality we have

$$
\partial \nu^{* *}(x) \neq \emptyset \quad \Longrightarrow \quad \partial v^{* *}(x)=\partial v(x) \text { and } v^{* *}(x)=v(x) .
$$

- If f proper convex Isc

$$
x^{*} \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}\left(x^{*}\right)
$$

Vincent Leclère

Recall on Lagrangian duality
Weak duality

Recall on Lagrangian duality
Linear Programming duality

The problem

$$
\begin{array}{rlr}
(P) \quad \min _{x \in \mathbb{R}^{n}} & f(x) & \\
\text { s.t. } & c_{i}(x)=0 & \forall i \in \llbracket 1, n_{E} \rrbracket \\
& c_{j}(x) \leq 0 & \forall j \in \llbracket n_{E}+1, n_{E}+n_{l} \rrbracket
\end{array}
$$

can be written

$$
\min _{x \in \mathbb{R}^{n}} \max _{\lambda \in \mathbb{R}^{n} E, \mu \in \mathbb{R}_{+}^{n_{l}}} \mathcal{L}(x, \lambda, \mu)
$$

where

$$
\mathcal{L}(x, \lambda, \mu):=f(x)+\sum_{i=1}^{n_{E}+n_{i}} \lambda_{i} c_{i}(x)
$$

The dual problem is

$$
(D) \quad \max _{\lambda \in \mathbb{R}^{n} E \times \mathbb{R}_{\mid}^{n_{I}}} \min _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \mu)
$$

and we have, without assumption

The duality gap is the difference between the primal value and dual value of a problem.
Consider problem

$$
\begin{array}{rlr}
(P) \min _{x \in \mathbb{R}^{n}} & f(x) & \\
\text { s.t. } & c_{i}(x)=0 & \forall i \in \llbracket 1, n_{E} \rrbracket \\
& c_{j}(x) \leq 0 & \forall j \in \llbracket n_{E}+1, n_{E}+n_{I} \rrbracket
\end{array}
$$

with (P) convex in the sense that f is convex, c_{l} is convex Isc, c_{l} is affine. If further the constraints are qualified, then there is no duality gap.

Assume that f, g_{i} and h_{j} are differentiable. Assume that x^{\sharp} is an optimal solution of (P), and that the constraints are qualified in x^{\sharp}. Then we have

$$
\left\{\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{\sharp}, \lambda^{\sharp}\right)=\nabla f\left(x^{\sharp}\right)+\sum_{i=1}^{n_{E}+n_{i}} \lambda_{i}^{\sharp} \nabla c_{i}\left(x^{\sharp}\right) & =0 \\
c_{E}\left(x^{\sharp}\right) & =0 \\
0 \leq \lambda_{I} \perp c_{l}\left(x^{\sharp}\right) & \leq 0
\end{aligned}\right.
$$

\square
Perturbed problem

Presentation Outline

Consider the perturbed problem

$$
\begin{array}{rl}
\left(P_{p}\right) \min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & c_{i}(x)+p_{i}=0 \\
& c_{j}(x)+p_{j} \leq 0 \quad \forall i \in \llbracket 1, n_{E} \rrbracket \\
& \forall j \in \llbracket n_{E}+1, n_{I}+n_{E} \rrbracket
\end{array}
$$

with value $v(p)$, and optimal multiplier (for $p=0) \lambda_{0}$.

Optimality condition by saddle point

$$
\begin{aligned}
v(p):= & \min _{x \geq 0} \\
& c^{\top} x \\
& \text { s.t. }
\end{aligned} \quad A x+p=b
$$

by LP duality (assuming at least one admissible primal solution) we have

$$
\begin{aligned}
v(p)=\max _{\lambda} & -b^{\top} \lambda+p^{\top} \lambda \\
& \text { s.t. }
\end{aligned} A^{\top} \lambda \leq c
$$

Note λ_{0} the optimal multiplier for $\left(P_{0}\right)$, note that it is admissible for (D_{p}), hence $v(p) \geq-b^{\top} \lambda_{0}+p^{\top} \lambda_{0}$. By strong duality we have $v(0)=-b^{\top} \lambda_{0}$, hence

$$
v(p) \geq v(0)+\lambda_{0}^{\top} p
$$

or

$$
\lambda_{0} \in \partial v(0)
$$

Let $\Lambda:=\mathbb{R}^{n_{E}} \times \mathbb{R}_{+}^{n_{I}} .\left(x^{\sharp}, \lambda^{\sharp}\right)$ is a saddle-point of \mathcal{L} on $\mathbb{R}^{n} \times \Lambda$ iff

$$
\forall \lambda \in \Lambda, \quad \mathcal{L}\left(x^{\sharp}, \lambda\right) \leq \mathcal{L}\left(x^{\sharp}, \lambda^{\sharp}\right) \leq \mathcal{L}\left(x, \lambda^{\sharp}\right), \quad \forall x \in \mathbb{R}^{n}
$$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^{n} \times \Lambda$. Then $\bar{\lambda} \in \arg \max _{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_{E}(\bar{x})=0$ and $0 \leq \bar{\lambda}_{l} \perp c_{l}(\bar{x}) \leq 0$.

Theorem

If $\left(x^{\sharp}, \lambda^{\sharp}\right)$ is a saddle-point of \mathcal{L} on $\mathbb{R}^{n} \times \Lambda$, then x^{\sharp} is an optimal solution of (P).

Note that we need no assumption for this result.

Vincent Leclère

Overview of the course 000	Convex sets and functions 00000000000000	Duality 00000000000

Convex case
000
Fenchel duality
Fenchel duality
Presentation Outline

If (P) is convex in the sense that f is convex, c_{I} is convex and c_{E} is affine, then v is convex.

Theorem

Assume that v is convex, then

$$
\partial v(0)=\{\lambda \in \Lambda \quad \mid \quad(x, \lambda) \text { is a saddle point of } \mathcal{L}\}
$$

In particular, $\partial v(0) \neq \emptyset$ iff there exists a saddle point of \mathcal{L}.

Theorem (Slater's qualification condition)

Consider a convex optimisation problem. Assume that c_{E}^{\prime} is onto, and there exists $x \in \operatorname{rint}(\operatorname{dom}(f))$ with $c_{l}(x)<0$, and c_{l} continuous at x, then if x^{*} is an optimal solution, there exists λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ is a saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.
(1) Overview of the course
(2) Convex sets and functions

- Fundamental definitions and results
- Convex function and minimization
- Subdifferential and Fenchel-TransformDuality
- Recall on Lagrangian duality
- Marginal interpretation of multiplier
- Fenchel duality

Solution of the dual as subgradient

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min _{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow \mathbb{R} \cup\{+\infty\}$ (with $\Phi(\cdot, 0)=f$)

$$
\left(\mathcal{P}_{y}\right) \quad v(y):=\inf _{x \in \mathbb{X}} \Phi(x, y)
$$

We have

$$
\begin{aligned}
v^{*}\left(y^{*}\right) & =\sup _{y \in \mathbb{Y}}\left\langle y^{*}, y\right\rangle-v(y) \\
& =\sup _{x, y}\left\langle y^{*}, y\right\rangle-\Phi(x, y)=\Phi^{*}\left(0, y^{*}\right)
\end{aligned}
$$

Thus we have

$$
\left(\mathcal{D}_{y}\right) \quad v^{* *}(y)=\sup _{y^{*} \in \mathbb{Y}^{*}}\left\langle y^{*}, y\right\rangle-\Phi^{*}\left(0, y^{*}\right)
$$

Generically

$$
\operatorname{val}\left(\mathcal{D}_{y}\right)=v^{* *}(y) \leq v(y)=\operatorname{val}\left(\mathcal{P}_{y}\right)
$$

Vincent Leclère

Overview of the course 000	Convex sets and functions 0000000000000	Duality 00000000000

Fenchel duality
Recovering the Lagrangian dual

Problem (\mathcal{P}_{y}) can be written

$$
\begin{array}{ll}
\min _{x, z} & \Phi(x, z) \\
\text { s.t. } & z=y
\end{array}
$$

with Lagrangian dual

Hence, we recover the Fenchel dual from the Lagrangian dual.

Stochastic Optimization Recalls on probability

Probability recallsV. Leclère

December 1st 2021Random functionLimit of averages
(4) Newsvendor problem

École des Ponts ParisTech

Vincent Leclère

Probability space

- Let \mathcal{F} be a σ-algebra on Ω.
- A σ-algebra is generated by a collection of sets if it is the smallest containing the collection.
- A function $X: \Omega \rightarrow \mathbb{R}^{n}$ is \mathcal{F}-measurable if $X^{-1}(I) \in \mathcal{F}$ for all boxes I of \mathbb{R}^{n}, we note $X \preceq \mathcal{F}$.
- A σ-algebra $\sigma(X)$ is generated by a function $X: \Omega \rightarrow \mathbb{R}^{n}$ sets if it is generated by $\left\{X^{-1}(I) \mid I\right.$ boxes of $\left.\mathbb{R}^{n}\right\}$.
- The σ-algebra generated by all boxes is called the Borel σ-algebra.

[^1]
Random variables

Probability recalls
000000000
Random
00000

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space.

- Define the equivalence class over the $\mathcal{L}^{0}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$

$$
X \sim Y \Longleftrightarrow \mathbb{P}(\{\omega \in \Omega \mid X(\omega)=Y(\omega)\})=1
$$

- A random variable \boldsymbol{X} is an element of $L^{0}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right):=\mathcal{L}^{0}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right) / \sim$
- In other word a random variable is a measurable function from Ω to \mathbb{R}^{n} defined up to negligeable set.
- We recall that $\mathbb{E}[\boldsymbol{X}]:=\int_{\Omega} \boldsymbol{X}(\omega) \mathbb{P}(d \omega)$.
- If \mathbb{P} is discrete, we have $\mathbb{E}[\boldsymbol{X}]=\sum_{\omega=1}^{|\Omega|} X(\omega) p_{\omega}$.
- If \boldsymbol{X} admit a density function f we have $\mathbb{E}[\boldsymbol{X}]=\int_{\mathbb{R}} x f(x) d x$.
- We define the variance of \boldsymbol{X}

$$
\operatorname{var}(\boldsymbol{X}):=\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])^{2}\right]=\mathbb{E}\left[\boldsymbol{X}^{2}\right]-(\mathbb{E}[\boldsymbol{X}])^{2}
$$

- and the standard deviation

$$
\operatorname{std}(\boldsymbol{X}):=\sqrt{\operatorname{var}(\boldsymbol{X})}
$$

- the covariance is given by

$$
\operatorname{cov}(\boldsymbol{X}, \boldsymbol{Y})=\mathbb{E}[\boldsymbol{X} \boldsymbol{Y}]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{Y}]
$$

Probability recalls 000000000	Random function 00000	Limit of averages 0000	Newsvendor problem 0000000

Random variables spaces

- $L^{0}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is the set of $r v$
- $L^{1}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is the set of r v such that $\mathbb{E}[|\boldsymbol{X}|]<+\infty$
- $L^{p}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is the set of $r v$ such that $\mathbb{E}\left[|\boldsymbol{X}|^{p}\right]<+\infty$
- $L^{\infty}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is the set of $r v$ that is almost surely bounded
- $L^{p}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$, for $\left.p \in\right] 1,+\infty[$ is a reflexive Banach space, with dual L^{q}, where $\frac{1}{p}+\frac{1}{q}=1$
- $L^{1}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is a non-reflexive Banach space with dual L^{∞}
- $L^{2}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is a Hilbert space
- $L^{\infty}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{n}\right)$ is a non-reflexive Banach space
- The cumulative distribution function (cdf) of a random variable \boldsymbol{X} is

$$
F_{X}(x):=\mathbb{P}(\boldsymbol{X} \leq x)
$$

- Two random variables \boldsymbol{X} and \boldsymbol{Y} are independent iff (one of the following)
- $F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b)$ for all a, b
- $\mathbb{P}(\boldsymbol{X} \in A, \boldsymbol{Y} \in B)=\mathbb{P}(\boldsymbol{X} \in A) \mathbb{P}(\boldsymbol{Y} \in B)$ for all Borel sets A and B
- $\mathbb{E}[f(\boldsymbol{X}) g(\boldsymbol{Y})]=\mathbb{E}[f(\boldsymbol{X})] \mathbb{E}[g(\boldsymbol{Y})]$ for all Borel functions f and g
- A sequence of identically distributed indenpendent variables is denoted iid.

Inequalities

Limits of random variable

- (Markov) $\mathbb{P}(|\boldsymbol{X}| \geq a) \leq \frac{\mathbb{E}[|\boldsymbol{X}|]}{a}$, for $a>0$.
- (Chernoff) $\mathbb{P}(\boldsymbol{X} \geq a) \leq \frac{\mathbb{E}\left[e^{t x}\right]}{e^{t a}}$, for $t, a>0$.
- (Chebyshev) $\mathbb{P}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{var}(X)}{a^{2}}$, for $a>0$.
- (Jensen) $\mathbb{E}[f(\boldsymbol{X})] \geq f(\mathbb{E}[\boldsymbol{X}])$ for f convex
- (Cauchy-Schwartz) $\mathbb{E}[|\boldsymbol{X} \boldsymbol{Y}|] \leq\|\boldsymbol{X}\|_{2}\|\boldsymbol{Y}\|_{2}$
- (Hölder) $\mathbb{E}[|\boldsymbol{X} \boldsymbol{Y}|] \leq\|\boldsymbol{X}\|_{p}\|\boldsymbol{Y}\|_{q}$ for $\frac{1}{p}+\frac{1}{q}=1$
- (Hoeffding) $\mathbb{P}\left(\boldsymbol{M}_{n}-\mathbb{E}\left[\boldsymbol{M}_{n}\right] \geq t\right) \leq \exp \left(\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)$ where $\left\{\boldsymbol{X}_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of bounded independent $r v$ with $a_{i} \leq \boldsymbol{X}_{i} \leq b_{i}$.

Let $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables.

- We say that $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ converges almost surely toward \boldsymbol{X} if

$$
\mathbb{P}\left(\lim _{n}\left(\boldsymbol{X}_{n}-\boldsymbol{X}\right)=0\right)=1 .
$$

- We say that $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ converges in probability toward \boldsymbol{X} if

$$
\forall \varepsilon>0, \quad \mathbb{P}\left(\left|\boldsymbol{X}_{n}-\boldsymbol{X}\right|>\varepsilon\right) \rightarrow 0 .
$$

- We say that $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ converges in L^{p} toward \boldsymbol{X} if

$$
\left\|\boldsymbol{X}_{n}-\boldsymbol{X}\right\|_{p}=\mathbb{E}\left[\left|\boldsymbol{X}_{n}-\boldsymbol{X}\right|^{p}\right] \rightarrow 0 .
$$

- We say that $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ converges in law toward \boldsymbol{X} if

$$
\mathbb{E}\left[f\left(\boldsymbol{X}_{n}\right)\right] \rightarrow \mathbb{E}[f(\boldsymbol{X})] \quad \text { for all bounded Lipschitz } f
$$

Probability recalls	Random function	Limit of averages	Newsvendor problem
o000000000	00000	000	

Conditional expectation

- $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)$
- If $(\boldsymbol{X}, \boldsymbol{Y})$ has density $f_{X, Y}$, then the conditional law $(\boldsymbol{X} \mid \boldsymbol{Y})$ has density $f_{X \mid Y}(x \mid y)=f_{X, Y}(x, y) / f_{Y}(y)$.
- In the continuous case we have

$$
\mathbb{E}[\boldsymbol{X} \mid \boldsymbol{Y}=y]=\int_{\mathbb{R}} x f_{X \mid Y}(x \mid y) d x .
$$

- More generally if \mathcal{G} is a sub-sigma-algebra of \mathcal{F}, the conditional expectation of $\boldsymbol{X} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ w.r.t \mathcal{G} is the \mathcal{G}-measurable random variable Y satisfying

$$
\mathbb{E}\left[\boldsymbol{\gamma} \mathbb{1}_{G}\right]=\mathbb{E}\left[\boldsymbol{x}_{G}\right], \quad \forall G \in \mathcal{G}
$$

- Finally, we always have

$$
\mathbb{E}[\mathbb{E}[\boldsymbol{X} \mid \boldsymbol{Y}]]=\mathbb{E}[\boldsymbol{X}]
$$

(1) Probability recallsRandom function
(3) Limit of averages

Theorem (Monotone convergence)

Let $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables such that

- $\boldsymbol{X}_{n+1} \geq \boldsymbol{X}_{n} \mathbb{P}$-a.s.
- $\boldsymbol{X}_{n} \rightarrow \boldsymbol{X}_{\infty} \mathbb{P}$-a.s.
then $\lim _{n \rightarrow \infty} \mathbb{E}\left[\boldsymbol{X}_{n}\right]=\mathbb{E}\left[\lim _{n} \boldsymbol{X}_{n}\right]$
Theorem (Dominated convergence)
Let $\left\{\boldsymbol{X}_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables, and \boldsymbol{Y} such that
- $\left|\boldsymbol{X}_{n}\right| \leq \boldsymbol{Y} \mathbb{P}$-a.s. with $\mathbb{E}[|\boldsymbol{Y}|]<+\infty$
- $\boldsymbol{X}_{n} \rightarrow \boldsymbol{X}_{\infty} \mathbb{P}$-a.s.
then $\lim _{n \rightarrow \infty} \mathbb{E}\left[\boldsymbol{X}_{n}\right]=\mathbb{E}\left[\lim _{n} \boldsymbol{X}_{n}\right]$

Consider a measurable space (Ω, \mathcal{F}).

- A function $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable if $f^{-1}(I) \in \mathcal{F}$ for all interval I of \mathbb{R}.
- A multi-function $\mathcal{G}: \Omega \rightrightarrows \mathbb{R}^{n}$ is \mathcal{F}-measurable if

$$
\forall A \subset \mathbb{R}^{n} \text { closed, } \quad \mathcal{G}^{-1}(A):=\{\omega \in \Omega \mid \mathcal{G}(\omega) \cap A \neq \emptyset\} \in \mathcal{F} .
$$

- A closed valued multi-function $\mathcal{G}: \Omega \rightrightarrows \mathbb{R}^{n}$ is \mathcal{F}-measurable iff $d_{x}(\omega):=\operatorname{dist}(x, \mathcal{G}(\omega))$ is \mathcal{F}-measurable.

Theorem (Measurable selection theorem)

If $\mathcal{G}: \Omega \rightrightarrows \mathbb{R}^{n}$ is a closed valued measurable multifunction, then there exists a measurable selection of \mathcal{G}, that is a measurable function $\pi: \operatorname{dom}(\mathcal{G}) \subset \Omega \rightarrow \mathbb{R}^{n}$ such that $\pi(\omega) \in \mathcal{G}(\omega)$ for all $\omega \in \operatorname{dom}(\mathcal{G})$.

Vincent Leclère	OS - 2		1/12/2021	11 / 26
Probability recalls 000000000	Random function $000 \bullet 0$	Limit of averages 0000	Newsvend 0000000	problem

Normal integrand

Assume that \mathcal{F} is \mathbb{P}-complete.

Definition (Caratheodory function)

$f: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}$ is a Carathéodory function if

- $f(\cdot, \omega)$ is continuous for a.a. $\omega \in \Omega$
- $f(x, \cdot)$ is measurable for all $x \in \mathbb{R}^{n}$

Definition (Normal integrand)

$f: \mathbb{R}^{n} \times \Omega \rightarrow \overline{\mathbb{R}}$ is a normal integrand (aka random lowersemicontinuous function) if

Vincent Leclère	OS -2		$1 / 12 / 2021$
Probability recalls			$12 / 26$
000000000			

- $f(\cdot, \omega)$ is Isc for a.a. $\omega \in \Omega$
- $f(\cdot, \cdot)$ is measurable
f is a convex normal integrand if in addition it is convex in x for a.a. $\omega \in \Omega$.

Continuity and derivation under expectation

Let $f: \mathbb{R}^{n} \times \Omega$ be a random function (i.e. measurable in ω for all x). We say that f is dominated on X if, for all $x \in X$, there exists an integrable random variable \boldsymbol{Y} such that $f(x, \cdot) \leq \boldsymbol{Y}$ almost surely. If f is dominated on $X \subset \mathbb{R}^{n}$, we define $F(x):=\mathbb{E}[f(x, \omega)]$.

- If f is Isc in x and dominated on X, then F is Isc.
- If f is continuous in x and dominated on X, then F is continuous
- If f is Lispchitz in x, with $\mathbb{E}[\operatorname{lip}(f(\cdot, \omega))]<+\infty$, then F in Lipschitz continous. Moreover if f is differentiable in x, we have

$$
\nabla F(x)=\mathbb{E}\left[\nabla_{x} f(x, \omega)\right]
$$

- If f is a convex normal integrand, and $x_{0} \in \operatorname{int}(\operatorname{dom}(F))$, then

$$
\partial F\left(x_{0}\right)=\mathbb{E}\left[\partial f\left(x_{0}, \omega\right)\right]
$$

Random function
00000

Strong Law of large number

- We consider a function $f: \mathbb{R}^{n} \times \equiv \rightarrow \mathbb{R}$, and a random variable ξ which takes values in $三$, and define $F(x):=\mathbb{E}[f(x, \boldsymbol{\xi})]$.
- We consider a sequence of random variables $\left\{\boldsymbol{\xi}_{i}\right\}_{i \in \mathbb{N}}$.
- We define the average function

$$
\hat{F}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} f\left(x, \boldsymbol{\xi}_{i}\right)
$$

- We say that we have a Law of Large Number (LLN) if,

$$
\forall x \in \mathbb{R}^{n}, \quad \mathbb{P}\left(\lim _{n} \hat{F}_{n}(x)=F(x)\right)=1
$$

- The strong LLN state that LLN holds if $f(x, \boldsymbol{\xi})$ is integrable, and $\left\{\boldsymbol{\xi}_{i}\right\}_{i \in \mathbb{N}}$ is a iid (with same law as $\boldsymbol{\xi}$).
(1) Probability recalls
(2) Random functionLimit of averages

4 Newsvendor problem
-
Limit of averages
ooco

Uniform Law of large number

- Having LLN means that, for all $\varepsilon>0$ (and almost all sample),

$$
\forall x, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad n \geq N \quad \Longrightarrow \quad\left|\hat{F}_{N}(x)-F(x)\right| \leq \varepsilon
$$

- We say that we have ULLN if for all $\varepsilon>0$ (and almost all sample),

$$
\exists N_{\varepsilon} \in \mathbb{N}, \quad \forall x, \quad n \geq N \quad \Longrightarrow \quad\left|\hat{F}_{N}(x)-F(x)\right| \leq \varepsilon
$$

or equivalently

$$
\exists N \in \mathbb{N} \quad n \geq N \quad \Longrightarrow \quad \sup _{x}\left|\hat{F}_{N}(x)-F(x)\right| \leq \varepsilon
$$

Theorem

If f is a dominated Caratheodory function on X compact and the sample is iid then we have ULLN on X.

Central Limit Theorem

Monte-Carlo method

- Let $\left\{\boldsymbol{X}_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of $r v$ iid with finite variance.
- We have $\mathbb{P}\left(M_{N} \in\left[\mathbb{E}[\boldsymbol{X}] \pm \frac{\Phi^{-1}(p) s t d(\boldsymbol{X})}{\sqrt{N}}\right]\right) \approx p$
- In order to estimate the expectation $\mathbb{E}[\boldsymbol{X}]$, we can
- sample N independent realizations of $\boldsymbol{X},\left\{X_{i}\right\}_{i \in \llbracket 1, N \rrbracket}$
- compute the empirical mean $M_{N}=\frac{\sum_{i=1}^{N} X_{i}}{N}$, and standard-deviation s_{N}
- choose an error level p (e.g. 5\%) and compute $\Phi^{-1}(1-p / 2)$ (1.96)
- and we know that, asymptotically, the expectation $\mathbb{E}[\boldsymbol{X}]$ is in $\left[M_{N} \pm \frac{\Phi^{-1}(p) s_{N}}{\sqrt{N}}\right]$ with probability (on the sample) $1-p$
- In the case of bounded independent variable we can use Hoeffding

$$
\mathbb{P}\left(\mathbb{E}[\boldsymbol{X}] \in\left[M_{n} \pm t\right]\right) \geq 2 e^{-\frac{2 n t^{2}}{b-a}}
$$

Vincent Leclère

Probability recalls	Random function	Limit of averages ooboo	Newsvendor problem 000000000

Presentation Outline

Probability recalls(2) Random function
(3) Limit of averages

Newsvendor problem

Probability recalls
0000000

The (deterministic) newsboy problem

In the 50 's a boy would buy a stock u of newspapers each morning at a cost c, and sell them all day long for a price p. The number of people interested in buying a paper during the day is d. We assume that $0<c<p$.

How shall we model this ?

- Control $u \in \mathbb{R}^{+}$
- Cost $L(u)=c u-p \min (u, d)$

Leading to

$$
\begin{array}{ll}
\min _{u} & c u-p \min (u, d) \\
\text { s.t. } & u \geq 0
\end{array}
$$

The (stochastic) newsboy problem

Solving the stochastic newsboy problem

Demand d is unknown at time of purchasing. We model it as a random variable \boldsymbol{d} with known law. Note that

- the control $u \in \mathbb{R}^{+}$is deterministic
- the cost is a random variable (depending of \boldsymbol{d}). We choose to minimize its expectation.
We consider the following problem

$$
\begin{array}{ll}
\min _{u} & \mathbb{E}[c u-p \min (u, \boldsymbol{d})] \\
\text { s.t. } & u \geq 0
\end{array}
$$

How can we justify the expectation?
By law of large number: the Newsboy is going to sell newspaper again and again. Then optimizing the sum over time of its gains is closely related to optimizing the expected gains.

Vincent Leclère

Newsvendor problem (continued)

We assume that the demand can take value $\left\{d_{i}\right\}_{i \in \llbracket 1, n]}$ with probabilities $\left\{p_{i}\right\}_{i \in \llbracket 1, n]}$.
In this case the stochastic newsvendor problem reads

$$
\begin{array}{ll}
\min _{u} & \sum_{i=1}^{n} p_{i}\left(c u-p \min \left(u, d_{i}\right)\right) \\
\text { s.t. } & u \geq 0
\end{array}
$$

For simplicity assume that the demand \boldsymbol{d} has a continuous density f. Define $J(u)$ the expected "loss" of the newsboy if he bought u newspaper. We have

$$
\begin{aligned}
J(u) & =\mathbb{E}[c u-p \min (u, \boldsymbol{d})] \\
& =(c-p) u-p \mathbb{E}[\min (0, \boldsymbol{d}-u)] \\
& =(c-p) u-p \int_{-\infty}^{u}(x-u) f(x) d x \\
& =(c-p) u-p\left(\int_{-\infty}^{u} x f(x) d x-u \int_{-\infty}^{u} f(x) d x\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
J^{\prime}(u) & =(c-p)-p\left(u f(u)-\int_{-\infty}^{u} f(x) d x-u f(u)\right) \\
& =c-p+p F(u)
\end{aligned}
$$

where F is the cumulative distribution function (cdf) of \boldsymbol{d}. F being non

Vincent Leclère

Probability recalls 000000000	Random function 00000	Limit of averages 0000	Newsvendor problem $00000 \bullet 0$
Two-stage newsvendor problem			

We can represent the newsvendor problem in a 2-stage framework.

- Let u_{0} be the number of newspaper bought in the morning. \rightsquigarrow first stage control
- let u_{1} be the number of newspaper sold during the day. \rightsquigarrow second stage control
The problem reads

$$
\begin{array}{rll}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[c u_{0}-p \boldsymbol{u}_{1}\right] & \\
\text { s.t. } & u_{0} \geq 0 & \\
& \boldsymbol{u}_{1} \leq u_{0} & \mathbb{P}-a s \\
& \boldsymbol{u}_{1} \leq \boldsymbol{d} & \mathbb{P}-a s \\
& \boldsymbol{u}_{1} \preceq \boldsymbol{d} &
\end{array}
$$

In extensive formulation the problem reads

$$
\begin{array}{rll}
\min _{u_{0},\left\{u_{1}^{\}}\right\} \in \llbracket[1, n]} & \sum_{i=1}^{n} p_{i}\left(c u_{0}-p u_{1}^{i}\right) & \\
\text { s.t. } & u_{0} \geq 0 & \\
& u_{1}^{i} \leq u_{0} & \forall i \in \llbracket 1, n \rrbracket \\
& u_{1}^{i} \leq d_{i} & \forall i \in \llbracket 1, n \rrbracket
\end{array}
$$

- Using julia we are going to model and work around the Newsvendor problem
- Download the files at https://github.com/leclere/TP-Saclay
- Start working on the "Newsvendor Problem" up to question 3.

Note that there are as many second-stage control u_{1}^{i} as there are possible realization of the demand \boldsymbol{d}, but only one first-stage control u_{0}.

Two-stage stochastic program

V. Leclère

December 82021

École des Ponts
ParisTechOptimization under uncertainty

- Some considerations on dealing with uncertainty
- Evaluating a solutionStochastic Programming Approach
- One-stage Problems
- Two-stage Problems
- Recourse assumptionsInformation and discretization
- Information Frameworks
- Sample Average Approximation

Some considerations on dealing with uncertainty
Presentation Outline
(1) Optimization under uncertainty

- Some considerations on dealing with uncertainty
- Evaluating a solutionStochastic Programming Approach
- One-stage Problems
- Two-stage Problems
- Recourse assumptions
(3) Information and discretization
- Information Frameworks
- Sample Average Approximation

$$
\begin{array}{ll}
\min _{u_{0}} & L\left(u_{0}\right) \\
\text { s.t. } & g\left(u_{0}\right) \leq 0
\end{array}
$$

where

- u_{0} is the control, or decision.
- L is the cost or objective function.
- $g\left(u_{0}\right) \leq 0$ represent the constraint(s).

The (deterministic) newsboy problem

Optimization under uncertainty
O00 $\mathbf{0 0 0 0 0 0 0 0 0 0 0 0}$.

In the 50 's a boy would buy a stock u of newspapers each morning at a cost c, and sell them all day long for a price p. The number of people interested in buying a paper during the day is d. We assume that $0<c<p$.

How shall we model this ?

- Control $u \in \mathbb{R}^{+}$
- Cost $L(u)=c u-p \min (u, d)$

Leading to

$$
\begin{array}{ll}
\min _{u} & c u-p \min (u, d) \\
\text { s.t. } & u \geq 0
\end{array}
$$

Adding uncertainty ξ in the mix

$$
\begin{array}{ll}
\min _{u_{0}} & L\left(u_{0}, \xi\right) \\
\text { s.t. } & g\left(u_{0}, \xi\right) \leq 0
\end{array}
$$

Remarks:

- ξ is unknown. Two main ways of modelling it:
- $\xi \in \equiv$ with a known uncertainty set $\overline{\text {, and a pessimistic }}$ approach. This is the robust optimization approach (RO).
- ξ is a random variable with known probability law. This is the Stochastic Programming approach (SP).
- Cost is not well defined.
- RO : $\max _{\xi \in \equiv} L(u, \xi)$.
- $S P: \mathbb{E}[L(u, \boldsymbol{\xi})]$.
- Constraints are not well defined.
- RO : $g(u, \xi) \leq 0, \quad \forall \xi \in \equiv$.
- $\mathrm{SP}: g(u, \boldsymbol{\xi}) \leq 0, \quad \mathbb{P}$ - a.s..

Vincent Leclère
Two-stage stochastic program

Some considerations on dealing with uncertainty
The (stochastic) newsboy problem
Demand d is unknown at time of purchasing. We model it as a random variable \boldsymbol{d} with known law. Note that

- the control $u \in \mathbb{R}^{+}$is deterministic
- the cost is a random variable (depending of \boldsymbol{d}). We choose to minimize its expectation.
We consider the following problem

$$
\begin{array}{ll}
\min _{u} & \mathbb{E}[c u-p \min (u, \boldsymbol{d})] \\
\text { s.t. } & u \geq 0
\end{array}
$$

How can we justify the expectation?
By law of large number: the Newsboy is going to sell newspaper again and again. Then optimizing the sum over time of its gains is closely related to optimizing the expected gains.

00000000000000

Solving the stochastic newsboy problem

For simplicity assume that the demand \boldsymbol{d} has a continuous density f. Define $J(u)$ the expected "loss" of the newsboy if he bought u newspaper. We have

$$
\begin{aligned}
J(u) & =\mathbb{E}[c u-p \min (u, \boldsymbol{d})] \\
& =(c-p) u-p \mathbb{E}[\min (0, \boldsymbol{d}-u)] \\
& =(c-p) u-p \int_{-\infty}^{u}(x-u) f(x) d x \\
& =(c-p) u-p\left(\int_{-\infty}^{u} x f(x) d x-u \int_{-\infty}^{u} f(x) d x\right)
\end{aligned}
$$

Thus,

$$
J^{\prime}(u)=(c-p)-p\left(u f(u)-\int_{-\infty}^{u} f(x) d x-u f(u)\right)=c-p+p F(u)
$$

where F is the cumulative distribution function (cdf) of \boldsymbol{d}. F being non
decreasing, the optimum control u^{*} is such that $J^{\prime}\left(u^{*}\right)=0$, which is

$$
u^{*} \in F^{-1}\left(\frac{p-c}{p}\right)
$$

Demand d is unknown at time of purchasing. We assume that it will be in the set $[\underline{d}, \bar{d}]$.
The robust problem consist in solving

$$
\begin{array}{ll}
\min _{u} & \max _{d \in[d, \bar{d}]} c u-p \min (u, d) \\
\text { s.t. } & u \geq 0
\end{array}
$$

By monotonicity it is equivalent to

$$
\begin{array}{ll}
\min _{u} & c u-p \min (u, \underline{d}) \\
\text { s.t. } & u \geq 0
\end{array}
$$

Alternative cost functions

Here are some cost functions you might consider

- Probability of reaching a given level of cost : $\mathbb{P}(L(u, \boldsymbol{\xi}) \leq 0)$
- Value-at-Risk of costs $V @ R_{\alpha}(L(u, \boldsymbol{\xi}))$, where for any real valued random variable \boldsymbol{X},

$$
V @ R_{\alpha}(\boldsymbol{X}):=\inf _{t \in \mathbb{R}}\{\mathbb{P}(\boldsymbol{X} \geq t) \leq \alpha\} .
$$

In other word there is only a probability of α of obtaining a cost worse than $V @ R_{\alpha}(\boldsymbol{X})$.

- Average Value-at-Risk of costs $A V @ R_{\alpha}(L(u, \xi))$, which is the expected cost over the α worst outcomes.
- When the cost $L(u, \boldsymbol{\xi})$ is random it might be natural to want to minimize its expectation $\mathbb{E}[L(u, \boldsymbol{\xi})]$.
- This is even justified if the same problem is solved a large number of time (Law of Large Number).
- In some cases the expectation is not really representative of your risk attitude. Lets consider two examples:
- Are you ready to pay $\$ 1000$ to have one chance over ten to win \$10000?
- You need to be at the airport in 1 hour or you miss your flight, you have the choice between two mean of transport, one of them take surely 50^{\prime}, the other take 40^{\prime} four times out of five, and 70^{\prime} one time out of five.
- The natural extension of the deterministic constraint $g(u, \xi) \leq 0$ to $g(u, \boldsymbol{\xi}) \leq 0 \mathbb{P}-$ as can be extremely conservative, and even often without any admissible solutions.
- For example, if u is a level of production that need to be greater than the demand. In a deterministic setting the realized demand is equal to the forecast. In a stochastic setting we add an error to the forecast. If the error is unbouded (e.g. Gaussian) no control u is admissible.

Here are a few possible constraints

- $\mathbb{E}[g(u, \xi)] \leq 0$, for quality of service like constraint.
- $\mathbb{P}(g(u, \boldsymbol{\xi}) \leq 0) \geq 1-\alpha$ for chance constraint. Chance constraint is easy to present, but might lead to misconception as nothing is said on the event where the constraint is not satisfied.
- $A V @ R_{\alpha}(g(u, \xi)) \leq 0$Optimization under uncertainty
- Some considerations on dealing with uncertainty
- Evaluating a solution
(2) Stochastic Programming Approach
- One-stage Problems
- Two-stage Problems
- Recourse assumptionsInformation and discretization
- Information Frameworks
- Sample Average Approximation

Vincent Leclère
Two-stage stochastic program
08/12/2021

Optimization under uncertainty	Stochastic Programming Approach	Information and discretization
$00000000000 \bullet 000$	0000000000	0000000000000000

Evaluating a solution
Computing expectation

- Computing an expectation $\mathbb{E}[L(u, \boldsymbol{\xi})]$ for a given u is costly.
- If $\boldsymbol{\xi}$ is a r.v. with known law admitting a density, $\mathbb{E}[L(u, \boldsymbol{\xi})]$ is a (multidimensional) integral.
- If $\boldsymbol{\xi}$ is a r.v. with known discrete law, $\mathbb{E}[L(u, \boldsymbol{\xi})]$ is a sum over all possible realizations of $\boldsymbol{\xi}$, which can be huge.
- If ξ is a r.v. that can be simulated but with unknown law, $\mathbb{E}[L(u, \boldsymbol{\xi})]$ cannot be computed exactly.
Solution : use Law of Large Number (LLN) and Central Limit Theorem (CLT).
- Draw $N \simeq 1000$ realization of ξ.
- Compute the sample average $\frac{1}{N} \sum_{s=1}^{N} L\left(u, \xi_{s}\right)$.
- Use CLT to give an asymptotic confidence interval of the expectation.
This is known as the Monte-Carlo method.
- Let $\left\{C_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of identically distributed random variables with finite variance.
- Then the Central Limit Theorem ensures that

$$
\sqrt{N}\left(\frac{\sum_{i=1}^{N} \boldsymbol{C}_{i}}{N}-\mathbb{E}\left[\boldsymbol{C}_{1}\right]\right) \Longrightarrow G \sim \mathcal{N}\left(0, \operatorname{Var}\left[\boldsymbol{C}_{1}\right]\right)
$$

where the convergence is in law.

- In practice it is often used in the following way. Asymptotically,

$$
\mathbb{P}\left(\mathbb{E}\left[C_{1}\right] \in\left[\overline{\boldsymbol{C}}_{N}-\frac{1.96 \sigma_{N}}{\sqrt{N}}, \overline{\boldsymbol{C}}_{N}+\frac{1.96 \sigma_{N}}{\sqrt{N}}\right]\right) \simeq 95 \%,
$$

where $\overline{\boldsymbol{C}}_{N}=\frac{\sum_{i=1}^{N} c_{i}}{N}$ is the empirical mean and $\sigma_{N}=\sqrt{\frac{\sum_{i=1}^{N}\left(\boldsymbol{C}_{i}-\overline{\boldsymbol{C}}_{N}\right)^{2}}{N-1}}$ the empirical standard deviation.

Conclusion

When addressing an optimization problem under uncertain one has to consider carefully

- How to model uncertainty ? (random variable or uncertainty set)
- How to represent your attitude toward risk? (expectation, probability level,...)
- How to include constraints ?
- What is your information stucture? (More on that later)
- Set up a simulator and evaluate your solutions.
- Generally speaking stochastic optimization problem are not well posed and often need to be approximated before solving them.
- Good practice consists in defining a simulator, i.e. a representation of the "real problem" on which solution can be tested.
- Then find a candidate solution by solving an (or multiple) approximated problem.
- Finally evaluate the candidate solutions on the simulator. The comparison can be done on more than one dimension (e.g. constraints, risk...)

Optimization under uncertainty	Stochastic Programming Approach	Information and discretization
00000000000000	$\mathbf{0 0 0 0 0 0 0 0 0 0}$	0000000000000000
One-stage Problems		

Presentation OutlineOptimization under uncertainty

- Some considerations on dealing with uncertainty
- Evaluating a solutionStochastic Programming Approach
- One-stage Problems
- Two-stage Problems
- Recourse assumptions
(3) Information and discretization
- Information Frameworks
- Sample Average Approximation

Optimization under uncertainty
0000000000000000

One-Stage Problems

Assume that $\boldsymbol{\xi}$ has a discrete distribution ${ }^{1}$, with
$\mathbb{P}\left(\boldsymbol{\xi}=\xi_{s}\right)=\pi^{s}>0$ for $s \in \llbracket 1, S \rrbracket$. Then, the one-stage problem

$$
\begin{array}{ll}
\min _{u_{0}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}\right) \leq 0, \quad \mathbb{P}-\text { a.s }
\end{array}
$$

can be written

$$
\begin{array}{ll}
\min _{u_{0}} & \sum_{s=1}^{S} \pi^{s} L\left(u_{0}, \xi_{s}\right) \\
\text { s.t } & g\left(u_{0}, \xi_{s}\right) \leq 0, \quad \forall s \in \llbracket 1, s \rrbracket .
\end{array}
$$

[^2]| Optimization under uncertainty | Stochastic Programming Approach | Information and discretization |
| :--- | :--- | :--- |
| 0000000000000000 | 0000000000000000 | |
| Two-stage Problems | | |
| Recourse Variable | | |

In most problem we can make a correction u_{1} once the uncertainty is known:

$$
u_{0} \rightsquigarrow \xi_{1} \rightsquigarrow u_{1} .
$$

As the recourse control u_{1} is a function of ξ it is a random variable. The two-stage optimization problem then reads

$$
\begin{array}{rl}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right) \leq 0, \quad \mathbb{P}-\text { a.s } \\
& \boldsymbol{u}_{1} \preceq \boldsymbol{\xi}
\end{array}
$$

- u_{0} is called a first stage control
- u_{1} is called a second stage (or recourse) control

Two-stage Problem

The extensive formulation of

$$
\begin{array}{rl}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right) \leq 0, \quad \mathbb{P}-\text { a.s } \\
& \boldsymbol{u}_{1} \preceq \boldsymbol{\xi}
\end{array}
$$

is

$$
\begin{aligned}
\min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{S} p^{s} L\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \\
\text { s.t } & g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket .
\end{aligned}
$$

It is a deterministic problem that can be solved with standard tools or specific methods.

Vincent Leclère

Two-stage stochastic program
08/12/2021
$20 / 43$

Optimization under uncertainty 000000000000000	Stochastic Programming Approach 0000000000	Information and discretization 00000000000000000
Two-stage Problems		
Two-stage new	problem	\|

In extensive formulation the problem reads

$$
\begin{array}{rll}
\min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{s} \pi^{s}\left(c u_{0}-p u_{1}^{s}\right) & \\
\text { s.t. } & u_{0} \geq 0 & \\
& u_{1}^{s} \leq u_{0} & \forall s \in \llbracket 1, S \rrbracket \\
& u_{1}^{s} \leq d^{s} & \forall s \in \llbracket 1, S \rrbracket
\end{array}
$$

Note that there are as many second-stage control u_{1}^{s} as there are possible realization of the demand \boldsymbol{d}, but only one first-stage control u_{0}.

We can represent the newsvendor problem in a 2-stage framework.

- Let u_{0} be the number of newspaper bought in the morning. \rightsquigarrow first stage control
- let u_{1} be the number of newspaper sold during the day. \rightsquigarrow second stage control
The problem reads

$$
\begin{array}{cll}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[c u_{0}-p \boldsymbol{u}_{1}\right] & \\
\text { s.t. } & u_{0} \geq 0 & \mathbb{P}-\text { as } \\
& \boldsymbol{u}_{1} \leq u_{0} & \mathbb{P}-\text { as } \\
& \boldsymbol{u}_{1} \leq \boldsymbol{d} &
\end{array}
$$

Optimization under uncertainty	Stochastic Programming Approach	Information and discretization
o00000000000000		
Recourse assumptions		

Presentation Outline
(1) Optimization under uncertainty

- Some considerations on dealing with uncertainty
- Evaluating a solution
(2) Stochastic Programming Approach
- One-stage Problems
- Two-stage Problems
- Recourse assumptions

3) Information and discretization

- Information Frameworks
- Sample Average Approximation

Time decomposition of the problem

We presented the generic two-stage problem as

$$
\begin{array}{ll}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right) \leq 0, \quad \mathbb{P}-\text { a.s } \\
& \boldsymbol{u}_{1} \preceq \boldsymbol{\xi}
\end{array}
$$

With $L\left(u_{0}, \xi, u_{1}\right)=L_{0}\left(u_{0}\right)+L_{1}\left(u_{0}, \xi, u_{1}\right)$, it can also be written as

$$
\begin{array}{ll}
\min _{u_{0}} & L_{0}\left(u_{0}\right)+\mathbb{E}\left[\tilde{Q}\left(u_{0}, \boldsymbol{\xi}\right)\right] \quad \text { first stage problem } \\
\text { s.t. } & g_{0}\left(u_{0}\right) \leq 0
\end{array}
$$

where

$$
\begin{aligned}
\tilde{Q}\left(u_{0}, \xi\right):= & \min _{u_{1}} \quad L_{1}\left(u_{0}, \xi, u_{1}\right) \quad \text { second stage problem } \\
& \text { s.t. } \quad g_{1}\left(u_{0}, \xi, u_{1}\right) \leq 0
\end{aligned}
$$

The reformulation always exists, but is not unique

Vincent Leclère

Two-stage stochastic program

- We say that we are in a complete recourse framework, if for all $u_{0} \in U_{0}$, and almost-all possible outcome $\boldsymbol{\xi}$, every control \boldsymbol{u}_{1} is admissible, i.e.,

$$
\mathbb{P}\left(\widetilde{U}_{1}\left(u_{0}, \boldsymbol{\xi}\right)=\mathbb{R}^{n_{1}}\right)=1, \quad \forall u_{0} \in U_{0}
$$

- We say that we are in a relatively complete recourse framework, if for all $u_{0} \in U_{0}$, and almost-all possible outcome ξ, there exists a control \boldsymbol{u}_{1} that is admissible, i.e.

$$
\mathbb{P}\left(\widetilde{U}_{1}\left(u_{0}, \boldsymbol{\xi}\right) \neq \emptyset\right)=1, \quad \forall u_{0} \in U_{0}
$$

- We say that we are in an extended relatively complete recourse framework, if there exists $\varepsilon>0$ such that, for all $u_{0} \in U_{0}+\varepsilon B$, and almost-all possible outcome ξ, there exists a control \boldsymbol{u}_{1} that is admissible, i.e.

$$
\mathbb{P}\left(\widetilde{U}_{1}\left(u_{0}, \boldsymbol{\xi}\right) \neq \emptyset\right)=1, \quad \forall u_{0} \in U_{0}+\varepsilon B .
$$

Consider the problem

$$
\min _{\boldsymbol{u}_{0}, \boldsymbol{u}_{1}} \mathbb{E}\left[L\left(\boldsymbol{u}_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right]
$$

- Open-Loop case : \boldsymbol{u}_{0} and \boldsymbol{u}_{1} are deterministic. In this case both controls are choosen without any knowledge of the alea ξ. The set of control is small, and an optimal control can be found through specific method (e.g. Stochastic Gradient).
- Two-Stage case : \boldsymbol{u}_{0} is deterministic and \boldsymbol{u}_{1} is measurable with respect to ξ. This is the problem tackled by the Stochastic Programming case.
- Anticipative case : \boldsymbol{u}_{0} and \boldsymbol{u}_{1} are measurable with respect to ξ. This case consists in solving one deterministic problem per possible outcome of the alea, and taking the expectation of the value of this problems.

Splitted formulation

The extended formulation (in a compact way)

$$
\begin{aligned}
& \min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} \sum_{s=1}^{S} \pi^{s} L\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \\
& \text { s.t } g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket \text {. }
\end{aligned}
$$

Can be written in a splitted formulation

$$
\begin{array}{rlr}
\min _{\bar{u}_{0}, u_{0}^{s},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} & \sum_{s=1}^{S} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) & \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, & \forall s \in \llbracket 1, s \rrbracket \\
& u_{0}^{s}=u_{0}^{s^{\prime}} & \forall s, s^{\prime}
\end{array}
$$

Opotimiztio under uncertainy	Stochastic Programming Approach	
Information Framewors		
Splitted formulation		

The extended formulation (in a compact way)

Can be written in a splitted formulation

$$
\min _{\bar{u}_{0}, u_{0}^{s},\left\{u_{1}^{s}\right\}_{s \in[1, S]}} \sum_{s=1}^{S} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)
$$

$$
\text { s.t } g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
$$

$$
u_{0}^{s}=\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}}
$$

$$
\forall s
$$

$$
\begin{aligned}
& \min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in[1, S]}} \sum_{s=1}^{S} \pi^{s} L\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \\
& \text { s.t } g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket .
\end{aligned}
$$

Open-loop

$$
\begin{array}{lll}
\min _{u_{0}, u_{1}} & \sum_{s=1}^{S} \pi^{s}\left(c u_{0}-p u_{1}\right) & \\
\text { s.t. } & u_{0} \geq 0 & \\
& u_{1} \leq u_{0} & \\
& u_{1} \leq d^{s} & \forall s \in \llbracket 1, S \rrbracket
\end{array}
$$

Two-stage :

$$
\begin{array}{rll}
\min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} & \sum_{s=1}^{s} \pi^{s}\left(c u_{0}-p u_{1}^{s}\right) & \\
\text { s.t. } & u_{0} \geq 0 & \\
& u_{1}^{s} \leq u_{0} & \forall s \in \llbracket 1, s \rrbracket \\
& u_{1}^{s} \leq d_{s} & \forall s \in \llbracket 1, S \rrbracket
\end{array}
$$

Vincent Leclère

Anticipative :

$$
\begin{array}{rll}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{s} \pi^{s}\left(c u_{0}^{s}-p u_{1}^{s}\right) & \\
\text { s.t. } & u_{0}^{s} \geq 0 & \forall s \in \llbracket 1, S \rrbracket \\
& u_{1}^{s} \leq u_{0} & \forall s \in \llbracket 1, S \rrbracket \\
& u_{1}^{s} \leq d^{s} & \forall s \in \llbracket 1, S \rrbracket
\end{array}
$$

	Stochastic Progamming Approach coocoooch	Information and discretization 00000000000000000
Infomation Frameworks		
Comparing the	mation models	

The three information models can be written this way :

$$
\begin{array}{rlr}
\min _{\left\{u_{0}^{\left.s, u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}}\right.} & \sum_{s=1}^{S} \pi^{s}\left(c u_{0}^{s}-p u_{1}^{s}\right) & \\
\text { s.t. } & u_{0}^{s} \geq 0 & \forall s \in \llbracket 1, s \rrbracket \\
& u_{1}^{s} \leq u_{0} & \forall i \in \llbracket 1, S \rrbracket \\
& u_{1}^{s} \leq d^{s} & \forall i \in \llbracket 1, s \rrbracket \\
& u_{0}^{s}=u_{0}^{s^{\prime}} & \forall s, s^{\prime} \\
& u_{1}^{s}=u_{1}^{s^{\prime}} & \forall s, s^{\prime}
\end{array}
$$

Hence, by simple comparison of constraints we have

$$
V^{\text {anticipative }} \leq V^{2-\text { stage }} \leq V^{O L}
$$

Value of information

- The Expected Value of Perfect Information (EVPI) is defined as

$$
E V P I=v^{2-\text { stage }}-v^{\text {anticipative }} \geq 0
$$

- Its the maximum amount of money you can gain by getting more information (e.g. incorporating better statistical model in your problem)
- The Value of Stochastic Solution is defined as

$$
\text { VSS }=v^{O L}-v^{2-\text { stage }} \geq 0 .
$$

- The expected value problem is the value of the deterministic problem where the randomness is replaced by its expectation

$$
v^{E V}=\min _{u_{0}, u_{1}} L\left(u_{0}, \mathbb{E}[\xi], u_{1}\right) .
$$

- If $\left(u_{0}^{E V}, u_{1}^{E V}\right)$ is the solution of the EV problem, then $\mathbb{E}\left[L\left(u_{0}^{E V}, \boldsymbol{\xi}, u_{1}^{E V}\right)\right]$, is known as Expected Value of Expected Value problem $v^{E E V}$.

Solving the problems

- The solution of $v^{E E V}$ is easy to find (one deterministic problem), and its value is obtained by Monte-Carlo.
- $v^{O L}$ can be approximated through specific methods (e.g. SG).
- $v^{2-s t a g e}$ is obtained through Stochastic Programming specific methods. There are two main approaches:
- Lagrangian decomposition methods (like Progressive-Hedging algorithm).
- Benders decomposition methods (like L-shaped or nested-decomposition methods).
- $v^{\text {anticipative }}$ is difficult to compute exactly but can be estimated through Monte-Carlo approach by drawing a reasonable number of realizations of $\boldsymbol{\xi}$, solving the deterministic problem for each realization ξ_{i} and taking the means of the value of the deterministic problem.
- $v^{E V}$ is easy to compute, but is usefull only in the convex case.

How to deal with continuous distributions ?

Recall that if ξ as finite support we rewrite the 2 -stage problem

$$
\begin{array}{rl}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right) \leq 0, \quad \mathbb{P}-\text { a.s }
\end{array}
$$

as

$$
\begin{aligned}
\min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} & \sum_{s=1}^{S} \pi^{s} L\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \\
\text { s.t } & g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
\end{aligned}
$$

If we consider a continuous distribution (e.g. a Gaussian), we would need an infinite number of recourse variables to obtain an extensive formulation.

Sample Average Approximation

Biased estimator

Generically speaking the estimators of the minimum are biased

$$
\mathbb{E}\left[\hat{\mathbf{v}}_{N}\right] \leq \mathbb{E}\left[\hat{\mathbf{v}}_{N+1}\right] \leq v^{*}
$$

proof :

- Let $\left(\xi_{i}\right)_{i \in \mathbb{N}}$ be a sequence of iid copies of ξ
- Set $J(u):=\mathbb{E}[L(u, \boldsymbol{\xi})], \boldsymbol{J}_{N}(u):=\frac{1}{N} \sum_{i=1}^{N} L\left(u, \boldsymbol{\xi}_{i}\right)$
- We have, for every $u^{\prime} \in U, J_{N}\left(u^{\prime}\right) \geq \inf _{u \in U} J_{N}(u)$
- Taking the expectation yields,

$$
J\left(u^{\prime}\right)=\mathbb{E}\left[\boldsymbol{J}_{N}\left(u^{\prime}\right)\right] \geq \mathbb{E}\left[\inf _{u \in U} \boldsymbol{J}_{N}(u)\right]=\mathbb{E}\left[\hat{\boldsymbol{v}}_{N}\right] .
$$

- We now take the infimum over $u^{\prime} \in U$, to obtain

$$
v^{*}=\inf _{u^{\prime} \in U} J\left(u^{\prime}\right) \geq \mathbb{E}\left[\hat{\mathbf{v}}_{N}\right] .
$$

Consistency of estimator

Theorem (Convergence in the compact case)

Assume that

(1) U is compact non empty,
(2) J_{N} converges uniformly on U toward J,
(3) $\boldsymbol{U}_{N}^{\sharp}$ in non-empty,
(4) J is continuous on U.

Then,

- $v_{N}^{\sharp} \rightarrow v^{\sharp} \mathbb{P}^{N}$-a.s.,
- $\mathbb{D}\left(\boldsymbol{U}_{n}^{\sharp}, U^{\sharp}\right) \rightarrow 0 \quad \mathbb{P}^{N}$-a.s.

Theorem (Consistency of SAA)

If J_{N+1} converges almost surely toward J uniformly on U, then \hat{v}_{N} converges almost surely toward v^{\sharp}

Vincent Leclère
Optimization under uncertainty
00000000000000

Two-stage stochastic program
formation and discretiz
Sample Average Approximation

Theorem (Convergence in the convex case)

Assume that
(1) j is a.s. convex l.s.c.
(2) U is closed convex
(3) J is I.s.c, and there exists $u \in U$ such that a neighboorhoud of u is contained in $\operatorname{dom}(J)$
(4) $S \neq \emptyset$ is bounded
(0) the LLN holds

Then,

- $\boldsymbol{v}_{N}^{\sharp} \rightarrow v^{\sharp} \mathbb{P}^{N}$-a.s.
- $\mathbb{D}\left(\boldsymbol{U}_{n}^{\sharp}, U^{\sharp}\right) \rightarrow 0 \quad \mathbb{P}^{N}$-a.s.
(1) can be relaxed in a compact set containing optimal solution
(2) usually comes from the uniform law of large number
(3) can be obtained if J_{N} is lower semi-continuous with some non-empty but uniformly bounded level set
(4) often rely on a domination theorem.

Vincent Leclère

Optimization under uncertainty	Stochastic Programming Approach	Information and discretization
00000000000000	0000000000	
Sample Average Approximation		

Sample Average Approximation

Theorem (Convergence speed)

Assume that,

- $\mathbb{E}\left[j(u, \boldsymbol{\xi})^{2}\right]<\infty$,
- $u \mapsto j(u, \xi)$ is Lipschitz-continuous with constant $L(\xi)$ with $\mathbb{E}\left[L(\xi)^{2}\right]<\infty$,
- U is compact, $U^{\sharp}=\left\{u^{\sharp}\right\}$.

Then,

- $\boldsymbol{v}_{N}^{\sharp}=\boldsymbol{J}_{N}\left(u^{\sharp}\right)+o\left(\frac{1}{\sqrt{N}}\right)$,
- $\sqrt{N}\left(v_{N}^{\sharp}-v^{\sharp}\right) \Rightarrow \mathcal{N}\left(0, \sigma^{2}\left(u^{\sharp}\right)\right)$,
where $\sigma^{2}(u):=\mathbb{E}\left[(j(u, \boldsymbol{\xi})-\mathbb{E}[j(u, \boldsymbol{\xi})])^{2}\right]$
The unicity of solution assumption can be relaxed.
Good reference for precise results : Lectures on Stochastic Programming (Dentcheva, Ruszczynski, Shapiro) chap. 5.

Stochastic Dynamic Programming Bellman Operators

V. Leclère

December 15, 2021

Multistage stochastic programming

- From two-stage to multistage programming
- Information structure
- Bounds and heuristicsDynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators
(3) Practical aspects of Dynamic Programming
- Curses of dimensionality
- Numerical techniques

Multistage stochastic programming

- From two-stage to multistage programming
- Information structure
- Bounds and heuristics

Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators

Practical aspects of Dynamic Programming

- Curses of dimensionality
- Numerical techniques

- We take decisions in two stages

$$
u_{0} \leadsto \xi_{1} \leadsto \boldsymbol{u}_{1},
$$

with \boldsymbol{u}_{1} : recourse decision.

- On a tree, it resumes to solve the extensive formulation:
$\min _{u_{0}, u_{1, s}} \sum_{s \in \mathbb{S}} \pi^{s}\left[\left\langle c_{s}, u_{0}\right\rangle+\left\langle p_{s}, u_{1, s}\right\rangle\right]$.
We have as many $u_{1, s}$ as scenarios!

Multistage extensive formulation approach

$$
\begin{gathered}
\min _{\boldsymbol{u}} \mathbb{E}(j(\boldsymbol{u}, \boldsymbol{\xi})) \\
\boldsymbol{U}=\left(\boldsymbol{u}_{0}, \cdots, \boldsymbol{U}_{T}\right) \\
\boldsymbol{\xi}=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{T}\right)
\end{gathered}
$$

We take decisions in T stages $\xi_{0} \leadsto \boldsymbol{u}_{0} \leadsto \boldsymbol{\xi}_{1} \leadsto \boldsymbol{u}_{1} \leadsto \cdots \leadsto \boldsymbol{\xi}_{T} \leadsto \boldsymbol{u}_{T}$

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Illustrating extensive formulation with the damsvalley		
example		

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Contents		

- From two-stage to multistage programming
- Information structure
- Bounds and heuristics
(2) Dynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators
(3) Practical aspects of Dynamic Programming
- Curses of dimensionality
- Numerical techniques

Multistage stochastic programming

Optimization Problem

We want to solve the following optimization problem

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{x}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1}=f_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad \boldsymbol{x}_{0}=\boldsymbol{\xi}_{0} \\
& \left.\boldsymbol{u}_{t} \in \mathcal{U}_{t} \boldsymbol{x}_{t}\right) \\
& \sigma\left(\boldsymbol{u}_{t}\right) \subset \mathcal{F}_{t}:=\sigma\left(\boldsymbol{\xi}_{0}, \cdots, \boldsymbol{\xi}_{t}\right) \tag{1d}
\end{array}
$$

Where

- constraint (1b) is the dynamic of the system ;
- constraint (1c) refer to the constraint on the controls;
- constraint (1d) is the information constraint : \boldsymbol{u}_{t} is choosen knowing the realisation of the noises $\xi_{0}, \ldots, \boldsymbol{\xi}_{t}$ but without knowing the realisation of the noises $\boldsymbol{\xi}_{t+1}, \ldots, \boldsymbol{\xi}_{T-1}$.

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000	
Information structure		\|	

Be careful when modeling your information structure:

- Open-loop information structure might happen in practice (you have to decide on a planning and stick to it). If the problem does not require an open-loop solution then it might be largely suboptimal (imagine driving a car eyes closed...). In any case it yields an upper-bound of the problem.
- In some cases decision-hazard and hazard-decision are both approximation of the reality. Hazard-decision yield a lower value then decision-hazard.
- Anticipative structure is never an accurate modelization of the reality. However it can yield a lower-bound of your optimization problem relying on deterministic optimization and Monte-Carlo.
We are going to assume Hazard-Decision structure

In Problem (1), constraint (1d) is the information constraint.
There are different possible information structure.

- If constraint (1d) reads $\sigma\left(\boldsymbol{u}_{t}\right) \subset \mathcal{F}_{0}$, the problem is open-loop, as the controls are choosen without knowledge of the realisation of any noise.
- If constraint (1d) reads $\sigma\left(\boldsymbol{u}_{t}\right) \subset \mathcal{F}_{t}$, the problem is said to be in decision-hazard structure as decision \boldsymbol{u}_{t} is chosen without knowing ξ_{t+1}.
- If constraint (1d) reads $\sigma\left(\boldsymbol{u}_{t}\right) \subset \mathcal{F}_{t+1}$, the problem is said to be in hazard-decision structure as decision \boldsymbol{u}_{t} is chosen with knowledge of ξ_{t+1} (in which case we have $\boldsymbol{u}_{t} \in \mathcal{U}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right)$)
- If constraint (1d) reads $\sigma\left(\boldsymbol{u}_{t}\right) \subset \mathcal{F}_{T-1}$, the problem is said to be anticipative as decision \boldsymbol{u}_{t} is chosen with knowledge of all the noises.

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Contents		

- From two-stage to multistage programming
- Information structure
- Bounds and heuristics
(2) Dynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators
(3) Practical aspects of Dynamic Programming
- Curses of dimensionality
- Numerical techniques
$\begin{array}{lll}\text { Multistage stochastic programming } & \text { Dynamic Programming } & \text { Practical aspects of Dynamic Programming } \\ 00000000000000 & 00000000000000 & 0000000000\end{array}$
Bounds and heuristics
- Due to the size of the extensive formulation of multistage programm we cannot hope to numerically solve them without further assumptions on the problem.
- However, there are a few ideas we can use to get
- heuristics policies (that is non-optimal but "reasonable" solution), and thus upper bounds (estimated by Monte Carlo)
- lower bounds to guarantee quality of heuristics
- We can get these through:
- deterministic approximation
- two-stage approximations
- linear decision rules
- ..

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Deterministic heuristic		

- The first heuristic consists in simply replacing ξ_{t+1} by an estimation (often its expectation $\mathbb{E}\left[\xi_{t+1}\right]$), and solve a deterministic problem.
- A more advanced heuristic consists in looking for optimal open-loop solution (e.g. by using Stochastic Gradient algorithms).

Anticipative lower bound

- If we relax the measurability constraint by assuming that u_{t} is measurable w.r.t $\sigma\left(\xi_{0}, \ldots, \xi_{T}\right)$, that is knows the whole scenario we get the anticipative solution :

$$
\mathbb{E}\left[\min _{\boldsymbol{u}} \sum_{t=0}^{T} L_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \xi_{t+1}\right)+K\left(x_{T}\right)\right]
$$

- This can be computed by solving $|\Omega|$ deterministic optimization problems.
- As $|\Omega|$ is often too large, this lower bound is estimated by Monte-Carlo :
- draw N scenarios (e.g. $N=1000$)
- solve each deterministic problem
- average their value to estimate the lower bound

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Model Predictive Control		

- A very classical heuristic, often very efficient if the stochasticity is not too important is the so-called Model Predictive Control (MPC).
- MPC works in the following way:
- at time t_{0}, being in x_{0}, solve the deterministic problem

$$
\begin{array}{ll}
\text { min } & \sum_{t=t_{0}}^{T-1} L_{t}\left(x_{t}, u_{t}, \hat{\xi}_{t+1}\right)+K\left(x_{T}\right) \\
\text { s.t. } & x_{t+1}=f_{t}\left(x_{t}, u_{t}, \hat{\xi}_{t+1}\right), \quad x_{t_{0}}=x_{0} \\
& u_{t} \in \mathcal{U}_{t}\left(x_{t}\right)
\end{array}
$$

where $\hat{\xi}_{t}$ is your best estimate of $\boldsymbol{\xi}_{t}$ (its expectation by default)

- apply $u_{t_{0}}$ and get $x_{t_{0}+1}$
- update your estimation of $\boldsymbol{\xi}$, set $x_{0}=x_{t_{0}+1}$ and $t_{0}=t_{0}+1$
- We can refine the anticipative lower bound by relaxing all measurability constraint except the one on u_{0}.
- We thus obtain a two-stage programm u_{0} being the first stage control, and all the other u_{t} knowing the whole scenario are second-stage variable.
- We thus have a 2 -stage program with $|\Omega|$ second stage (vector) variables whose value is a lower-bound to the original problem.
- This value can be approximated by SAA :
- draw N scenarios
- write a 2 -stage programm with these scenarios, with ν_{0} as first stage control and (u_{1}, \ldots, u_{T-1}) as recourse
- its value is an estimation of the 2 -stage lower-bound

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming oocooo00000
Linear Decision Rules		

- Another way of getting heuristics consists in looking for solution $\boldsymbol{u}_{t}=\Phi_{t}\left(\xi_{0}, \ldots, \boldsymbol{\xi}_{t+1}\right)$ where Φ is in a specific class of function.
- Classically we can look for Φ_{t} in the class of affine functions.
- In which case, a multistage linear stochastic programm turns into a large one-stage stochastic linear programm, which can be approximated by SAA to get a reasonable LP.
- Don't forget to evaluate the obtained heuristic by Monte Carlo on new scenarios.
- We can adapt the MPC approach by solving two-stage programm instead of deterministic one.
- The procedure goes as follows:
- at time t_{0} in stage x_{0}, draw N scenarios
- approximate the problem on $\left[t_{0}, T\right]$ by a two-stage programm with $u_{t_{0}}$ as first stage variable, and ($u_{t_{0}+1}, \ldots, u_{T-1}$) as recourse
- apply $u_{t_{0}}$ and get $x_{t_{0}+1}$
- set $x_{0}=x_{t_{0}+1}$ and $t_{0}=t_{0}+1$

Multistage stochastic programming 00000000000000	Dynamic Programming $\bullet 00000000000000$	Practical aspects of Dynamic Programming
Conooooo0000		

(1) Multistage stochastic programming

- From two-stage to multistage programming
- Information structure
- Bounds and heuristicsDynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators
(3) Practical aspects of Dynamic Programming
- Curses of dimensionality
- Numerical techniques

Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by its dynamic

$$
\boldsymbol{x}_{t+1}=f_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)
$$

and initial state

$$
x_{0}=\xi_{0}
$$

The variables

- x_{t} is the state of the system,
- \boldsymbol{u}_{t} is the control applied to the system at time t,
- ξ_{t} is an exogeneous noise.

Usually, $\boldsymbol{x}_{t} \in \mathbb{X}_{t}$ and \boldsymbol{u}_{t} beglongs to a set depending upon the state: $\boldsymbol{u}_{t} \in U_{t}\left(\boldsymbol{x}_{t}\right)$.

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
More considerations about the state		

- Physical state: the physical value of the controlled system. e.g. amount of water in your dam, position of your boat...
- Information state: physical state and information you have over noises. e.g.: amount of water and weather forecast...
- Knowledge state: your current belief over the actual information state (in case of noisy observations). Represented as a distribution law over information states.

The state in the Dynamic Programming sense is the information required to define an optimal solution.

- Stock of water in a dam:
- \boldsymbol{x}_{t} is the amount of water in the dam at time t,
- \boldsymbol{u}_{t} is the amount of water turbined at time t,
- $\boldsymbol{\xi}_{t+1}$ is the inflow of water in $[t, t+1[$.
- Boat in the ocean:
- \boldsymbol{x}_{t} is the position of the boat at time t,
- \boldsymbol{u}_{t} is the direction and speed chosen for $[t, t+1[$,
- ξ_{t+1} is the wind and current for $[t, t+1[$.
- Subway network:
- \boldsymbol{x}_{t} is the position and speed of each train at time t,
- \boldsymbol{u}_{t} is the acceleration chosen at time t,
- $\boldsymbol{\xi}_{t+1}$ is the delay due to passengers and incident on the network for $[t, t+1[$.

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Optimization Problem		

We want to solve the following optimization problem

$$
\begin{array}{ll}
\min _{\boldsymbol{u} \phi} & \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{x}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1}=f_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad \boldsymbol{x}_{0}=\boldsymbol{\xi}_{0} \\
& \boldsymbol{u}_{t} \in \mathcal{U}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right) \\
& \sigma\left(\boldsymbol{u}_{t}\right) \subset \sigma\left(\boldsymbol{\xi}_{0}, \cdots, \boldsymbol{\xi}_{t+1}\right) \boldsymbol{u}_{t}=\Phi\left(\boldsymbol{\xi}_{0}, \cdots, \boldsymbol{\xi}_{t+1}\right)
\end{array}
$$

(1) We want to minimize the expectation of the sum of costs.
(2) The system follows a dynamic given by the function f_{t}.
(3) There are constraints on the controls.
(4) The controls are functions of the past noises (= non-anticipativity).

Optimization Problem with independence of noises

If noises at time independent, the optimization problem is equivalent to

$$
\begin{array}{ll}
\min _{\pi} & \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{x}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1}=f_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad \boldsymbol{x}_{0}=\boldsymbol{\xi}_{0} \\
& \boldsymbol{u}_{t} \in \mathcal{U}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right) \\
& \boldsymbol{u}_{t}=\pi_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right)
\end{array}
$$

Keeping only the state

For notational ease, we want to formulate Problem (1) only with states. Let $\mathcal{X}_{t}\left(x_{t}, \xi_{t+1}\right)$ be the reachable states, i.e.,
$\mathcal{X}_{t}\left(x_{t}, \xi_{t+1}\right):=\left\{x_{t+1} \in \mathbb{X}_{t+1} \quad \mid \quad \exists u_{t} \in \mathcal{U}_{t}\left(x_{t}, \xi_{t+1}\right), \quad x_{t+1}=f_{t}\left(x_{t}, u_{t}, \xi_{t+1}\right)\right\}$
And $c_{t}\left(x_{t}, x_{t+1}, \xi_{t+1}\right)$ the transition cost from x_{t} to x_{t+1}, i.e.,
$c_{t}\left(x_{t}, x_{t+1}, \xi_{t+1}\right):=\min _{u_{t} \in U_{t}\left(x_{t}, \xi_{t+1}\right)}\left\{L_{t}\left(x_{t}, u_{t}, \xi_{t+1}\right) \quad \mid \quad x_{t+1}=f_{t}\left(x_{t}, u_{t}, \xi_{t+1}\right)\right\}$.
Then, under independance of noises, the optimization problem reads

$$
\begin{array}{ll}
\min _{\psi} & \mathbb{E}\left[\sum_{t=0}^{T-1} c_{t}\left(x_{t}, x_{t+1}, \boldsymbol{\xi}_{t+1}\right)+K\left(x_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1} \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad x_{0}=\boldsymbol{\xi}_{0} \\
& \boldsymbol{x}_{t+1}=\psi_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right)
\end{array}
$$

Contents

Multistage stochastic programming- From two-stage to multistage programming
- Information structure
- Bounds and heuristicsDynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators

3) Practical aspects of Dynamic Programming

- Curses of dimensionality
- Numerical techniques

Richard Ernest Bellman
(August 26, 1920 - March 19, 1984)

An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision (Richard Bellman)

The shortest path on a graph illustrates Bellman's

For an auto travel analogy, suppose that the fastest route from Los Angeles to Boston passes through Chicago.
The principle of optimality translates to obvious fact that the Chicago to Boston portion of the route is also the fastest route for a trip that starts from Chicago and ends in Boston. (Dimitri P. Bertsekas)

Dynamic Programming Principle

Assume that the noises ξ_{t} are time-independent and exogeneous. The Bellman's equation writes

$$
\left\{\begin{aligned}
V_{T}(x) & =K(x) \\
\hat{V}_{t}(x, \xi) & =\min _{y \in \mathcal{X}_{t}(x, \xi)} c_{t}\left(x, y, \xi_{t+1}\right)+V_{t+1}(y) \\
V_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t+1}\right)\right]
\end{aligned}\right.
$$

An optimal state trajectory is obtained by $\boldsymbol{x}_{t+1}=\psi_{t}^{V}\left(\boldsymbol{x}_{t}\right)$, with

$$
\psi_{t}^{V}(x, \xi) \in \underset{y \in \mathcal{X}_{t}(x, \xi)}{\arg \min } \underbrace{c_{t}(x, y, \xi)}_{\text {current cost }}+\underbrace{V_{t+1}(y)}_{\text {future costs }},
$$

Interpretation of Bellman Value Function

The Bellman's value function $V_{t_{0}}(x)$ can be interpreted as the value of the problem starting at time t_{0} from the state x.
More precisely we have

$$
\begin{aligned}
V_{t_{0}}(x)=\min & \mathbb{E}\left[\sum_{t=t_{0}}^{T-1} L_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{x}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1}=f_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad \boldsymbol{x}_{t_{0}}=x \\
& \boldsymbol{u}_{t} \in \mathcal{U}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right) \\
& \sigma\left(\boldsymbol{u}_{t}\right) \subset \sigma\left(\boldsymbol{\xi}_{0}, \cdots, \boldsymbol{\xi}_{t+1}\right)
\end{aligned}
$$

or

$$
\begin{array}{ll}
\min _{\psi} & \mathbb{E}\left[\sum_{t=t_{0}}^{T-1} c_{t}\left(x_{t}, x_{t+1}, \boldsymbol{\xi}_{t+1}\right)+K\left(x_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1} \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad x_{t_{0}}=x \\
& \boldsymbol{x}_{t+1}=\psi_{t}\left(\boldsymbol{x}_{t}\right)
\end{array}
$$

Recall that we want to solve the following optimization problem

$$
\begin{array}{ll}
\min _{\psi} & \mathbb{E}\left[\sum_{t=0}^{T-1} c_{t}\left(x_{t}, x_{t+1}, \boldsymbol{\xi}_{t+1}\right)+K\left(x_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{x}_{t+1} \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\xi}_{t+1}\right), \quad x_{0}=\boldsymbol{\xi}_{0} \\
& \boldsymbol{x}_{t+1}=\psi_{t}\left(\boldsymbol{x}_{t}\right)
\end{array}
$$

With Bellman's equation reading

$$
\left\{\begin{aligned}
V_{T}(x) & =K(x) \\
\hat{V}_{t}(x, \xi) & =\min _{y \in \mathcal{X}_{t}(x, \xi)} \quad c_{t}(x, y, \xi)+V_{t+1}(y) \\
V_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t+1}\right)\right]
\end{aligned}\right.
$$

Bellman operator

For any time t, and any function R mapping the set of states and noises $\mathbb{X} \times \equiv$ into \mathbb{R}, we define

$$
\left\{\begin{aligned}
\hat{\mathcal{B}}_{t}(R)(x, \xi) & :=\min _{y \in \in_{t}(x, \xi)} \quad c_{t}(x, y, \xi)+R(y) \\
\mathcal{B}_{t}(R)(x) & :=\mathbb{E}\left(\hat{\mathcal{B}}_{t}(R)\left(x, \boldsymbol{\xi}_{t+1}\right)\right)
\end{aligned}\right.
$$

Thus the Bellman equation simply reads

$$
\left\{\begin{array}{l}
V_{T}=K \\
V_{t}=\mathcal{B}_{t}\left(V_{t+1}\right)
\end{array}\right.
$$

Further, any estimation R of the value functions yields an admissible trajectory given by

$$
\psi_{t}^{R}(x, \xi) \in \underset{y \in \mathcal{X}(x, \xi)}{\arg \min } c_{t}(x, y, \xi)+R_{t+1}(y)
$$

optimal if $R_{t}=V_{t}$.

Assume that $\boldsymbol{\xi}_{t}$ are finitely supported

- Monotonicity:

$$
R \leq \bar{R} \quad \Rightarrow \mathcal{B}_{t}(R) \leq \mathcal{B}_{t}(\bar{R})
$$

- Convexity: if c_{t} is jointly convex in (x, y) for all ξ, R is convex, $\operatorname{gr}\left(\mathcal{X}_{t}\right)$ is convex then

$$
x \mapsto \mathcal{B}_{t}(R)(x) \quad \text { is convex }
$$

- Polyhedrality: for any polyhedral function R, if c_{t} is also polyhedral for all ξ, and $\operatorname{gr}\left(\mathcal{X}_{t}\right)$ is polyhedral, then

$$
x \mapsto \mathcal{B}_{t}(R)(x) \quad \text { is polyhedral }
$$

In the convex case we can compute exact upper-bound on the value of the stochastic optimization problem.

- For all $t \leq T$, select points $\left\{x_{t}^{n}\right\}_{n \leq N}$ in \mathbb{X}_{t}.
- For $t=T$, define $v_{T}^{n}=K\left(x_{t}^{n}\right)$.
- Iteratively backward for $t=T$.. 1 :
- $\bar{v}_{t}(x):=\min _{\alpha \in \Delta_{n}}\left\{\sum_{n=1}^{N} \alpha^{n} v_{t}^{n} \mid \sum_{n=1}^{N} \alpha^{n} x_{t}^{n}=x\right\}$
- where $\Delta_{n}=\left\{\alpha \in \mathbb{R}^{n} \mid \sum_{n} \alpha_{n}=1, \alpha_{n} \geq 0\right\}$.
- Compute $v_{t-1}^{n}=\mathcal{B}_{t-1}\left(\bar{V}_{t}\right)\left(x_{t-1}^{n}\right)$
- For all $t, \bar{V}_{t} \geq V_{t}$, and in particular $\mathcal{B}_{0}\left(\bar{V}_{1}\right)\left(x_{0}\right)$ is an upper bound on the value of our problem.

Contents
(1) Multistage stochastic programming

- From two-stage to multistage programming
- Information structure
- Bounds and heuristics
(2) Dynamic Programming
- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators

Practical aspects of Dynamic Programming

- Curses of dimensionality
- Numerical techniques

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Dynamic Progra	Algorithm	rete Case

Data: Problem parameters
Result: optimal trajectory and value;
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
for $x \in \mathbb{X}_{t}$ do
for $\xi \in \bar{\Xi}_{t}$ do
$\hat{V}_{t}(x, \xi)=\infty ;$
for $y \in \mathcal{X}_{t}(x, \xi)$ do

$$
v_{y}=c_{t}(x, y, \xi)+v_{t+1}(y)
$$

if $v_{y}<\hat{V}_{t}(x, \xi)$ then
$\hat{V}_{t}(x, \xi)=v_{y}$;
$\psi_{t}(x, \xi)=y$;
$V_{t}(x)=V_{t}(x)+\mathbb{P}(\xi) \hat{V}_{t}(x, \xi)$
Algorithm 1: Classical stochastic dynamic programming algorithm

Multistage stochastic programming	Dynamic Programming	Practical aspects of Dynamic Programming 0000000000
3 curses of dime	lity	

Complexity $=O\left(T \times\left|\mathbb{X}_{t}\right| \times\left|\mathcal{X}_{t}\right| \times\left|\bar{\Xi}_{t}\right|\right)$
Linear in the number of time steps, but we have 3 curses of dimensionality :
(1) State. Complexity is exponential in the dimension of \mathbb{X}_{t} e.g. 3 independent states each taking 10 values leads to a loop over 1000 points.
(2) Decision. Complexity is exponential in the dimension of \mathcal{X}_{t}. \rightsquigarrow due to exhaustive minimization of inner problem. Can be accelerated using faster method (e.g. MILP solver).
(3) Expectation. Complexity is exponential in the dimension of \bar{E}_{t}.
\rightsquigarrow due to expectation computation. Can be accelerated through Monte-Carlo approximation (still at least 1000 points)
In practice DP is not used for state of dimension more than 5 .

Illustrating dynamic programming with the damsvalley example

Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with 52 timesteps (common in energy management) plus 5 controls and 5 independent noises.
(1) We discretize each state's dimension in 100 values:

$$
\left|\mathbb{X}_{t}\right|=100^{5}=10^{10}
$$

(2) We discretize each control's dimension in 100 values: $\left|U_{t}\right|=100^{5}=10^{10}$
(3) We use optimal quantization to discretize the noises' space in 10 values: $\left|\bar{\Xi}_{t}\right|=10$
Number of flops: $\mathcal{O}\left(52 \times 10^{10} \times 10^{10} \times 10\right) \approx \mathcal{O}\left(10^{23}\right)$.
In the TOP500, the best computer computes 10^{17} flops $/ \mathrm{s}$.
Even with the most powerful computer, it takes at least 12 days to solve this problem.
V. Leclère

Dynamic Programming
15/12/2020

Multistage stochastic programming 00000000000000	Dynamic Programming 000000000000000	Practical aspects of Dynamic Programming 0000000000
Contents		

- From two-stage to multistage programming
- Information structure
- Bounds and heuristics

2) Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle
- Bellman Operators
(3) Practical aspects of Dynamic Programming
- Curses of dimensionality
- Numerical techniques

Algorithm: Offline value functions precomputation + Online open loop reoptimization
Offline: We produce value functions with Bellman equation:

$$
V_{t}(x)=\mathbb{E}\left[\min _{y \in \mathcal{X}_{t}\left(x, \boldsymbol{\xi}_{t+1}\right)} c_{t}\left(x, y, \boldsymbol{\xi}_{t+1}\right)+V_{t+1}(y)\right]
$$

Online: At time t, knowing x_{t} and ξ_{t+1} we plug the computed value function V_{t+1} as future cost

$$
x_{t+1} \in \underset{y \in \mathcal{X}_{t}\left(x_{t}, \xi_{t+1}\right)}{\arg \min } \quad c_{t}\left(x_{t}, y, \xi_{t+1}\right)+V_{t+1}(y)
$$

This can be extended to approximate value function \tilde{V}_{t} computed in any way.

When the state space is continuous, the DP equation holds

$$
V_{t}(x)=\mathbb{E}\left[\min _{y \in \mathcal{X}_{t}\left(x, \boldsymbol{\xi}_{t+1}\right)} c_{t}\left(x, y, \boldsymbol{\xi}_{t+1}\right)+V_{t+1}(y)\right] .
$$

- But computation is impractical in a continuous space. Simplest solution : discretization and interpolation.
- We choose a finite set $\mathbb{X}_{t}^{D} \subset \mathbb{X}_{t}$ where we will compute (an approximation of) the Bellman value V_{t}
- We approximate the Bellman value at time t by interpolating these value.

Independence of noises

- The Dynamic Programming equation requires only the time-independence of noises.
- This can be relaxed if we consider an extended state.
- Consider a dynamic system driven by an equation

$$
\boldsymbol{y}_{t+1}=f_{t}\left(\boldsymbol{y}_{t}, \boldsymbol{u}_{t}, \varepsilon_{t+1}\right)
$$

where the random noise ε_{t} is an AR-1 process :

$$
\varepsilon_{t}=\alpha_{t} \varepsilon_{t-1}+\beta_{t}+\boldsymbol{\xi}_{t},
$$

$\left\{\boldsymbol{\xi}_{t}\right\}_{t \in \mathbb{Z}}$ being independent.

- Then \boldsymbol{y}_{t} is called the physical state of the system and DP can be used with the information state $\boldsymbol{x}_{t}=\left(\boldsymbol{y}_{t}, \varepsilon_{t}\right)$.
- Generically speaking, if the noise ξ_{t} is exogeneous (not affected by decisions \boldsymbol{u}_{t}), then we can always apply Dynamic Programming with the state $\left(x_{t}, \xi_{1}, \ldots, \boldsymbol{\xi}_{t}\right)$.
- Multistage stochastic programming fails to handle large number of timesteps.
- Dynamic Programming overcomes this difficulty while compressing information inside a state \boldsymbol{x}.
- Dynamic Programming computes backward a set of value functions $\left\{V_{t}\right\}$, corresponding to the optimal cost of being at a given position at time t.
- Numerically, DP is limited by the curse of dimensionality and its performance are deeply related to the discretization of the look-up table used.
- Other methods exist to compute the value functions without look-up table (Approximate Dynamic Programming, SDDP).

DP on a Markov Chain

- Sometimes it is easier to represent a problem as a controlled Markov Chain
- Dynamic Programming equation can be computed directly, without expliciting the control.
- Let's work out an example...

Independence of noises: AR-1 case

- Consider a dynamic system driven by an equation $\boldsymbol{y}_{t+1}=f_{t}\left(\boldsymbol{y}_{t}, \boldsymbol{u}_{t}, \varepsilon_{t+1}\right)$ where the random noise ε_{t} is an AR-1 process : $\boldsymbol{\varepsilon}_{t}=\alpha_{t} \varepsilon_{t-1}+\beta_{t}+\boldsymbol{\xi}_{t+1},\left\{\boldsymbol{\xi}_{t}\right\}_{t \in \mathbb{Z}}$ being independent.
- Define the information state $\boldsymbol{x}_{t}=\left(\boldsymbol{y}_{t}, \boldsymbol{\varepsilon}_{t}\right)$.
- Then we have

$$
\boldsymbol{x}_{t+1}=\binom{f_{t}\left(\boldsymbol{y}_{t}, \boldsymbol{u}_{t}, \alpha_{t} \varepsilon_{t}+\beta_{t}+\boldsymbol{\xi}_{t+1}\right)}{\alpha_{t} \varepsilon_{t}+\beta_{t}+\boldsymbol{\xi}_{t+1}}=\tilde{f}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t+1}\right)
$$

- And we have the following DP equation

$$
V_{t}\binom{y}{\varepsilon}=\min _{u \in U_{t}(x)} \mathbb{E}[L_{t}(y, u, \underbrace{\alpha_{t} \varepsilon+\beta_{t}+\boldsymbol{\xi}_{t+1}}_{" \varepsilon_{t+1} "})+V_{t+1} \circ \underbrace{\tilde{f}_{t}\left(x, u, \boldsymbol{\xi}_{t+1}\right)}_{{ }^{\prime} x_{t+1} "}]
$$

Controlled Markov Chain

- A controlled Markov Chain is controlled stochastic dynamic system with independent noise $\left(\boldsymbol{w}_{t}\right)_{t \in \mathbb{Z}}$, where the dynamic and the noise are left unexplicited.
- What is given is the transition probability

$$
\pi_{t}^{u}(x, y):=\mathbb{P}\left(\boldsymbol{x}_{t+1}=y \mid \boldsymbol{x}_{t}=x, \boldsymbol{u}_{t}=u\right) .
$$

- In this case the cost are given as a function of the current stage, the next stage and the control.
- The Dynamic Programming Equation then reads (assume finite state)

$$
V_{t}(x)=\min _{u} \sum_{y \in \mathbb{X}_{t+1}} \pi_{t}^{u}(x, y)\left[L_{t}^{u}(x, y)+V_{t+1}(y)\right] .
$$

Example

Controlled Markov Chain

Consider a machine that has two states : running (R) and broken (B). If it is broken we need to fix it (F) for a cost of 100. If it is running there are two choices: maintaining it (M), or not maintaining (N). If we maintain, the cost is 25 and the machine stay running with probability $\pi^{M}(R, R)=1$; if we do not maintain there is a probability of $\pi^{N}(R, B)=0.5$ of breaking it (or keep it running). We need to have it running for 3 periods.

	V_{0}	V_{1}
R	$\min \{25+50,0+(50+125) / 2\} 75$	min $\{25+25,0+(25+100)$
B	$100+50150$	$100+25125$

Stochastic Optimization

Decomposition Methods for Two-stage problems

V. Leclère

(1) Lagrangian decomposition
(2) L-Shaped decomposition method

January 5th 2022

École des Ponts
ParisTech

Vincent Leclère

Two-stage Problem

The extensive formulation of

$$
\begin{array}{rl}
\min _{u_{0}, \boldsymbol{u}_{1}} & \mathbb{E}\left[L\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right)\right] \\
\text { s.t. } & g\left(u_{0}, \boldsymbol{\xi}, \boldsymbol{u}_{1}\right) \leq 0, \quad \mathbb{P}-\text { a.s } \\
& \sigma\left(\boldsymbol{u}_{1}\right) \subset \sigma(\boldsymbol{\xi})
\end{array}
$$

is

$$
\begin{aligned}
\min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} & \sum_{s=1}^{S} \pi^{s} L\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \\
\text { s.t } & g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket .
\end{aligned}
$$

It is a deterministic problem that can be solved with standard tools or specific methods.

The extended Formulation (in a compact formulation)

$$
\begin{aligned}
& \min _{u_{0},\left\{u_{1}^{s}\right\}_{s \in[1, S]}} \sum_{s=1}^{S} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \\
& \text { s.t } g\left(u_{0}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket .
\end{aligned}
$$

Can be written in a splitted formulation

$$
\begin{array}{rlr}
\min _{\bar{u}_{0}\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{S} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) & \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, & \forall s \in \llbracket 1, S \rrbracket \\
& u_{0}^{s}=\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}} & \forall s
\end{array}
$$

$$
\begin{array}{rlr}
\min _{\left\{u_{0}^{s}, u_{1}^{\}}\right\} s \in \llbracket 1, s \rrbracket} & \sum_{s=1}^{s} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) & \\
s . t & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, & \forall s \in \llbracket 1, s \rrbracket \\
& u_{0}^{s}=\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}} & \forall s
\end{array}
$$

is equivalent to

$$
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}\left\{\lambda^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} \sum_{s=1}^{S} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\pi^{s} \lambda^{s}\left(u_{0}^{s}-\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}}\right)
$$

$$
\text { s.t } g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
$$

Dualizing non-anticipativity constraint

$$
\begin{array}{rlr}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{s} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) & \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, & \forall s \in \llbracket 1, S \rrbracket \\
& u_{0}^{s}=\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}} & \forall s
\end{array}
$$

is equivalent to

$$
\begin{aligned}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} \max _{\{\lambda\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{s} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \\
& +\sum_{s=1}^{s} \pi^{s} \lambda^{s} u_{0}^{s}-\sum_{s^{\prime}} \mathbb{E}[\lambda] \pi^{s^{\prime}} u_{0}^{s^{\prime}} \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
\end{aligned}
$$

$$
\begin{array}{rlr}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, s \rrbracket}} & \sum_{s=1}^{s} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) & \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, & \forall s \in \llbracket 1, S \rrbracket \\
& u_{0}^{s}=\sum_{s^{\prime}} \pi^{s^{\prime}} u_{0}^{s^{\prime}} & \forall s
\end{array}
$$

is equivalent to

$$
\begin{aligned}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} \max _{\left\{\lambda^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{s} \pi^{s} L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \\
& +\sum_{s=1}^{s} \pi^{s}\left(\lambda^{s}-\mathbb{E}[\lambda]\right) u_{0}^{s} \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
\end{aligned}
$$

Dualizing non-anticipativity constraint

Thus, the dual problem reads

$$
\begin{aligned}
\max _{\lambda: \mathbb{E}[\lambda]=0} \min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}_{s \in \llbracket 1, S \rrbracket}} & \sum_{s=1}^{S} \pi^{s}\left(L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\left(\lambda^{s}-\mathbb{E}[\boldsymbol{\lambda}]\right) u_{0}^{s}\right) \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0, \quad \forall s \in \llbracket 1, S \rrbracket
\end{aligned}
$$

The inner minimization problem, for $\boldsymbol{\lambda}$ given, can decompose scenario by scenario, by solving S deterministic problem

$$
\begin{array}{cl}
\min _{\left\{u_{0}^{s}, u_{1}^{s}\right\}} & L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\lambda^{s} u_{0}^{s} \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0
\end{array}
$$

- By weak duality, any $\boldsymbol{\lambda}$ such that $\mathbb{E}[\boldsymbol{\lambda}]=0$ will give a lower bound on the 2 -stage problem, computed as

$$
\begin{aligned}
\sum_{s=1}^{s} \pi^{s} & \min _{u_{0}^{s}, u_{1}^{s}} \\
\text { s.t } & \left(L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\lambda^{s} u_{0}^{s}\right) \\
& g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0
\end{aligned}
$$

- $\boldsymbol{\lambda}=0$ lead to the anticipative lower-bound
- If problem is convex, and under some qualification assumptions, there exists an optimal λ^{*}, called the price of information, such that the lower bound is tight.

Vincent Leclère

Lagrangian decomposition L-Shaped decomposition method $000000 \bullet 00$ 00000000000000	Multistage program	
		00000000

Progressive Hedging Algorithm

The progressive hedging algorithm build on this decomposition in the following way.
(1) Set a price of information $\left\{\lambda^{s}\right\}_{s \in \llbracket 1, S \rrbracket}$ such that $\mathbb{E}[\boldsymbol{\lambda}]=0$
(2) For each scenario solve

$$
\begin{array}{rl}
\min _{u_{0}^{s}, u_{1}^{s}} & L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\lambda^{s} u_{0}^{s}+\rho\left\|u_{0}^{s}-\bar{u}_{0}\right\|^{2} \\
\text { s.t } & g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right) \leq 0
\end{array}
$$

(3) Compute the mean first control $\bar{u}_{0}:=\sum_{s=1}^{S} \pi^{s} u_{0}^{s}$
(1) Update the price of information with

$$
\lambda^{s}:=\lambda^{s}+\rho\left(u_{0}^{s}-\bar{u}_{0}\right)
$$

Theorem

Assume that L and g are convex Isc in $\left(u_{0}, u_{1}\right)$ for all ξ, and that, for all $s \in S$, there exists $\left(u_{0}^{s}, u_{1}^{s}\right)$ such that $L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)<+\infty$ and $g\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)<0$.
Then, the progressive hedging algorithm converges toward an optimal primal solution, and the price of information converges toward an optimal price of information.

Moreover we can show that

$$
\varepsilon_{k}=\sqrt{\left\|\left(u_{0}^{k}, u_{1}^{k}\right)-\left(u_{0}^{\sharp}, u_{1}^{\sharp}\right)\right\|_{2}^{2}+\frac{1}{\rho^{2}}\left\|\lambda-\lambda^{\sharp}\right\|_{2}^{2}},
$$

is a decreasing sequence.

- At any iteration of the PH algorithm, we have a collection of primal solution $\left\{\left(u_{0}^{s}, u_{1}^{s}\right)\right\}_{s \in S}$, and a price of information $\left\{\lambda^{s}\right\}_{s \in S}$.
- We have a lower bound on the value of the stochastic programm given by

$$
L B^{P H}=\sum_{s \in S} \pi^{s}\left[L\left(u_{0}^{s}, \xi^{s}, u_{1}^{s}\right)+\lambda^{s} u_{0}^{s}\right]
$$

- and an upper bound given by

$$
U B^{P H}=\sum_{s \in S} \pi^{s} L\left(\bar{u}_{0}, \xi^{s}, u_{1}^{s}\left(u_{0}\right)\right) .
$$

Linear 2-stage stochastic program

Consider the following problem

$$
\begin{array}{ll}
\min & \mathbb{E}\left[c^{\top} u_{0}+\boldsymbol{q}^{\top} \boldsymbol{u}_{1}\right] \\
\text { s.t. } & A u_{0}=b, \quad u_{0} \geq 0 \\
& \boldsymbol{T} u_{0}+\boldsymbol{W} \boldsymbol{u}_{1}=\boldsymbol{h}, \quad \boldsymbol{u}_{1} \geq 0, \quad \mathbb{P}-\text { a.s. } \\
& u_{0} \in \mathbb{R}^{n}, \quad \sigma\left(\boldsymbol{u}_{1}\right) \subset \sigma(\underbrace{\boldsymbol{q}, \boldsymbol{T}, \boldsymbol{W}, \boldsymbol{h}}_{\boldsymbol{\xi}})
\end{array}
$$

Which we rewrite

$$
\begin{aligned}
\min _{u_{0} \geq 0} & c^{\top} u_{0}+\mathbb{E}\left[Q\left(u_{0}, \boldsymbol{\xi}\right)\right] \\
\text { s.t. } & A u_{0}=b
\end{aligned}
$$

with

$$
\begin{array}{rlr}
Q\left(u_{0}, \xi\right):=\min _{u_{1} \geq 0} & & q_{\xi}^{\top} u_{1} \\
& \text { s.t. } & W_{\xi} u_{1}=h_{\xi}-T_{\xi} u_{0}
\end{array}
$$

We assume here relatively complete recourse. Without this assumption we would need feasability cuts.
Here, relatively complete recourse means that, for $u_{0} \geq 0$:

$$
A u_{0}=b \quad \Longrightarrow \quad Q_{s}\left(u_{0}\right)<+\infty, \quad \forall s \in \llbracket 1, s \rrbracket
$$

Lagrangian decomposition 000000000	L-Shaped decomposition method 0000000000000	Multistage program 00000000
Obtaining (optimality) cuts	\|	

We rewrite the extended formulation as

$$
\begin{aligned}
\min _{u_{0},\left(\theta^{s}\right)_{s \in s}} & c^{\top} u_{0}+\sum_{s} \pi^{s} \theta^{s} \\
\text { s.t. } & A u_{0}=b, \quad u_{0} \geq 0 \\
& \theta^{s} \geq Q^{s}\left(u_{0}\right) \theta^{s} \geq \alpha_{k}^{s} \cdot u_{0}+\beta_{k}^{s} \quad \forall k, \forall s
\end{aligned}
$$

Note that $Q^{s}\left(u_{0}\right)$ is a polyhedral function of u_{0}, hence $\theta^{s} \geq Q^{s}\left(u_{0}\right)$ can be rewritten $\theta^{s} \geq \alpha_{k}^{s} \cdot u_{0}+\beta_{k}^{s}, \forall k$.
The decomposition approach consists in constructing iteratively cut coefficients α_{k}^{s} and β_{k}^{s}.

Recall that

$$
\begin{array}{rlrl}
Q^{s}\left(u_{0}\right):= & \min _{u_{1}^{s} \in \mathbb{R}^{n}} & & q^{s} \cdot u_{1}^{s} \\
& \text { s.t. } & W^{s} u_{1}^{s}=h^{s}-T^{s} u_{0}, \quad u_{1}^{s} \geq 0
\end{array}
$$

can also be written (through strong duality by relatively complete recourse assumption)

$$
\begin{array}{rll}
\left(D_{u_{0}}\right) \quad Q^{s}\left(u_{0}\right)=\max _{\lambda^{s} \in \mathbb{R}^{m}} & \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}\right) \\
\text { s.t. } & \left(W^{s}\right)^{\top} \lambda^{s} \leq q^{s}
\end{array}
$$

$$
\begin{array}{rll}
\left(D_{u_{0}}\right) \quad Q^{s}\left(u_{0}\right)=\max _{\lambda^{s} \in \mathbb{R}^{m}} & \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}\right) \\
\text { s.t. } & \left(W^{s}\right)^{\top} \lambda^{s} \leq q^{s}
\end{array}
$$

admits for optimal solution $\lambda_{L 0}^{s}$.
Consider another control u_{0}^{\prime}, we have

$$
\begin{aligned}
\left(D_{u_{0}^{\prime}}\right) \quad Q^{s}\left(u_{0}^{\prime}\right)=\max _{\lambda s \in \mathbb{R}^{m}} & \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}^{\prime}\right) \\
\text { s.t. } & \left(W^{s}\right)^{\top} \lambda^{s} \leq q^{s}
\end{aligned}
$$

As $\lambda_{\mu_{0}}^{s}$ is admissible for $\left(D_{L_{0}}\right)$ it is also admissible for $\left(D_{u_{0}^{\prime}}\right)$, hence

$$
Q^{s}\left(u_{0}^{\prime}\right) \geq \lambda_{u_{0}}^{s} \cdot\left(h^{s}-T^{s} u_{0}^{\prime}\right)
$$

To sum up we have seen that, for any admissible first stage solution, we can construct an exact cut for Q^{s} by solving the dual of the second stage problem.

More precisely, let $u_{0}^{k} \geq 0$ be such that $A u_{0}^{k}=b$. Let λ_{k}^{s} be an optimal dual solution. Then, setting

$$
\alpha_{k}^{s}:=-\left(T^{s}\right)^{\top} \lambda_{k}^{s} \quad \text { and } \quad \beta_{k}^{s}:=\left(\lambda_{k}^{s}\right)^{\top} h^{s}
$$

we have

$$
\left\{\begin{array}{l}
Q^{s}\left(u_{0}^{\prime}\right) \geq \alpha_{k}^{s} \cdot u_{0}^{\prime}+\beta_{k}^{s} \quad \forall u_{0}^{\prime} \geq 0, A u_{0}^{\prime}=b \\
Q^{s}\left(u_{0}^{k}\right)=\alpha_{k}^{s} \cdot u_{0}^{k}+\beta_{k}^{s}
\end{array}\right.
$$

$$
Q^{s}\left(u_{0}^{K+1}\right)=\max _{\lambda^{s} \in \mathbb{R}^{m}} \quad \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}^{K+1}\right)
$$

L-shaped method (multi-cut version) : bounds

- At any iteration of the L-shaped method we can easily determine upper and lower bound over our problem.
- Indeed, u_{0}^{K} is an admissible firt stage solution, and $Q^{s}\left(u_{0}^{K}\right)$ is the value of a slave problem. Thus the value of admissible solution u_{0}^{k} is simply given by

$$
U B=c^{\top} u_{0}^{K}+\sum_{s=1}^{S} \pi^{s} Q^{s}\left(u_{0}^{K}\right)
$$

- Furthermore, $Q_{K}^{s}\left(u_{0}\right) \geq \max _{k \leq K} \alpha_{k}^{s} \cdot u_{0}+\beta_{k}^{s}$, thus the value of the master problem is always a lower bound over the value of the SP problem :

$$
L B=c^{\top} u_{0}^{K}+\sum_{s=1}^{s} \pi^{s} \theta_{K}^{s} .
$$

(1) We have a collection of $K \times S$ cuts, such that $Q^{s}\left(u_{0}\right) \geq \alpha_{k}^{s} \cdot u_{0}+\beta_{k}^{s}$.
(2) Solve the master problem, with optimal primal solution u_{0}^{K+1}.

$$
\begin{array}{ll}
\min _{u_{0} \geq 0} & c^{\top} u_{0}+\sum_{s=1}^{s} \pi^{s} \theta^{s} \\
\text { s.t. } & A u_{0}=b \\
& \theta^{s} \geq \alpha_{k}^{s} u_{0}+\beta_{k}^{s} \quad \forall k \in \llbracket 1, K \rrbracket, \quad \forall s \in \llbracket 1, S \rrbracket
\end{array}
$$

(3) Solve S slave problems, with optimal dual solution λ_{K+1}^{s}

$$
\begin{aligned}
Q^{s}\left(u_{0}^{K+1}\right)= & \min _{u_{1}^{s} \in \mathbb{R}^{n}} & q^{s} \cdot u_{1}^{s} \\
& \text { s.t. } & W^{s} u_{1}^{s}=h^{s}-T^{s} u_{0}^{K+1}, \quad u_{1}^{s} \geq 0
\end{aligned}
$$

Vincent Leclère

Lagrangian decomposition 000000000

L-Shaped decomposition method
L-Shaped decompositic
00000000000000
Ooooooooo

L-shaped method (single-cut version)

(1) We have a collection of K cuts, such that

$$
Q\left(u_{0}\right):=\sum_{s \in S} Q^{s}\left(u_{0}\right) \geq \alpha_{k} \cdot u_{0}+\beta_{k} .
$$

(2) Solve the master problem, with optimal primal solution u_{0}^{K+1}.

$$
\begin{array}{cl}
\min _{u_{0} \geq 0} & c^{\top} u_{0}+\theta \\
\text { s.t. } & A u_{0}=b \\
& \theta \geq \alpha_{k} u_{0}+\beta_{k} \quad \forall k \in \llbracket 1, K \rrbracket
\end{array}
$$

(3) Solve S slave dual problems, with optimal dual solution λ_{K+1}^{s}

$$
\begin{aligned}
\max _{\lambda^{s} \in \mathbb{R}^{m}} & \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}^{K+1}\right) \\
\text { s.t. } & W^{s} \cdot \lambda^{s} \leq q^{s}
\end{aligned}
$$

(9) construct new cut with

$$
\alpha_{K+1}:=-\sum^{s} \pi^{s}\left(T^{s}\right)^{\top} \lambda^{s}, \quad \beta_{K+1}:=\sum^{s} \pi^{s} h^{s} \cdot \lambda^{s}
$$

Feasibility cuts

- Without the relatively complete recourse assumption we cannot guarantee that $Q\left(u_{0}\right)<+\infty$, however we still have that Q is polyhedral, thus so is $\operatorname{dom}(Q)$.
- Without RCR we need to add feasibility cuts in the following way: - If, $Q^{s}\left(u_{0}^{k}\right)=+\infty$, then we can find an unbounded ray of the dual problem

$$
\begin{aligned}
\max _{\lambda^{s} \in \mathbb{R}^{m}} & \lambda^{s} \cdot\left(h^{s}-T^{s} u_{0}^{k}\right) \\
\text { s.t. } & W^{s} \cdot \lambda^{s} \leq q^{s}
\end{aligned}
$$

more precisely a vector $\bar{\lambda}^{k}$ such that, for all $t \geq 0$ $W^{s} \cdot t \bar{\lambda}^{k} \leq q^{s}$.

- Then, for u_{0} to be admissible, we need that

$$
\bar{\lambda}^{k} \cdot\left(h^{s}-T^{s} u_{0}\right) \leq 0
$$

which is a feasibility cut.

Comparison of Progressive Hedging and L-shaped

Theorem
 In the linear case, the L-Shaped algorithm terminates in finitely many steps, yielding the optimal solution.

The proof is done by noting that only finitely many cuts can be added, and not being able to add a cut prove that the algorithm has converged.

	Progressive Hedging	L-Shaped		
problems	convex continuous	linear, 1st stage integer		
sol. at it. k	non-admissible splitted solutions	admissible primal solution		
Bounds	LB free, UB easy	LB and UB free		
Convergence	asymptotic	finite		
Complexity	fixed:S deterministic problem	increasing for master problem, Implem.		
easy from deterministic solver for slave problem			\quad	built from scratch
:---				

(1) Lagrangian decomposition
(2) L-Shaped decomposition method

Multistage program

- We take decisions in two stages

$$
u_{0} \leadsto \boldsymbol{\xi}_{1} \leadsto \boldsymbol{u}_{1}
$$

with \boldsymbol{u}_{1} : recourse decision.

- On a tree, it means solving the extensive formulation:

$$
\min _{u_{0}, u_{1, s}} c_{0} u_{0}+\sum_{s \in \mathbb{S}} p_{s}\left[\left\langle c_{s}, u_{1, s}\right\rangle\right] .
$$

- We want to minimize $\min _{u} \mathbb{E}[c(\boldsymbol{u}, \boldsymbol{\xi})]$
- Where we take decisions in T stages

$$
\boldsymbol{u}_{0} \leadsto \boldsymbol{\xi}_{1} \leadsto \boldsymbol{u}_{1} \leadsto \cdots \leadsto \boldsymbol{\xi}_{T} \leadsto \boldsymbol{u}_{T}
$$

- It can be represented on a tree \mathcal{T}, where a node n of depth t represent a realisation of $\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{t}\right)$, and to which is attached a probability p_{n}.
- Then, the extensive formulation reads

$$
\min _{\left\{u_{n}\right\}_{n \in \mathcal{T}}} \sum_{n \in \mathcal{T}} p_{n} c_{n}\left(u_{n}\right)
$$

Vincent Leclère

Compact and splitted extended formulation

- Consider a tree of depth T. A scenario $s=\left(n_{1}, \ldots, n_{T}\right)$ is a sequence of node, where each element is a descendent of the previous one. A scenario $s \in S$ is uniquely defined by its last element, which is a leaf of the tree.
- Let π^{s} be the probability of the leaf defining scenario s.
- The compact formulation of the multistage problem reads

$$
\min _{\left\{u_{n}\right\}_{n \in \mathcal{T}}} \sum_{n \in \mathcal{T}} \pi^{n} c_{n}\left(u_{n}\right)=\sum_{s \in S} \pi^{s} \sum_{n \in S} c_{n}\left(u_{n}\right)
$$

- The splitted extended formulation reads

$$
\begin{array}{rlr}
\min _{\left\{u_{s, t}\right\} s \in S, t \in \llbracket 0, T \rrbracket} & & \sum_{s \in S} \pi^{s} \sum_{t=0}^{T} c_{s, t}\left(u_{s, t}\right) \\
\text { s.t. } & u_{s, t}=u_{s^{\prime}, t} & \forall t, \forall n \in \mathcal{N}_{t}, \forall s, s^{\prime} \ni n
\end{array}
$$

where \mathcal{N}_{t} is the set of nodes of depth t

Multistage extensive formulation approach

Assume that $\xi_{t} \in \mathbb{R}^{n_{\xi}}$ can take n_{ξ} values and that $U_{t}(x)$ can take n_{u} values.

Then, considering the extensive formulation approach, we have

- n_{ξ}^{\top} scenarios.
- $\left(n_{\xi}^{T+1}-1\right) /\left(n_{\xi}-1\right)$ nodes in the tree.
- Number of variables in the optimization problem is roughly

$$
n_{u} \times\left(n_{\xi}^{T+1}-1\right) /\left(n_{\xi}-1\right) \approx n_{u} n_{\xi}^{T} .
$$

The complexity grows exponentially with the number of stage. :-(
A way to overcome this issue is to compress information!

Illustrating extensive formulation with the damsvalley example

- 5 interconnected dams
- 5 controls per timesteps
- 52 timesteps (one per week, over one year)
- $n_{\xi}=10$ noises for each timestep

We obtain 10^{52} scenarios, and $\approx 5.10^{52}$ constraints in the extensive formulation... Estimated storage capacity of the Internet: 10^{24} bytes.

2-stage approach

The 2-stage approach consists in approximating the multistage program by a two-stage programm :

- relax all non-anticipativity constraints except the ones on u_{0}, this turn the tree into a scenario fan (same number of scenario),
- it means that all decision $\left(u_{1}, \ldots, u_{T-1}\right)$ are anticipative (not u_{0}).
- reduce the number of scenarios by sampling, and solve the SAA approximation of the 2-stage relaxation.
Denote v^{\sharp} the value of the multistage problem, $v^{2 S A}$ the value of the 2-stage relaxation, and $v_{m}^{2 S A}$ the (random) value of the SAA of the 2 -stage relaxation. Then we have

$$
\begin{aligned}
v^{2 S A} & \leq v^{\sharp} \\
v_{m}^{2 S A} & \rightarrow v^{2 S A} \\
\mathbb{E}\left[v_{m}^{2 S A}\right] & \leq v^{2 S A}
\end{aligned}
$$

An Introduction to

Stochastic Dual Dynamic Programming (SDDP).

V. Leclère (CERMICS, ENPC)

12/01/2022
\(\left.$$
\begin{array}{llll}\text { Kelley's algorithm } & \text { Deterministic case } \\
\text { 0000000000000000000 }\end{array}
$$ \quad \begin{array}{l}Stochastic case

0000000000000000000000000000000\end{array}\right]\)| Conclusion |
| :--- |
| Setting |

- Multi-stage stochastic optimization problems with finite horizon.
- Continuous, finite dimensional state and control.
- Convex cost, linear dynamic.
- Discrete, stagewise independent noises.
- Large scale stochastic optimization problems are hard to solve
- Different ways of attacking such problems:
- decompose the problem and coordinate solutions
- construct easily solvable approximations (Linear Programming)
- find approximate value functions or policies
- Behind the name SDDP, Stochastic Dual Dynamic Programming, one finds three different things:
- a class of algorithms,
based on specific mathematical assumptions
- a specific implementation of an algorithm
- a software implementing this method,
and developed by the PSR company
V. Leclère
ntroduction to SDDP
(1) Kelley's algorithm
(2)

Deterministic case

- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result
(4) Conclusion

Kelley algorithm

Data: Convex objective function J, Compact set X, Initial point $x_{0} \in X$
Result: Admissible solution $x^{(k)}$, lower-bound $\underline{v}^{(k)}$
Set $J^{(0)} \equiv-\infty$;
for $k \in \mathbb{N}$ do
Compute a subgradient $\alpha^{(k)} \in \partial J\left(x^{(k)}\right)$;
Define a cut $\mathcal{C}^{(k)}: x \mapsto J\left(x^{(k)}\right)+\left\langle\alpha^{(k)}, x-x^{(k)}\right\rangle$;
Update the lower approximation $J^{(k+1)}=\max \left\{J^{(k)}, \mathcal{C}^{(k)}\right\}$;
Solve $\left(P^{(k)}\right): \min _{x \in X} J^{(k+1)}(x)$;
Set $\underline{v}^{(k)}=\operatorname{val}\left(P^{(k)}\right)$;
Select $x^{(k+1)} \in \operatorname{sol}\left(P^{(k)}\right)$;
end
Algorithm 1: Kelley's cutting plane algorithm

| Kelley's algorithm Deterministic case Stochastic case
 00 $\bullet 00000000000000000$ 000000000000000000000000000000 | Conclusion
 00 |
| :--- | :--- | :--- | :--- |

Contents

(1) Kelley's algorithm

2 Deterministic case

- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result

\section*{R}
 Problem considered

We consider an optimal control problem in discrete time with finite horizon T

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n T}} & \sum_{t=0}^{T-1} c_{t}\left(x_{t}, x_{t+1}\right)+K\left(x_{T}\right) \\
\text { s.t. } & \left(x_{t}, x_{t+1}\right) \in P_{t}, \quad x_{0} \text { given } \\
& x_{t} \in X_{t}
\end{aligned}
$$

- We assume that $P_{t} \subset \mathbb{R}^{n} \times X_{t+1}$ is convex, and X_{t} convex compact
- the transition costs $c_{t}\left(x_{t}, x_{t+1}\right)$ and the final cost $K\left(x_{T}\right)$ are convex

For example, x_{t} follow a dynamic $x_{t+1}=f_{t}\left(x_{t}, u_{t}\right)$, with

- f_{t} affine, $u_{t} \in U_{t}\left(x_{t}\right)$ is convex compact
- $c_{t}\left(x_{t}, x_{t+1}\right)=\min \left\{L_{t}\left(x_{t}, u_{t}\right) \mid u_{t} \in U_{t}\left(x_{t}\right), f_{t}\left(x_{t}, u_{t}\right)=x_{t+1}\right\}$, where L_{t} is a convex instantaneous cost function
(1) Kelley's algorithm
(2) Deterministic case
- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result

(4) Conclusion

Introducing Bellman's operator

We define the Bellman operator

$$
\mathcal{B}_{t}(A): x \mapsto \min _{y:(x, y) \in P_{t}}\left\{c_{t}(x, y)+A(y)\right\}
$$

With this notation, the Bellman Equation reads

$$
\begin{cases}V_{T} & =K, \\ V_{t} & =\mathcal{B}_{t}\left(V_{t+1}\right)+\mathbb{I}_{\chi_{t}}\end{cases}
$$

Any approximate cost function \breve{V}_{t+1} induce an admissible policy

$$
\pi_{t}^{\breve{K}_{t+1}}: x \mapsto \arg \min \mathcal{B}_{t}\left(\breve{V}_{t+1}\right)(x)
$$

By Dynamic Programming, $\pi_{t}^{V_{t+1}}$ is optimal.

We look for solutions as policies, where a policy is a sequence of functions $\pi=\left(\pi_{1}, \ldots, \pi_{T-1}\right)$ giving for any state x a control u This problem can be solved by dynamic programming, thanks to the Bellman function that satisfies

$$
\left\{\begin{aligned}
V_{T}(x) & =K(x), \\
\tilde{V}_{t}(x) & \left.=\min _{y_{i}}\left\{c_{t}(x, y) \in P_{t}\right)+V_{t+1}(y)\right\} \\
V_{t} & =\tilde{V}_{t}+\mathbb{I}_{x_{t}}
\end{aligned}\right.
$$

Indeed, an optimal policy for the original problem is given by

$$
\pi_{t}(x) \in \underset{x_{t+1}}{\arg \min }\left\{c_{t}\left(x, x_{t+1}\right)+V_{t+1}\left(x_{t+1}\right) \mid\left(x_{t}, x_{t+1}\right) \in P_{t}\right\}
$$

V. Leclère

Properties of the Bellman operator

- Monotonicity:

$$
V \leq \bar{V} \quad \Rightarrow \mathcal{B}_{t}(V) \leq \mathcal{B}_{t}(\bar{V})
$$

- Convexity: if c_{t} is jointly convex, P and X are closed convex, V is convex then

$$
x \mapsto \mathcal{B}_{t}(V)(x) \quad \text { is convex }
$$

- Polyhedrality: for any polyhedral function V, if c_{t} is also polyhedral, and P_{t} and X_{t} are polyhedron, then

$$
x \mapsto \mathcal{B}_{t}(V)(x) \quad \text { is polyhedral }
$$

Duality property

Consider $J: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R}$ jointly convex, and define

$$
\varphi(x)=\min _{u \in \mathbb{U}} J(x, u)
$$

- Then we can obtain a subgradient $\alpha \in \partial \varphi\left(x_{0}\right)$ as the dual multiplier of

$$
\begin{array}{ll}
\min _{x, u} & J(x, u), \\
\text { s.t. } & x_{0}-x=0
\end{array}
$$

(This is the marginal interpretation of the multiplier)

- In particular, we have that

$$
\varphi(\cdot) \geq \varphi\left(x_{0}\right)+\left\langle\alpha, \cdot-x_{0}\right\rangle
$$

Contents

Deterministic case- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result
(4) Conclusion
V. Leclère

Introduction to SDDP
12/01/2022 11 / 46

Kelley's algorithm	Deterministic case o००००००००००००

Deterministic SDDP

General idea

- The SDDP algorithm recursively constructs an approximation of each Bellman function V_{t} as the supremum of affine functions
- At stage k, we have a lower approximation $\underline{V}_{t}^{(k)}$ of V_{t} and we want to construct a better approximation
- We follow an optimal trajectory $\left(x_{t}^{(k)}\right)_{t}$ of the approximated problem, and add a so-called "cut" to improve each Bellman function

Assume that we have lower polyhedral approximations of V_{t} We apply $\pi_{0}^{\underline{V}_{1}^{(2)}}$ to x_{0} and obtain $x_{1}^{(2)}$
We apply $\pi_{1}^{\underline{V}_{1}^{(2)}}$ to $x_{1}^{(2)}$ and obtain $x_{2}^{(2)}$

Kelley's algorithm Deterministic case Stochastic case oo 000000000000000000 00000000000000000000000000000000	Conclusion		
DDP description			

Data: Starting point, initial lower approximation
Result: optimal trajectory and value function;
$V_{T} \equiv K$;
for $k=1,2, \ldots$ do
set $x_{0}^{(k)}=x_{0}$
/* Forward pass : compute trajectory
for $t=0, \ldots, T-1$ do
find $x_{t+1}^{(k)} \in \arg \min \mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k)}\right)\left(x_{t}^{(k)}\right) ;$
end
/* Backward pass : update cuts

for $t=T-1, \ldots, 0$ do

Solve $\mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)\left(x_{t}^{(k)}\right)$ to compute $\mathcal{C}_{t}^{(k+1)}$;
Update lower approximations: $\underline{V}_{t}^{(k+1)}:=\max \left\{\underline{V}_{t}^{(k)}, \mathcal{C}_{t}^{(k+1)}\right\}$; end
end
Algorithm 2: Deterministic Dual Dynamic Programming

Detailing	vard

- From $t=0$ to $t=T-1$ we have to solve T one-stage problem of the form

$$
\begin{array}{ll}
x_{t+1}^{(k)} \in \underset{y}{\arg \min } & c_{t}\left(x_{t}^{(k)}, y\right)+\underline{V}_{t+1}^{(k)}(y) \\
& \left(x_{t}^{(k)}, y\right) \in P_{t}
\end{array}
$$

- We only need to keep the trajectory $\left(x_{t}^{(k)}\right)_{t \in \llbracket 0, T \rrbracket}$.

Compute a cut for K at $x_{2}^{(2)}$
Add the cut to $\underline{V}_{2}^{(2)}$ which gives $\underline{V}_{2}^{(3)}$
A new lower approximation of V_{1} is $\mathcal{B}_{1}\left(\underline{V}_{2}^{(3)}\right)$
We only compute the face active at $x_{1}^{(2)}$

Detailing forward pass

- From $t=T-1$ to $t=0$ we have to solve T one-stage problem of the form

$$
\begin{aligned}
\theta_{t}^{(k+1)}=\min _{x, y} & c_{t}(x, y)+\underline{V}_{t+1}^{(k+1)}(y) \\
& (x, y) \in P_{t} \\
& x=x_{t}^{(k)} \quad\left[\alpha_{t}^{(k+1)}\right]
\end{aligned}
$$

- By construction, we have that

$$
\theta_{t}^{(k+1)}=\mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)\left(x_{t}^{(k)}\right), \quad \alpha_{t}^{(k+1)} \in \partial \mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)\left(x_{t}^{(k)}\right) .
$$

- Which means
$\mathcal{C}_{t}^{(k+1)}:=\theta_{t}^{(k+1)}+\left\langle\alpha_{t}^{(k+1)}, \cdot-x_{t}^{(k)}\right\rangle \leq \mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right) \leq \mathcal{B}_{t}\left(V_{t+1}\right)=\tilde{V}_{t} \leq V_{t}$

$\begin{aligned} & \text { Kelley's algorithm } \\ & \text { oo } \end{aligned}$	Deterministic case -0000000000000000000	Stochastic case 000000000000000000000000000000	Conclusion

Initialization and stopping rule

- To initialize the algorithm, we need a lower bound $\underline{V}_{t}^{(0)}$ for each value function V_{t}. This lower bound can be computed backward by arbitrarily choosing a point x_{t} and using the standard cut computation.
- At any step k we have an admissible, non optimal trajectory $\left(x_{t}^{(k)}\right)_{t}$, with
- an upper bound

$$
\sum_{t=0}^{T-1} c_{t}\left(x_{t}^{(k)}, x_{t+1}^{(k)}\right)+K\left(x_{T}^{(k)}\right)
$$

- a lower bound $\underline{V}_{0}^{(k)}\left(x_{0}\right)$
- A reasonable stopping rule for the algorithm is given by checking that the (relative) difference between the upper and lower bounds is small enough
- We say that we are in a relatively complete recourse framework if

$$
\forall t, \quad \forall x_{t} \in X_{t}, \quad \exists x_{t+1} \in X_{t+1} \quad \text { such that } \quad\left(x_{t}, x_{t+1}\right) \in P_{t}
$$

- We say that we are in a extended relatively complete recourse framework if there exists $\varepsilon>0$ such that
$\forall t, \quad \forall x_{t} \in X_{t}+\varepsilon B, \quad \exists x_{t+1} \in X_{t+1} \quad$ such that $\quad\left(x_{t}, x_{t+1}\right) \in P_{t}$.RCR is required for the algorithm to run (otherwise we could find non-finite problems, and would require some feasability cuts mechanisms)
- ERCR is required for the convergence proof as the way of ensuring that the multipliers α_{t}^{k} remains bounded

Kelley's algorithm	Deterministic case	Stochastic case	Conclusion
00	0000000000000000000000000000000	00	

Theorem

Let K and c_{t} be convex functions, X_{t} and P_{t} be closed convex sets, and X_{t} bounded. Assume that we have extended relatively complete recourse. Then, for every t, we have

$$
\lim _{k} \underline{V}_{t}^{(k)}\left(x_{t}^{(k)}\right)-V_{t}\left(x_{t}^{(k)}\right)=0 .
$$

Further, the cost associated to $\pi \underline{\nu}_{t}^{(k)}$ converges toward the optimal value of the problem.
In other words, the upper and lower bounds are both converging.

Technical lemmas

Lemma

Let $f: X \rightarrow \mathbb{R}$ where X is compact. Let $\left(f^{k}\right)_{k \in \mathbb{N}}$ be a sequence of functions such that

- $f^{k} \leq f^{k+1} \leq f$
- f^{k} are Lipschitz continuous uniformly in k

Consider a sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$ of points of X such that $f\left(x^{k}\right)-f^{k+1}\left(x^{k}\right) \rightarrow 0$. Then, we also have $f\left(x^{k}\right)-f^{k}\left(x^{k}\right) \rightarrow 0$

Lemma

Under convexity assumptions, compactness of X_{t}, and ERCR the SDDP algorithm is well defined and
(1) for all t, V_{t} is convex and Lipschitz
(1) for all t, k, and $x \in X_{t}, \underline{V}_{t}^{k} \leq V_{t}$

There exists $L>0$ such that $\left\|\alpha_{t}^{k}\right\| \leq L$, thus \underline{V}_{t}^{k} is L-Lipschitz v. Leclère

Introduction to SDDP
12/01/2022
tochastic case
00000000000000000000000000000

Contents

Deterministic case

- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result
(4. Conclusion

Now we introduce random variables $\boldsymbol{\xi}_{t}$ in our problem which complexifies the algorithm in different ways:

- we need some probabilistic assumptions
- for each stage k we need to do a forward phase, for each sequence of realizations of the random variables, that yields a trajectory $\left(x_{t}^{(k)}\right)_{t}$, and a backward phase that gives a new cut
- we cannot compute an exact upper bound for the problem value

We consider the optimization problem

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=0}^{T-1} c_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{x}_{t+1}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{x}_{T}\right)\right] \\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{x}_{t+1}\right) \in P_{t}\left(\boldsymbol{\xi}_{t+1}\right) \\
& \boldsymbol{x}_{t} \in X_{t}, \quad \boldsymbol{x}_{0}=x_{0} \\
& \boldsymbol{x}_{t} \preceq \sigma\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{t}\right)
\end{array}
$$

under the crucial assumption that $\left(\xi_{t}\right)_{t \in\{1, \cdots, T\}}$ is a white noise
\rightsquigarrow we are in an hazard-decision framework.

| Kelley's algorithm Deterministic case
 00 0000000000000000000 Stochastic case
 0000000000000000000000000000000 | Conclusion
 00 |
| :--- | :--- | :--- | :--- |
| Stic | |

By the white noise assumption, this problem can be solved by dynamic programming, where the Bellman functions satisfy

$$
\begin{cases}V_{T} & =K \\ \hat{V}_{t}(x, \xi) & =\min _{(x, y) \in P_{t}(\xi)} c_{t}(x, y, \xi)+V_{t+1}(y) \\ \tilde{V}_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right] \\ V_{t} & =\tilde{V}_{t}+\mathbb{I}_{X_{t}}\end{cases}
$$

Indeed, an optimal policy for this problem is given by

$$
\pi_{t}(x, \xi) \in \underset{(x, y) \in P_{t}(\xi)}{\arg \min }\left\{c_{t}(x, y, \xi)+V_{t+1}(y)\right\}
$$

Contents

Kelley's algorithmDerinict case

- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result

(4) Conclusion

V. Leclère

Introduction to SDDP

Computing cuts (2/2)

Thus, we have an affine minorant of $\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t}\right)$ for each realization of ξ_{t} Replacing ξ by the random variable ξ_{t} and taking the expectation yields the following affine minorant

$$
\mathcal{C}^{(k+1)}:=\theta_{t}^{(k+1)}+\left\langle\alpha_{t}^{(k+1)}, \cdot-x_{t}^{(k)}\right\rangle \leq V_{t}
$$

where

$$
\left\{\begin{aligned}
\theta_{t}^{(k+1)} & :=\mathbb{E}\left[\hat{\theta}_{t}^{(k+1)}\left(\xi_{t}\right)\right]=\mathcal{B}_{t}\left[\underline{\underline{V}}_{t+1}^{(k)}\right](x) \\
\alpha_{t}^{(k+1)} & :=\mathbb{E}\left[\hat{\alpha}_{t}^{(k+1)}\left(\xi_{t}\right)\right] \in \partial \mathcal{B}_{t}\left[\underline{V}_{t+1}^{(k)}\right](x)
\end{aligned}\right.
$$

Detailing Backward pass

From $t=0$ to $t=T-1$ we have to solve T one-stage problem of the form

$$
\begin{aligned}
x_{t+1}^{(k)} \in \underset{y}{\arg \min } & c_{t}\left(x_{t}^{(k)}, y, \xi_{t}^{(k)}\right)+\underline{V}_{t+1}^{(k)}(y) \\
& \left(x_{t}^{(k)}, y\right) \in P_{t}
\end{aligned}
$$

- We only need to keep the trajectory $\left(x_{t}^{(k)}\right)_{t \in \llbracket 0, T \rrbracket}$.
- For each $t=T-1 \rightarrow 0$ we solve $\bar{\Xi}_{t}$ one-stage problem

$$
\begin{aligned}
\hat{\theta}_{t}^{(k+1)}(\xi)=\min _{y} & c_{t}\left(x_{t}^{(k)}, y, \xi\right)+\underline{V}_{t+1}^{(k+1)}(y) \\
& \left(x_{t}^{(k)}, y\right) \in P_{t} \\
& x=x_{t}^{(k)} \quad\left[\hat{\alpha}_{t}^{(k+1)}(\xi)\right]
\end{aligned}
$$

- By construction, we have that

$$
\hat{\theta}_{t}^{(k+1)}(\xi)=\mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k)}\right)\left(x_{t}^{(k)}, \xi\right), \quad \hat{\alpha}_{t}^{(k+1)}(\xi) \quad \in \partial \mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k)}\right)\left(x_{t}^{(k)}, \xi\right)
$$

- We average the coefficients

$$
\theta_{t}^{(k+1)}=\mathbb{E}\left[\hat{\theta}_{t}^{(k+1)}(\xi)\right], \quad \alpha_{t}^{(k+1)}=\mathbb{E}\left[\hat{\alpha}_{t}^{(k+1)}(\xi)\right]
$$

- Which means

$$
\mathcal{C}_{t}^{(k+1)}:=\theta_{t}^{(k+1)}+\left\langle\alpha_{t}^{(k+1)}, \cdot-x_{t}^{(k)}\right\rangle \leq \mathcal{B}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right) \leq \mathcal{B}_{t}\left(V_{t+1}\right)=\tilde{V}_{t} \leq V_{t}
$$

Kelley's algorithm Deterministic case 00 0000000000000000000 Stochastic case 00000000000000000000000000000Conclusion			

Recall on CLT

- Let $\left\{C_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of identically distributed random variables with finite variance.
- Then the Central Limit Theorem ensures that

$$
\sqrt{n}\left(\frac{\sum_{i=1}^{n} \boldsymbol{C}_{i}}{n}-\mathbb{E}\left[\boldsymbol{C}_{1}\right]\right) \Longrightarrow G \sim \mathcal{N}\left(0, \operatorname{Var}\left[\boldsymbol{C}_{1}\right]\right),
$$

where the convergence is in law.

- In practice it is often used in the following way.

Asymptotically,

$$
\mathbb{P}\left(\mathbb{E}\left[C_{1}\right] \in\left[\overline{\boldsymbol{C}}_{n}-\frac{1.96 \sigma_{n}}{\sqrt{n}}, \overline{\boldsymbol{C}}_{n}+\frac{1.96 \sigma_{n}}{\sqrt{n}}\right]\right) \simeq 95 \%
$$

where $\overline{\boldsymbol{C}}_{n}=\frac{\sum_{i=1}^{n} \boldsymbol{C}_{i}}{n}$ is the empirical mean and $\boldsymbol{\sigma}_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(\boldsymbol{C}_{i}-\overline{\boldsymbol{C}}_{n}\right)^{2}}{n-1}}$ the empirical standard deviation.

Kelley's algorithm oo

Bounds

- Exact lower bound on the value of the problem: $\underline{V}_{0}^{(k)}\left(x_{0}\right)$
- Exact upper bound on the value of the problem:

$$
\mathbb{E}\left[\sum_{t=0}^{T-1} c_{t}\left(\boldsymbol{x}_{t}^{(k)}, \boldsymbol{x}_{t+1}^{(k)}, \boldsymbol{\xi}_{t+1}\right)+K\left(\boldsymbol{X}_{T}\right)\right]
$$

where $\boldsymbol{X}_{t}^{(k)}$ is the trajectory induced by $\underline{V}_{t}^{(k)}$.

- This bound cannot be computed exactly,
but can be estimated by Monte-Carlo method as follows
- Draw N scenarios $\left\{\xi_{1}^{n}, \ldots, \xi_{T}^{n}\right\}$.
- Simulate the corresponding N trajectories $x_{t}^{(k), n}$ and the total cost for each trajectory $C^{(k), n}$.
- Compute the empirical mean $\bar{C}^{(k), N}$ and standard dev. $\sigma^{(k), N}$
- Then, with confidence 95% the upper bound on the problem is

$$
[\bar{C}^{(k), N}-\frac{1.96 \sigma^{(k), N}}{\sqrt{N}}, \underbrace{\bar{C}^{(k), N}+\frac{1.96 \sigma^{(k), N}}{\sqrt{N}}}_{U B_{k}}]
$$

- One stopping test consist in fixing an a priori relative gap ε, and stopping if

$$
\frac{U B_{k}-V_{0}^{(k)}\left(x_{0}\right)}{V_{0}^{(k)}\left(x_{0}\right)} \leq \varepsilon
$$

in which case we know that the solution is ε-optimal with probability 97.5%.

- It is not necessary to evaluate the gap at each iteration.
- To alleviate the computational load, we can estimate the upper bound by using the trajectories of the recent forward phases.
- Another more practical stopping rule consists in stopping after a given number of iterations or fixed computation time.

Kelley's algorithm oo	Deterministic case 0000000000000000000	Stochastic case 0000000000000000000000000000000	Conclusion
Non-independent inflows			

- In most cases the stagewise independence assumption is not realistic.
- One classical way of modelling dependencies consists in considering that the inflows I_{t} follow an AR-k process

$$
I_{t}=\alpha_{1} I_{t-1}+\cdots+\alpha_{k} I_{t-k}+\theta_{t}+\boldsymbol{\xi}_{t}
$$

where ξ_{t} is the residual, forming an independent sequence

- The state of the system is now $\left(X_{t}, I_{t-1}, \ldots, I_{(t-k)}\right)$.
- We can play with the number of forward / backward pass. Classically we do 200 forward passes in parallel, before computing cuts.
- Instead of averaging the cuts, we can keep one cut per alea, for a multicut version. In other word instead of representing V_{t} we represent \hat{V}_{t}.
- Early forward passes are not really usefull, selecting (randomly or by hand) a few trajectory can save some workload.
- Cut pruning (eliminating useless cuts) is easy to implement and pretty efficient.
- Adding some regularization term in the forward pass has shown some numerical improvement but is not yet fully understood.
- Let $V_{t}^{(k)}$ be defined as $\max _{\ell \leq k} \mathcal{C}_{t}^{(\ell)}$
- For $j \leq k$, if

$$
\begin{array}{ll}
\min _{x, \alpha} & \alpha-\mathcal{C}_{t}^{(j)}(x) \\
\text { s.t. } & \alpha \geq \mathcal{C}_{t}^{(\ell)}(x) \quad \forall \ell \neq j
\end{array}
$$

is non-negative, then cut j can be discarded without modifying $\underline{V}_{t}^{(k)}$

- this technique is exact but time-consuming.
- Instead of comparing a cut everywhere, we can choose to compare it only on the already visited points.
- The Level-1 cut method goes as follow:
- keep a list of all visited points $x_{t}^{(\ell)}$ for $\ell \leq k$.
- for ℓ from 1 to k, tag each cut that is active at $x_{t}^{(\ell)}$.
- Discard all non-tagged cut.

Kelley's algorithm	Deterministic case 00	Stachastic case 00000000000000000000000	
Contents			Conclusion

- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result

From convex analysis we obtain the main theorem over coherent risk measure

Theorem

Let ρ be a coherent risk measure, then there exists a (convex) set of probability \mathcal{P} such that

$$
\forall \boldsymbol{X}, \quad \rho(\boldsymbol{X})=\sup _{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\boldsymbol{X}]
$$

| Kelley's algorithm Deterministic case
 0000000000000000000 Stochastic case
 0000000000000000000000000000000 | Conclusion

 Average Value at Risk | | \|| |
| :--- | :--- | :--- | :--- |

One of the best aspect of the AVaR, is the following formula

$$
A V_{a} R_{\alpha}(\boldsymbol{X})=\min _{t \in \mathbb{R}}\left\{t+\frac{\mathbb{E}[X-t]^{+}}{\alpha}\right\} .
$$

Indeed it allow to linearize the AVaR .

One of the most practical and used coherent risk measure is the Average Value at Risk at level α. Roughly, it is the expectation of the cost over the α-worst cases. For a random variable \boldsymbol{X} admitting a density, we define de value at risk of level α, as the quantile of level α, that is

$$
\operatorname{Va}_{\alpha}(\boldsymbol{X})=\inf \{t \in \mathbb{R} \quad \mid \quad \mathbb{P}(\boldsymbol{X} \geq t) \leq \alpha\}
$$

And the average value at risk is

$$
A V_{a} R_{\alpha}(\boldsymbol{X})=\mathbb{E}\left[\boldsymbol{X} \mid \boldsymbol{X} \geq \operatorname{Va}_{a}(\boldsymbol{X})\right]
$$

SDDP and risk

- The problem studied was risk neutral
- However a lot of works has been done recently about how to solve risk averse problems
- Most of them are using AVAR, or a mix between AVAR and expectation either as objective or constraint
- Indeed AVAR can be used in a linear framework by adding other variables
- Another easy way is to use "composed risk measures"
- Finally a convergence proof with convex costs (instead of linear costs) exists, although it requires to solve non-linear problemsKelley's algorithm
Deterministic case
- Problem statement
- Some background on Dynamic Programming
- SDDP Algorithm
- Initialization and stopping rule
- Convergence
(3) Stochastic case
- Problem statement
- Computing cuts
- SDDP algorithm
- Complements
- Risk
- Convergence result

Theorem

With the preceding assumption, we have that the upper and lower bound are almost surely converging toward the optimal value, and we can obtain an ε-optimal strategy for any $\varepsilon>0$.
More precisely, if we call $\underline{V}_{t}^{(k)}$ the outer approximation of the Bellman function V_{t} at step k of the algorithm, and $\pi_{t}^{(k)}$ the corresponding strategy, we have

$$
\underline{V}_{0}^{(k)}\left(x_{0}\right) \rightarrow_{k} V_{0}\left(x_{0}\right)
$$

and

$$
\mathbb{E}\left[c_{t}\left(\boldsymbol{x}_{t}^{(k)}, \boldsymbol{x}_{t+1}^{(k)}, \xi_{t}\right)+\underline{V}_{t+1}^{(k)}\left(x_{t+1}^{(k)}\right)\right]-V_{t}\left(\boldsymbol{x}_{t}^{(k)}\right) \rightarrow_{k} 0
$$

Convergence result

- Noises are time-independent, with finite support.
- X_{t} is convex compact, P_{t} is closed convex.
- Costs are convex and lower semicontinuous.
- We are in a strong relatively complete recourse framework.

Remark, if we take the tree-view of the algorithm

- stage-independence of noise is not required to have theoretical convergence
- node-selection process should be admissible (e.g. independent, SDDP, CUPPS...)

Kelley s algorithm ol Conclusion

SDDP is an algorithm, more precisely a class of algorithms, that

- exploits convexity of the value functions (from convexity of costs...)
- does not require state discretization
- constructs outer approximations of V_{t}, those approximations being precise only "in the right places"
- gives bounds:
- "true" lower bound $\underline{V}_{0}^{(k)}\left(x_{0}\right)$
- estimated (by Monte-Carlo) upper bound
- constructs linear-convex approximations, thus enabling to use linear solver like CPLEX
- can be shown to display asymptotic convergence
R. Van Slyke and R. Wets (1969).

L-shaped linear programs with applications to optimal control and stochastic programming.
SIAM Journal on Applied Mathematics
國 M. Pereira, L.Pinto (1991).
Multi-stage stochastic optimization applied to energy planning Mathematical Programming

- A. Shapiro (2011)

Analysis of stochastic dual dynamic programming method. European Journal of Operational Research

國 P.Girardeau, V.Leclère, A. Philpott (2014) On the convergence of decomposition methods for multi-stage stochastic convex programs.
Mathematics of Operations Research

[^0]: 1st course: Convex toolbox
 2nd course: Probability toolbox
 3rd course: two-stage stochastic programm
 4th course: Bellman operators and Dynamic Programming
 5th course: Decomposition methods for two stage SP
 6th course: Stochastic Dual Dynamic Programming

[^1]: Theorem (Doob-Dynkin)
 Let $X: \Omega \rightarrow \mathbb{R}^{n}, Y: \Omega \rightarrow \mathbb{R}^{p}$ be two \mathcal{F}-measurable functions. Then $Y \preceq \sigma(X)$ iff there exists a Borel measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ such that $Y=f(X)$.

[^2]: ${ }^{1}$ If the distribution is continuous we can sample and work on the sampled distribution, this is called the Sample Average Approximation approach with lots of guarantee and results
 Vincent Leclère
 Two-stage stochastic program
 08/12/2021

 | Optimization under uncertainty | Stochastic Programming Approach | Information and discretization |
 | :--- | :--- | :--- |
 | 000000000000000 | 000000000 | 0000000000000000 |

 Presentation Outline

