
Stochastic optimization

Master 2 Optimization

Olivier Fercoq

November 16, 2021

Contents

1 Introduction 2

1.1 Expected risk minimization . 2
1.2 Gradient descent . 3
1.3 How to compute gradient? . 3

1.3.1 Using partial derivatives . 3
1.3.2 Using the de�nition . 4
1.3.3 Using the chain rule . 4

1.4 Subgradient method . 5
1.5 Implementation project . 5

2 Stochastic gradient 7

2.1 Algorithm . 7
2.2 Convergence . 8

2.2.1 Nonconvex objective . 8
2.2.2 Convex objective . 8
2.2.3 Step size sequence . 9
2.2.4 Strongly convex objective . 10

2.3 Proximal stochastic gradient . 11
2.4 Comparison of the results depending on the assumption 13

3 Stochastic variance-reduced gradient 14

3.1 Motivation and algorithm . 14
3.2 Convergence . 15

4 Adaptive step-sizes 17

4.1 Adagrad . 17
4.2 Adam . 20

5 Coordinate descent 23

5.1 Exact coordinate descent . 23
5.2 Coordinate gradient descent . 25
5.3 Proximal coordinate descent . 27
5.4 Stochastic dual coordinate ascent for support vector machines 30

1

Chapter 1

Introduction

1.1 Expected risk minimization

Let us consider a mesurable function

f : Rd × Ξ→ R
(x, t) 7→ f(x, t)

and a random variable ξ on the probability space (Ω,F ,P) with values in Ξ. We suppose that
E(|f(x, ξ)|) < +∞.
In the lecture, we are interested in the numerical resolution of the optimization problem

min
x∈Rd

E(f(x, ξ)) (1.1.1)

The challenge is that the law of ξ is not supposed to be known and we cannot compute E, or its
computation is expensive. Instead, the law is revealed through (ξk), a sequence of i.i.d. samples
of ξ.
Note that the assumption of i.i.d. samples (ξk) means in particular that this sequence does not
depend on the optimization variable x.
This kind of optimization problems is ubiquitus when solving a machine learning problem. Let
us illustrate this by the example of logistic regression

Exercise 1.1 (Maximum likelihood estimator for logistic regression).
We consider a classi�cation problem de�ned by observations (xi, yi)1≤i≤n where for all i, xi ∈ Rp
and yi ∈ {−1, 1}. We propose the following linear model for the generation of the data. Each
observation is supposed to be independent and there exists a vector w ∈ Rp and w0 ∈ R such
that for all i, (yi, xi) is a realization of the random variable (Y,X) whose law D satis�es

Pw,w0(Y = 1|X) =
exp(X>w + w0)

1 + exp(X>w + w0)
.

1. Show that ∀i ∈ {1, . . . , n}, P(Yi = yi|xi) =
1

1 + exp(−yi(x>i w + w0))
.

2. Show that the maximum likelihood estimator is

(ŵ, ŵ0) = arg min
w,w0

n∑
i=1

log(1 + exp(−yi(x>i w + w0)))

2

3. Denote f(w,w0) =
∑n

i=1 log(1 + exp(−yi(x>i w + w0))). Compute ∇f(w,w0).

In the exercise, we have ξi = (xi, yi). Since, we have n observations, it is possible to evaluate
the objective function. However, when n is large, say millions or billions, this can be a tedious
task.

1.2 Gradient descent

The gradient descent method is the most basic minimization method for a di�erentiable function
f . It requires access to the full function: it is thus not well adapted to our problem template.
However, it will be the basis for the development of specialized algorithms. It consists in a
sequence (xk)k∈N of points in Rn de�ned by induction from x0 ∈ Rn by

Algorithm 1: Gradient descent

xk+1 = xk − γk∇f(xk)

where for all k, γk is a positive coe�cient.

Theorem 1.1. Let f be a convex di�erentiable function that has a minimizer x∗ and whose

gradient is L-Lipschitz continuous. The gradient method with constant step size γk = 1
L satis�es

f(xk)− f(x∗) ≤ L‖x0 − x∗‖2

2k

If moreover f is µ-strongly convex, then

f(xk)− f(x∗) ≤
(

1− µ

L

)k
(f(x0)− f(x∗) + L

2 ‖x0 − x∗‖2)

‖xk − x∗‖2 ≤
(

1− µ

L

)k
(2
L(f(x0)− f(x∗)) + ‖x0 − x∗‖2)

Proof. We will prove a more general results in the rest of the lecture.

1.3 How to compute gradient?

Let f : Rn → R be a function. In order to run the algorithm, we would like to compute its
gradient. By de�nition, ∇f(x) is the unique vector of Rn such that

f(x+ h) = f(x) + 〈∇f(x), h〉+ o(h) .

There are several ways to compute a gradient. All should give the same result.

1.3.1 Using partial derivatives

We know that the gradient is the vector of all the partial derivatives. Hence, we can compute
∂f
∂xi

(x) for all i and reconstruct the vector.

Example. Let us consider the function f(x) = ‖Ax− b‖2 where A ∈ Rm×n. We can write

f(x) =

m∑
j=1

(n∑
i=1

Aj,ixi − bj
)2

3

and so
∂f

∂xk
(x) = 2

m∑
j=1

Aj,k

(n∑
i=1

Aj,ixi − bj
)
.

We recognise the components of the vector

∇f(x) = 2A>(Ax− b) .

1.3.2 Using the de�nition

We compute f(x+ h) and try isolating f(x), a term linear in h and a negligible term.
Example. We consider f(x) = ‖Ax− b‖2.

f(x+ h) = ‖A(x+ h)− b‖2 = ‖Ax− b‖2 + 2〈Ax− b, Ah〉+ ‖Ah‖2

= f(x) + 2〈A>(Ax− b), h〉+ o(h)

thus, ∇f(x) = 2A>(Ax− b).

1.3.3 Using the chain rule

Let g : Rn → Rm and f : Rm → Rp. The chain rule states that the Jacobian matrix of the
function f ◦ g at x is given by

Jf◦g(x) = Jf (g(x))× Jg(x) .

We recall that

Jg(x) =


∂g1

∂x1
(x) . . .

∂g1

∂xn
(x)

...
...

∂gm
∂x1

(x) . . .
∂gm
∂xn

(x)


is the unique linear map such that

g(x+ h) = g(x) + Jg(x)h+ o(h) .

The chain rule allows us to combine simple functions in order to obtain complex functions. In
is at the basis of automatic di�erentiation and the resolution of neural network models.
When f : Rm → R and g(x) = Ax where A is a m× n matrix, the formula simpli�es as

∇(f ◦A)(x) = A>∇f(Ax) .

Example. We consider f(x) = ‖Ax− b‖2.
Let us remark that f(x) = h(Ax) where h(y) = ‖y − b‖2.
Since h(y + h) = ‖y + h− b‖2 = ‖y − b‖2 + 2〈y − b, h〉+ ‖h‖2, we know that ∇h(y) = 2(y − b).
Using the chain rule, we get ∇f(x) = ∇(h ◦A)(x) = A>∇h(Ax) = 2A>(Ax− b).

4

Algorithm 2: Subgradient method

select gk ∈ ∂f(xk)

xk+1 = xk − γkgk

1.4 Subgradient method

When the function we want to minimize is not di�erentiable but is still convex we can use
subgradients instead of gradients. In return, we shall set smaller, diminishing step-sizes to
ensure that the algorithm continues to converge. We obtain the algorithm
where for all k, γk is a positive coe�cient.

Theorem 1.2. Let f be a convex function that has a minimizer x∗ and γk be a sequence such

that
∑k
l=0 γ

2
l∑k

l=0 γl
→ 0 when k → +∞. Then the subgradient method satis�es

f(xk)− f(x∗)→ 0

Proof. We will prove a more general results in the rest of the lecture.

1.5 Implementation project

Each student will be assigned a problem and an algorithm to implement on this problem. We will
use the database MNIST http://yann.lecun.com/exdb/mnist/ where the goal is to classify
digits between 0 and 9.
Two models, hence two functions to minimize will be considered :

� Multinomial logisitic regression with squared 2-norm regularization. Denote yi,j = 1 if the
image i represents digit j and 0 otherwise and consider a positive real number α. The
objective function is the convex function

F (w,w0) =
1

n

n∑
i=1

log
(9∑
j=0

exp
(d∑
k=1

xi,kwk,j+w0,j

))
−

9∑
j=0

yi,j
(d∑
k=1

xi,kwk,j+w0,j

)
+
α

2
‖w‖22

Here d is the number of pixel in the image xi,: and n is the number of images is the training
data set. In this case, you should derive the formula for the stochastic gradients and use
this formula in the algorithm.

� A multilayer perceptron neural network with 2 dense layers, recti�ed linear unit activation
functions, a softmax output and categorical cross entropy loss function. In that more
complex case, the stochastic gradients will be computed using the automatic di�erentiation
tool tensor�ow with its keras API.

The work to do is as follows.

1. Each student chooses a model and an algorithm to determine its parameters.

2. By keeping part of the training set into a validation set, �nd a good value for the hy-
perparameters of the model (for instance, the number α, the number of neurons in each
layer).

5

Let us explain the procedure for the multinomial logistic regression case and forget about
w0 for simpli�cation. Denote α the hyperparameter and A the set of its possible values. Let
Fα(w) be the loss de�ned by the statistical model for the parameter w and hyperparameter
α, that is

Fα(w) =
1

ntrain

ntrain∑
i=1

log
(9∑
j=0

exp
(d∑
k=1

xtrain
i,k wk,j

))
−

9∑
j=0

ytrain
i,j

(d∑
k=1

xtrain
i,k wk,j

)
+
α

2
‖w‖22

Denote wα = arg minw Fα(w).

We also de�ne the accuracy as L(w) = 1
nvalid

∑nvalid
j=1 `((xvalid

i)>w, yvalid
i) where `((xvalid

i)>w, yvalid
i) =

1 if the largest value of the 10-dimensional vector (xvalid
i)>w is for the good digit and 0

otherwise.

The optimization problem we are trying to solve in this question is a bilevel optimization
problem.

min
α∈A

L(wα)

wα ∈ arg min
w
Fα(w)

We will then solve a sequence of optimization problems indexed by α and choose the best
α.

3. We will compare models and optimization algorithms in terms of classi�cation performance,
quality of the local optima returned by each method, the speed of convergence.

6

Chapter 2

Stochastic gradient

2.1 Algorithm

We want to solve the problem
min
x∈Rd

E[f(x, ξ)]

Given a sequence of step sizes γk, the algorithm reads

Algorithm 3: Stochastic gradient

xk+1 = xk − γk∇f(xk, ξk+1)

where ∇f(xk, ξk+1) is the gradient of (x 7→ f(x, ξk+1)) at xk.

Remark 2.1. If (x 7→ f(x, ξk+1)) is not di�erentiable, one can use a subgradient of the function
instead of its gradient.

Example 2.1 (Empirical Risk Minimization). In this context, we are given N data points, each
of which is associated with a loss function fi, 1 ≤ i ≤ N . A typical model in machine learning
consists in minimizing the empirical risk given by

min
x

1

N

N∑
i=1

fi(x)

This corresponds to Problem (2.3.1) with ξ = I ∼ U({1, . . . , N}). The expectation is computable
but N may be so large that this takes a long time. Running stochastic gradient on this problem
leads to an algorithm with very low complexity per iteration, which is often used in practice:{

Generate Ik+1 ∼ U({1, . . . , N})
xk+1 = xk − γk∇fIk+1

(xk)

Example 2.2 (Least Mean Squares). We are given a random variable ξ = (X,Y) where X ∈ Rn
and Y ∈ R. Least Mean Squares (LMS) is a regression problem in expectation

min
w∈Rn

1

2
E[(Y −X>w)2]

Show that stochastic gradient on this problems writes

wk+1 = wk − γk(X>k+1wk − Yk+1)Xk+1

7

2.2 Convergence

We denote F (x) = E(f(x, ξ)) and by Ek the expectation knowing (ξ1, . . . , ξk). Note that xk is
measurable with respect to (ξ1, . . . , ξk).

2.2.1 Nonconvex objective

Theorem 2.1. Suppose that:

� (x 7→ f(x, ξ)) is di�erentiable for all ξ with a L-Lipschitz gradient,

� there exists C > 0 such that E(‖∇f(x, ξ)‖2) ≤ C for all x,

� the sequence γk is deterministic.

The iterates of the stochastic gradient algorithm xk+1 = xk − γk∇f(xk, ξk+1) satisfy the conver-

gence guarantee

E
[

min
0≤l≤k

‖∇F (xl)‖2
]
≤

2(F (x0)− inf F) + CL
∑k

l=0 γ
2
l

2
∑k

l=0 γl
.

Proof. By Taylor-Lagrange inequality,

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

≤ F (xk)− γk〈∇F (xk),∇f(xk, ξk+1)〉+
Lγ2

k

2
‖∇f(xk, ξk+1)‖2

where we use the fact that xk+1−xk = −γk∇f(xk, ξk+1). We apply the conditional expectation
Ek:

Ek[F (xk+1)] ≤ F (xk)− γk‖∇F (xk)‖2 +
L

2
γ2
kEk[‖∇f(xk, ξk+1)‖2]

γk‖∇F (xk)‖2 ≤ F (xk)− Ek[F (xk+1)] +
L

2
γ2
kC

We then apply total expectation and sum for l between 0 and k

E
[k∑
l=0

γl‖∇F (xl)‖2
]
≤ F (x0)− E[F (xk+1)] +

L

2

k∑
l=0

γ2
l C

The result follows by remarking that ‖∇F (xl)‖2 ≥ min0≤l′≤k ‖∇F (x′l)‖2 for all l and E[F (xk+1)] ≥
inf F .

2.2.2 Convex objective

Theorem 2.2. Suppose that:

� (x 7→ f(x, ξ)) is convex and di�erentiable for all ξ,

� there exists C > 0 such that E(‖∇f(x, ξ)‖2) ≤ C for all x

� there exists x∗ ∈ arg minF ,

� the sequence γk is deterministic.

8

The iterates of the stochastic gradient algorithm xk+1 = xk − γk∇f(xk, ξk+1) satisfy the conver-

gence guarantee

E
[
F (x̄γk)− F (x∗)

]
≤

E[‖x0 − x∗‖2] + C
∑k

l=0 γ
2
l

2
∑k

l=0 γl

where x̄γk =

∑k
l=0 γlxl∑k
j=0 γj

is a convex combination of all previous iterates.

Proof. Let us �rst remark that E[∇f(x, ξ)] ∈ ∂F (x) for all x. Indeed,

f(y, ξ) ≥ f(x, ξ) + 〈∇f(x, ξ), y − x〉
F (y) = E[f(y, ξ)] ≥ E[f(x, ξ)] + E[〈∇f(x, ξ), y − x〉] = F (x) + 〈E[∇f(x, ξ)], y − x〉 .

Now, we apply Ek the expectation knowing (ξ1, . . . , ξk).

Ek[‖xk+1 − x∗‖] = Ek[‖xk − x∗‖+ 2〈xk+1 − xk, xk − x∗〉+ ‖xk+1 − xk‖2]

= ‖xk − x∗‖ − 2γk〈Ek[∇f(xk, ξk+1)], xk − x∗〉+ γ2
kEk[‖∇f(xk, ξk+1)‖2]

≤ ‖xk − x∗‖+ 2γk〈Ek[∇f(xk, ξk+1)], x∗ − xk〉+ γ2
kC

≤ ‖xk − x∗‖+ 2γk(F (x∗)− F (xk)) + γ2
kC .

We reorganise and apply total expectation:

E[γk(F (xk)− F (x∗))] ≤ −1

2
E[‖xk+1 − x∗‖2] +

1

2
E[‖xk − x∗‖2] +

γ2
kC

2

We sum for l between 0 and k:

E[

k∑
l=0

γl(F (xl)− F (x∗))] ≤ −1

2
E[‖xk+1 − x∗‖2] +

1

2
E[‖x0 − x∗‖2] +

k∑
l=0

γ2
l C

2

The result follows by convexity of F :

E
[
F (x̄γl)− F (x∗)

]
≤ 1∑k

j=0 γj
E[

k∑
l=0

γl(F (xl)− F (x∗))] ≤
E[‖x0 − x∗‖2] + C

∑k
l=0 γ

2
l

2
∑k

j=0 γj

2.2.3 Step size sequence

We know that E
[
F (x̄γl)−F (x∗)

]
≤ E[‖x0−x∗‖2]+C

∑k
l=0 γ

2
l

2
∑k
l=0 γl

. A natural question is: which sequence

(γk) should we take?

We would like
∑k

j=1 γj → +∞ and
∑k
l=1 γ

2
l∑k

j=1 γj
→ 0. Such a sequence can be for instance taken as

γk = γ0
(k+1)α with 0 < α < 1. Then,

k∑
j=0

γj =

k∑
j=0

γ0

(j + 1)α
≥

k∑
j=0

∫ j+2

j+1

γ0

tα
dt =

∫ k+2

1

γ0

tα
dt =

γ0

1− α

[
t1−α

]k+2

1
=

γ0

1− α

(
(k + 2)1−α − 1

)
k∑
j=0

γ2
j =

k∑
j=0

γ2
0

(j + 1)2α
≤ γ2

0 +

k∑
j=1

∫ j+1

j

γ2
0

t2α
dt = γ2

0 +

∫ k+1

1

γ2
0

t2α
dt =

{
γ2

0(1 + ln(k + 1)) if α = 1/2

γ2
0(1 + (k+1)1−2α−1

1−2α) if α 6= 1/2

We obtain the following cases:

9

1∑k
j=0 γj

∑k
l=1 γ

2
l∑k

j=1 γj

0 < α < 1/2 O
(1

k1−α

)
O
(1

kα

)
α = 1/2 O

(1

k1/2

)
O
(ln(k)

k1/2

)
1/2 < α < 1 O

(1

k1−α

)
O
(1

k1−α

)

The best rate is obtained with α = 1/2, that is γk = γ0√
k+1

. With this choice, we have

E[F (x̄γk)− F (x∗)] ∈ O
(ln(k)√

k

)
.

Remark 2.2. If we know the number of iterations K we are going to perform, we can set a

constant step size γk = a√
K

and obtain a guarantee E[F (x̄γK)− F (x∗)] ∈ O
(

1√
K

)
2.2.4 Strongly convex objective

When F is µ-strongly convex, we can show that a step size decreasing as γk = a
µ(k+b) gives an

improved rate E[F (xk)− F (x∗)] ∈ O
(

1
k

)
.

Theorem 2.3. Suppose that:

� (x 7→ f(x, ξ)) is convex and di�erentiable for all ξ,

� F is µ-strongly convex and its gradient is L-Lipschitz,

� there exists C > 0 such that E(‖∇f(x, ξ)‖2) ≤ C for all x

� there exists x∗ ∈ arg minF ,

� the sequence γk is deterministic and satis�es γk = a
µ(k+b) for a given a > 0.5, b > 0.

The iterates of the stochastic gradient algorithm xk+1 = xk − γk∇f(xk, ξk+1) satisfy the conver-

gence guarantee

E[‖xk − x∗‖2] ≤
a2C

(2a−1)µ2

k + b

E[F (xk)− F (x∗)] ≤
a2CL

(4a−2)µ2

k + b

Proof. Compared to the convex case, we replace the inequality F (y) ≥ F (x)+〈E[∇f(x, ξ)], y−x〉
by the stronger one F (y) ≥ F (x) + 〈E[∇f(x, ξ)], y − x〉+ µ

2‖y − x‖
2. Hence

Ek[‖xk+1 − x∗‖] ≤ ‖xk − x∗‖ − 2γk〈Ek[∇f(xk, ξk+1)], xk − x∗〉+ γ2
kEk[‖∇f(xk, ξk+1)‖2]

≤
(
1− µγk

)
‖xk − x∗‖+ 2γk(F (x∗)− F (xk)) + γ2

kC . (2.2.1)

10

We use F (x∗)− F (xk) ≤ −µ
2‖xk − x

∗‖2 to get

Ek[‖xk+1 − x∗‖2] ≤
(
1− 2µγk

)
‖xk − x∗‖2 + γ2

kC .

We will now show by induction that for γk = a
µ(k+b) , we have a convergence in E[‖xk − x∗‖2] ≤

∆
k+b .

We suppose that for a given iterate k, there exists ∆ such that E[‖xk − x∗‖2] ≤ ∆
k+b .

E[‖xk+1 − x∗‖2] ≤
(
1− 2µγk

)
E[‖xk − x∗‖2] + γ2

kC

≤
(
1− 2

a

k + b

) ∆

k + 1
+

a2

µ2(k + b)2
C

(
1− 2

a

k + b

) ∆

k + b
+

a2

µ2(k + b)2
C ≤ ∆

k + b+ 1

⇔
(
1− 2

a

k + b

)
∆(k + b+ 1) +

a2(k + b+ 1)

µ2(k + b)
C ≤ ∆(k + b)

⇔ ∆− 2a∆
k + b+ 1

k + b
+
a2(k + b+ 1)

µ2(k + b)
C ≤ 0

⇔ ∆
k + b

k + b+ 1
− 2a∆ +

a2

µ2
C ≤ 0

This holds true for all k as soon as a > 0.5 and ∆ ≤ a2C
(2a−1)µ2

.

What is left is to come back to function values. We can do it because F (x)−F (x∗) ≤ ∇F (x∗), x−
x∗〉+ L

2 ‖x− x
∗‖2 = L

2 ‖x− x
∗‖2.

2.3 Proximal stochastic gradient

The previous theorem is nice but it requires in particular the objective to be at same time Lip-
schitz continuous, strongly convex and to have a Lipschitz gradient. Unfortunately, this never
happens, which makes its usefulness questionable. Yet, if we replace �Lipschitz� by �locally Lips-
chitz�, this issue disappears. The proof can be modi�ed to manage a proximal term, potentially
encounting for a projection onto a bounded domain. Also, we shall write the proof for this case
with the bounded variance condition E(‖∇f(x, ξ) − ∇F (xk)‖2) ≤ C, which is less restrictive
than bounded stochastic gradients E(‖∇f(x, ξ)‖2) ≤ C.
We consider the problem

min
x∈X

E(f(x, ξ)) + g(x) (2.3.1)

where f(·, ξ) is di�erentiable for all ξ and g has a simple proximal operator (proxg(x) =

arg miny g(y) + 1
2‖x− y‖

2 is easily computable). We shall denote F (x) = E(f(x, ξ)).
Consider the proximal stochastic gradient algorithm

Algorithm 4: Proximal stochastic gradient algorithm

xk+1 = proxγkg
(
xk − γk∇f(xk, ξk+1)

)

Theorem 2.4. Suppose that:

11

� (x 7→ f(x, ξ)) is convex and di�erentiable for all ξ,

� g is a proper convex, l.s.c. function,

� F is µ-strongly convex and has a L-Lipschitz gradient,

� there exists C > 0 such that E(‖∇f(x, ξ)−∇F (xk)‖2) ≤ C for all x ∈ dom g

� there exists x∗ ∈ arg minF + g,

� the sequence γk is deterministic, satis�es γk = a
µ(k+b) for given a > 1 and b > 0 such that

γ0 = a
µb ≤

1
2L .

The iterates of the proximal stochastic gradient algorithm xk+1 = proxγkg
(
xk− γk∇f(xk, ξk+1)

)
satisfy the convergence guarantee

E[‖xk − x∗‖2] ≤
4a2C

(a−1)µ2

k + b

Proof. By the properties of the proximal operator, if we denote p = proxγg(x), we know that
for all y,

γg(p) +
1

2
‖p− x‖2 ≤ γg(y) +

1

2
‖y − x‖2 − 1

2
‖y − p‖2

Applying this to p = xk+1, x = xk − γk∇f(xk, ξk+1) and y = x∗ yields

γkg(xk+1) +
1

2
‖xk+1 − xk + γk∇f(xk, ξk+1)‖2 ≤ γkg(x∗) +

1

2
‖x∗ − xk + γk∇f(xk, ξk+1)‖2 − 1

2
‖x∗ − xk+1‖2

1

2
‖x∗ − xk+1‖2 +

1

2
‖xk+1 − xk + γk∇f(xk, ξk+1)‖2 ≤ 1

2
‖x∗ − xk‖2 + γk

(
g(x∗)− g(xk+1)

+ 〈∇f(xk, ξk+1), x∗ − xk〉
)

+
γ2
k

2
‖∇f(xk, ξk+1)‖2

Ek[‖x∗ − xk+1‖2] ≤ (1− γkµ)‖x∗ − xk‖2 + 2γk

(
g(x∗)− Ek[g(xk+1)] + F (x∗)− F (xk)

)
+
(((((((((((
γ2
kEk[‖∇f(xk, ξk+1)‖2]

− Ek[‖xk+1 − xk‖2]−
(((((((((((
γ2
kEk[‖∇f(xk, ξk+1)‖2]− 2γkEk[〈∇f(xk, ξk+1), xk+1 − xk〉]

We combine this with Taylor-Lagrange inequality.

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

−F (xk) ≤ −F (xk+1) + 〈∇f(xk, ξk+1), xk+1 − xk〉+ 〈∇F (xk)−∇f(xk, ξk+1), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

Ek[‖x∗ − xk+1‖2] ≤ (1− γkµ)‖x∗ − xk‖2 + 2γk

(
g(x∗)− Ek[g(xk+1)] + F (x∗)− F (xk+1)

)
+ (Lγk − 1)Ek[‖xk+1 − xk‖2] + 2γkEk[〈∇F (xk)−∇f(xk, ξk+1), xk+1 − xk〉]

≤ (1− γkµ)‖x∗ − xk‖2 + (Lγk − 0.5)Ek[‖xk+1 − xk‖2] + 4γ2
kEk[‖∇F (xk)−∇f(xk, ξk+1)‖2]

where we used the inequality 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2 for a = 2γk(∇F (xk) − ∇f(xk, ξk+1)) and
b = xk+1 − xk. By assumption, Lγk ≤ 0.5 so that the term Ek[‖xk+1 − xk‖2] cancels out. We
are left with a recursion similar to what we had without the proximal term:

E[‖x∗ − xk+1‖2] ≤ (1− γkµ)E[‖x∗ − xk‖2] + 4γ2
kC

and we solve it similarly by induction.

12

2.4 Comparison of the results depending on the assumption

We have shown in this chapter several convergence results for the stochastic gradient algorithm,
depending on the assumptions we made. The following table summarizes them.

Problem Convex Lipschitz ∇F Noise Step-size Rate

min
x

E[f(x, ξ)] no yes E(‖∇f(x, ξ)‖2) ≤ C γk = γ0√
k+1

E
[

min
l≤k
‖∇F (xl)‖2

]
∈ O(ln(k)√

k
)

min
x

E[f(x, ξ)] yes no E(‖∇f(x, ξ)‖2) ≤ C γk = γ0√
k+1

E[F (x̄γk)− F (x∗)] ∈ O(ln(k)√
k

)

min
x

E[f(x, ξ)] + g(x) µ-str. conv. yes E(‖∇f(x, ξ)−∇F (x)‖2) ≤ C γk = a
µ(k+b) E[‖xk − x∗‖2] ∈ O(1

k)

13

Chapter 3

Stochastic variance-reduced gradient

3.1 Motivation and algorithm

In this chapter, we shall concentrate on the minimization of an objective function which can be
written as a �nite sum:

min
x

1

N

N∑
i=1

fi(x)

If the sum involves a large number of summands, it is worth considering a stochastic algorithm to
solve the problem [Bot10]. Indeed, stochastic gradient descent (SGD) will perform n iterations
for the cost of 1 iteration of gradient descent (GD). Suppose that F (x) = 1

N

∑N
i=1 fi(x) is µ-

strongly convex and that we are interested in solving the problem up to precision ε, then SGD
will require a number of iterations of the order of 1/ε. In comparison GD requires O(ln(1/ε)
iterations. If 1/ε < N ln(1/ε), then SGD is preferable.
Variance-reduced stochastic gradient methods try to go beyond this alternative and take pro�t of
the advantages of both algorithms: a cheap per iteration cost together with a linear convergence
rate on strongly convex functions. The idea is to compute stochastic gradients with a lower
variance thanks to the concept of control variates. The control variate we use is a periodically
computed full gradient. By carefully setting the period, we can mitigate the heavy cost of
the computation of this gradient while improving a lot the quality of the stochastic gradients.
Starting from a given point x0, w0 = x0 and using a probability p < 1 of updating the control
variate, Stochastic Variance Reduced Gradient (SVRG)1 writes as follows:

Algorithm 5: Stochastic variance-reduced gradient

ik+1 ∼ U({1, . . . , N})
gk+1 = ∇F (wk) +∇fik+1

(xk)−∇fik+1
(wk)

xk+1 = xk − γgk+1

wk+1 =

{
xk with probability p

wk with probability 1− p

1we shall use the version of [KHR20]

14

3.2 Convergence

We will need the following result on convex functions with a Lipschitz gradient.

Proposition 3.1. Let f be a convex function with an L-Lipschitz gradient. For all x and y,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2L
‖∇f(x)−∇f(y)‖2

Proof. Let us �x a vector y. Let φ : x 7→ f(x)− 〈∇f(y), x− y〉.
We can see that φ is convex and ∇φ(x) = ∇f(x)−∇f(y). Hence ∇φ(y) = 0 and y ∈ arg minφ.
Thus, using Taylor Lagrange inequality

φ(y) ≤ φ(x− 1

L
∇φ(x)) ≤ φ(x) + 〈∇φ(x),− 1

L
∇φ(x)〉+

L

2
‖ 1

L
∇φ(x)‖2

φ(y) ≤ φ(x)− 1

2L
‖∇φ(x)‖2

Reminding the de�nition of φ, we obtain f(x)−〈∇f(y), x−y〉 ≥ f(y)+ 1
2L‖∇f(x)−∇f(y)‖2.

Theorem 3.2. Suppose that for all i ∈ {1, . . . , N}, fi is convex and di�erentiable, ∇fi is L-
Lipschitz and F is µ-strongly convex. Denote x∗ the unique minimizer of F and suppose that

γ ≤ 1
6L . The iterates of SVRG converge linearly as

E[‖xk − x∗‖2] ≤ ck∆0

where c = max(1− γµ, 1− p/2) and ∆0 = ‖x0 − x∗‖2 + 4γ2

pN

∑N
i=1 ‖∇fi(x0)−∇fi(x∗)‖2.

Moreover, the expected cost of an iteration is 2 + pN stochastic gradients.

Proof. Computing ∇F (wk) requires N stochastic gradients but we do it only with probability
p. Then we need to compute ∇fik+1

(xk) and ∇fik+1
(wk) at each iteration. This gives the cost

in number of stochastic gradients per iteration.
We now proceed to the convergence rate. Note that Ek[gk+1] = ∇F (wk) +∇F (xk)−∇F (wk) =
∇F (xk).

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ〈gk+1, xk − x∗〉+ γ2‖gk+1‖2

Ek[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 + 2γ〈∇F (xk), x
∗ − xk〉+ γ2Ek[‖gk+1‖2]

Ek[‖xk+1 − x∗‖2] ≤ (1− γµ)‖xk − x∗‖2 + 2γ(F (x∗)− F (xk)) + γ2Ek[‖gk+1‖2]

We deal with the noise term ‖gk+1‖2.

Ek[‖gk+1‖2] = Ek[‖∇F (wk) +∇fik+1
(xk)−∇fik+1

(wk)‖2]

= Ek[‖∇fik+1
(xk)−∇fik+1

(x∗) +∇F (wk) +∇fik+1
(x∗)−∇fik+1

(wk)‖2] ≤ 2Ek[‖∇fik+1
(xk)−∇fik+1

(x∗)‖2] + 2Ek[‖∇F (wk)−∇F (x∗) +∇fik+1
(x∗)−∇fik+1

(wk)‖2]

≤ 2Ek[‖∇fik+1
(xk)−∇fik+1

(x∗)‖2] + 2Ek[‖∇fik+1
(x∗)−∇fik+1

(wk)‖2]

where we used E[X2] = E[X]2 + E[(X − E[X])2] ≥ E[(X − E[X])2].
Using the inequality fi(x) ≥ fi(x∗) + 〈∇fi(x∗), x−x∗〉+ 1

2L‖∇fi(x)−∇fi(x∗)‖2, we can further
bound

Ek[‖∇fik+1
(xk)−∇fik+1

(x∗)‖2] ≤ 2L

N

N∑
i=1

fi(xk)− fi(x∗)− 〈∇fi(x∗), xk − x∗〉 = 2L(F (xk)− F (x∗))

15

Let us denote

Dk =
4γ2

pN

N∑
i=1

‖∇fi(wk)−∇fi(x∗)‖2 =
4γ2

p
Ek[‖∇fik+1

(wk)−∇fik+1
(x∗)‖2

so that

Ek[‖xk+1 − x∗‖2] ≤ (1− γµ)‖xk − x∗‖2 + 2γ(F (x∗)− F (xk)) + 4Lγ2(F (xk)− F (x∗)) +
p

2
Dk .

Using again the inequality fi(x) ≥ fi(x∗)+〈∇fi(x∗), x−x∗〉+ 1
2L‖∇fi(x)−∇fi(x∗)‖2, we obtain

Dk ≤
8Lγ2

pN

N∑
i=1

fi(wk)− fi(x∗)− 〈∇fi(x∗), wk − x∗〉 =
8Lγ2

p

(
F (wk)− F (x∗)

)
We can remove wk from the bound by using the update rule

Ek[Dk+1] = (1− p)Dk + p
4γ2

pN

N∑
i=1

‖∇fi(xk)−∇fi(x∗)‖2 ≤ (1− p)Dk + 8Lγ2
(
F (xk)− F (x∗)

)
Combining the bounds on Ek[‖xk+1 − x∗‖2] and E[Dk+1] we get

Ek[‖xk+1 − x∗‖2 +Dk+1] ≤ (1− γµ)‖xk − x∗‖2 + 2γ(F (x∗)− F (xk)) + 4Lγ2(F (xk)− F (x∗))

+
p

2
Dk + (1− p)Dk + 8Lγ2

(
F (xk)− F (x∗)

)
≤ (1− γµ)‖xk − x∗‖2 + (1− p

2
)Dk +

(
12Lγ2 − 2γ

)(
F (xk)− f(x∗)

)
Since we choose γ ≤ 1

6L we obtain a contraction in expectation with rate max(1−γµ, 1−p/2).

16

Chapter 4

Adaptive step-sizes

A major issue with the stochastic gradient method is that the step-size sequence should be
determined beforehand and has no reason to be adapted the problem at stake. The following
proposition tries to answer this issue.

Proposition 4.1 ([SZL13]). Consider x ∈ Rd and a function f : Rd×Ξ→ R such that for any

ξ, (x 7→ f(x, ξ)) is di�erentiable with an L-Lipschitz gradient. Denote x+(γ) = x − γ∇f(x, ξ),
where γ ∈ Rd+ does not depend on ξ.

inf
γ∈Rd+

E[f(x+(γ), ξ)] ≤ E[f(x+(γ∗), ξ)] ≤ f(x)− 1

2L

d∑
j=1

(E[∇jf(x, ξ)]4)

E[∇jf(x, ξ)]2

where γ∗j = 1
L

(E[∇jf(x,ξ)])2

E[∇jf(x,ξ)2]
.

Proof. Denote F (x) = E[f(x, ξ)]. By Taylor Lagrange inequality

F (x+(γ)) ≤ F (x)− 〈∇F (x), γ∇f(x, ξ)〉+
L

2
‖γ∇f(x, ξ)‖2

E[F (x+(γ))] ≤ F (x)−
d∑
j=1

γj(∇jF (x))2 +
L

2

d∑
j=1

γ2
jE[∇jf(x, ξ)2]

Minimizing the right hand side with respect to γ give the result.

This proposition shows that if we knew the law of ξ, we could design step-sizes for the stochastic
gradient method that would ensure a nice decrease in the objective function. Moreover, these
step-sizes would be adaptive to the local behaviour of the function and decrease to 0 at the
optimal rate. However, we cannot set step-sizes as required by Proposition 4.1 because the law
of ξ is unknown.
In this chapter, we are going to study two algorithms that have adaptive step-sizes : Adagrad
and Adam. In fact, they go even further than the previous proposition, they de�ne step-sizes
that depend on the whole history of stochastic gradients, ξk+1 included. We shall denote ab
for the element-wise product of two vectors a and b, a

b for their element-wise division and

‖a‖2b =
∑d

i=1 bia
2
i .

4.1 Adagrad

Adagrad has been introduced in [DHS11]. The algorithm writes

17

Algorithm 6: Adagrad

vk+1 =
k∑
s=0

∇f(xs, ξs+1)2

γk+1 =
α

√
vk+1

xk+1 = xk − γk+1∇f(xk, ξk+1)2

Theorem 4.2. Suppose that

� f(·, ξ) is convex for all ξ

� There exists x∗ ∈ arg minF , where F (x) = E[f(x, ξ)]

� For all k ≥ 0, for all i ∈ {1, . . . , d}, |xk,i − x∗i | ≤ D

� For all x, ξ, for all g ∈ ∂f(x, ξ), ‖g‖ ≤ G

Then the iterates of Adagrad satisfy

E[F (x̄K)− F (x∗)] ≤ 2dD2G

α
√
K

+
2αdG√
K

where x̄K = 1
K

∑K−1
k=0 xk.

Proof. Since the step-sizes are not deterministic any more, we need to pay more attention than
before when applying conditional expectations. Yet, the proof will begin with similar arguments
as in Theorem 2.2.

f(xk, ξk+1)−f(x∗, ξk+1) ≤ 〈∇f(xk, ξk+1), xk − x∗〉

≤ 1

2
‖xk − x∗‖2γ−1

k+1

− 1

2
‖xk+1 − x∗‖2γ−1

k+1

+
1

2
‖∇f(xk, ξk+1)‖2γk+1

We now sum for k between 0 and K − 1

K−1∑
k=0

f(xk, ξk+1)−f(x∗, ξk+1) ≤
K−1∑
k=0

(1

2
‖xk − x∗‖2γ−1

k+1

− 1

2
‖xk+1 − x∗‖2γ−1

k+1

)
+
K−1∑
k=0

1

2
‖∇f(xk, ξk+1)‖2γk+1

(4.1.1)

Note that up to now, we have not applied any form of expectation. The di�erence of norms is
nearly telescoping.

K−1∑
k=0

(
‖xk − x∗‖2γ−1

k+1

− ‖xk+1 − x∗‖2γ−1
k+1

)
= ‖x0 − x∗‖2γ−1

1
− ‖xK − x∗‖2γ−1

K
+
K−1∑
k=0

(‖xk − x∗‖2(γ−1
k+1−γ

−1
k)

≤
d∑
i=1

D2

γ1,i
+

K−1∑
k=0

D2(
1

γk+1,i
− 1

γk,i
) ≤

d∑
i=1

D2

γ1,i
+

D2

γK,i
(4.1.2)

where we used the fact that 1
γk+1
− 1

γk
≥ 0 and 1

γ0
= 0. Moreover, γK,i ≥ α

G
√
K
.

18

We now turn to the second part of (4.1.1):
∑K−1

k=0 ‖∇f(xk, ξk+1)‖2γk+1
. By de�nition of γk, if we

denote a
(i)
k = ∇if(xk, ξk+1)2 ≥ 0, then

K−1∑
k=0

‖∇f(xk, ξk+1)‖2γk+1
= α

K−1∑
k=0

d∑
i=1

a
(i)
k√∑K−1
s=0 a

(i)
s

Lemma 4.3. Let (ak) be a sequence of nonnegative numbers. Then

K−1∑
k=0

ak√∑k
s=0 as

≤ 2

√√√√K−1∑
s=0

as

Proof. Denote hK =
∑K−1

k=0
ak√∑k
s=0 as

. We will show the result by induction. Clearly, h0 =

√
a0 ≤ 2

√
a0.

We now assume that hK ≤ 2
√∑K−1

s=0 as.

hK+1 = hK +
aK√∑K
s=0 as

≤ 2

√√√√K−1∑
s=0

as +
aK√∑K
s=0 as

Now, since the square root is concave, we have

√
b− a ≤

√
b− a

2
√
b

as long as b− a ≥ 0 and b > 0. Hence,

hK+1 ≤ 2
(√√√√ K∑

s=0

as −
aK

2
∑K

s=0 as

)
+

aK√∑K
s=0 as

= 2

√√√√ K∑
s=0

as

Induction proceed, so the lemma is proved.

We apply the lemma to our sequence of stochastic gradients to get:

K−1∑
k=0

‖∇f(xk, ξk+1)‖2γk+1
≤ 2α

d∑
i=1

√√√√K−1∑
k=0

(∇if(xk, ξk+1))2 ≤ 2αdG
√
K

We combine the inequality with (4.1.2) to get

K−1∑
k=0

f(xk, ξk+1)− f(x∗, ξk+1) ≤ D2G(1 +
√
K)

α
+ 2αdG

√
K

Remark that F (xk) = E[f(xk, ξk+1)|ξ1, . . . , ξk] so that E[F (xk)] = E[f(xk, ξk+1)]. Hence, we
apply expectation and use convexity of F :

E[F (x̄K)− F (x∗)] ≤ 1

K

K−1∑
k=0

E[f(xk, ξk+1)− f(x∗, ξk+1)] ≤ D2G(1 +
√
K)

αK
+

2αdG√
K

19

4.2 Adam

We are now going to see an algorithm that is often used for the resolution of neural network
models: ADAM, which stands for stochastic gradient with adaptive moment estimation [KB14].
Its main ingredients are an adaptive estimation of the �rst and second moments of the stochastic
gradient and coordinate-wise step-sizes. The idea is to design an exponential moving average of
previous gradients and square gradients as an estimation of its moments. Finally, instead of just
using the estimate of ∇F (x) to set the step-size, ADAM uses it directly as a means of reducing
the variance of the stochastic gradient. The algorithm uses parameters α > 0, β1 ∈ [0, 1],
β2 ∈ [0, 1] and ε > 0. It is initialized with a �xed x0 and m0 = v0 = 0. It is given by

Algorithm 7: Adam

mk+1 = β1mk + (1− β1)∇f(xk, ξk+1)

m̂k+1 =
mk+1

1− βk+1
1

vk+1 = β2vk + (1− β2)∇f(xk, ξk+1)2

v̂k+1 = max
(
v̂k,

vk+1

1− βk+1
2

)
xk+1 = xk −

αk

ε+
√
v̂k+1

m̂k+1

Theorem 4.4. Suppose that

� f(·, ξ) is convex for all ξ

� ∃x∗ ∈ arg minF , F (x) = E[f(x, ξ)]

� For all k, for all i, |xk,i − x∗i | ≤ D

� For all x, ξ, for all i, |∇if(x, ξ)| ≤ G

� αk = α0
k+1

� β2
1 < β2

Then the iterates of Adam satisfy

E[F (x̄K)− F (x∗)] ≤ dD2

2(1− β1)

√
1− β2G

α0(
√
K +K)

+
1 + 2β1

2(1− β1)

α0

√
1 + ln(K)G

√
1− β2

√
1− β2

1
β2

√
K
∈ O(

ln(K)√
K

)

where x̄K = 1
K

∑K−1
k=0 xk.

We will prove this theorem in the form of an exercise.

Exercise 4.1. We will denote γ̂k+1 = αk
(1−βk+1

1)(ε+
√
v̂k+1)

so that xk+1 = xk − γ̂k+1mk+1.

1. Show that
f(xk, ξk+1)− f(x∗, ξk+1) ≤ 〈∇f(xk, ξk+1), xk − x∗〉

20

2. Using the relation mk+1 = β1mk + (1− β1)∇f(xk, ξk+1), show that

〈∇f(xk, ξk+1), xk−x∗〉 = 〈mk+1, xk−x∗〉+
β1

1− β1

(
〈mk+1, xk+1−x∗〉−〈mk, xk−x∗〉

)
+

β1

1− β1
‖mk+1‖2γ̂k+1

3. Show that

〈mk+1, xk − x∗〉 =
1

2
‖xk − x∗‖2γ̂−1

k+1

− 1

2
‖xk+1 − x∗‖2γ̂−1

k+1

+
1

2
‖mk+1‖2γ̂k+1

4. Show that
K−1∑
k=0

f(xk, ξk+1)− f(x∗, ξk+1) ≤ β1

1− β1

(
〈mK , xK − x∗〉 − 〈m0, x0 − x∗〉

)
+

K−1∑
k=0

(1

2
‖xk − x∗‖2γ̂−1

k+1

− 1

2
‖xk+1 − x∗‖2γ̂−1

k+1

)
+
(β1

1− β1
+

1

2

)K−1∑
k=0

‖mk+1‖2γ̂k+1

5. Show that (γ̂k) is a decreasing sequence and that γ̂k ≥ α0√
k
√

1−β2G
.

6. Show that
K−1∑
k=0

1

2
‖xk − x∗‖2γ̂−1

k+1

− 1

2
‖xk+1 − x∗‖2γ̂−1

k+1

≤ D2

2

d∑
i=1

(1

γ̂K,i
+

1

γ̂1,i
− 1

γ̂0,i

)
7. Show that

〈mK , xK − x∗〉 ≤
1

2
‖mK‖2γ̂K +

D2

2

d∑
i=1

1

γ̂K,i
≤ 1

2

K−1∑
k=0

‖mk+1‖2γ̂k+1
+
D2

2

(d∑
i=1

1

γ̂K,i
+

1

γ̂1,i

)
.

8. Denote γk+1 = αk
(1−β1)

√
vk+1

. Show that γk+1 ≥ γ̂k+1.

9. Let x, y, z ∈ Rd+ be nonnegative vectors and let p, q, r be positive real numbers such that
1
p + 1

q + 1
r = 1. Show that

∑d
j=1 xjyjzj ≤ ‖x‖p‖y‖q‖z‖r.

10. Denote gk+1 = ∇if(xk, ξk+1). In the following sequence of inequalities, tell the reason why
each one is true

(mk,i)
2γ̂k,i ≤ (mk,i)

2γk,i

=
αk−1

(1− β1)

(
(1− β1)

∑k
j=1 β

k−j
1 gj

)2

√
(1− β2)

∑k
j=1 β

k−j
2 g2

j

=
αk−1(1− β1)√

1− β2

(∑k
j=1

(
β
k−j
4

2 |gj |
1
2

)(
β1β

1/2
2

) k−j
2
(
βk−j1 |gj |

) 1
2

)2

√∑k
j=1 β

k−j
2 g2

j

≤ αk−1(1− β1)√
1− β2

(k∑
j=1

(β2
1
β2

)k−j) 1
2
(k∑
j=1

βk−j1 |gj |
)

≤ αk−1(1− β1)
√

1− β2

√
1− β2

1
β2

k∑
j=1

βk−j1 |gj |

21

11. By remarking that
∑K−1

k=j αtβ
k−j
1 ≤ αj

1−β1 , show that

K−1∑
k=0

(mk+1,i)
2γ̂k,i ≤

1
√

1− β2

√
1− β2

1
β2

K−1∑
k=0

αk|∇if(xk, ξk+1)|

12. Show that

K−1∑
k=0

(mk+1,i)
2γ̂k,i ≤

α0

√
1 + ln(K)

√
1− β2

√
1− β2

1
β2

√√√√K−1∑
k=0

(∇if(xk, ξk+1))2

13. Conclude

22

Chapter 5

Coordinate descent

5.1 Exact coordinate descent

The idea of coordinate descent is to decompose a large optimisation problem into a sequence of
one-dimensional optimisation problems. The algorithm was �rst described for the minimization
of quadratic functions by Gauss and Seidel in [Sei74]. Coordinate descent methods have become
unavoidable in machine learning because they are very e�cient for key problems, namely Lasso,
logistic regression and support vector machines. Moreover, the decomposition into small sub-
problems means that only a small part of the data is processed at each iteration and this makes
coordinate descent easily scalable to high dimensions.

We �rst decompose the space of optimisation variables X into blocks X1 × . . . × Xn = X. A
classical choice when X = Rn is to choose X1 = . . . = Xn = R. We will denote Ui the canonical
injection from Xi to X, that is Ui is such that for all h ∈ Xi,

Uih = (0, . . . , 0︸ ︷︷ ︸
i−1 zeros

,h>, 0, . . . , 0︸ ︷︷ ︸
n−i zeros

)> ∈ X.

For a function f : X1 × . . .×Xn → R, we de�ne the following algorithm.

Algorithm 8: Exact coordinate descent

Start at x0 ∈ X.
At iteration k, choose l = (k mod n) + 1 (cyclic rule) and de�ne xk+1 ∈ X by{

x
(i)
k+1 = arg minz∈Xl f(x

(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k) if i = l

x
(i)
k+1 = x

(i)
k if i 6= l

Proposition 5.1 ([War63]). If f is continuously di�erentiable and strictly convex and there

exists x∗ = arg minx∈X f(x), then the exact coordinate descent method (Alg. 8) converges to x∗.

Example 5.1 (least squares). f(x) = 1
2‖Ax− b‖

2
2 = 1

2

∑m
j=1(a>j x− bj)2

At each iteration, we need to solve in z the 1D equation

∂f

∂x(l)
(x

(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k) = 0

For all x ∈ Rn,
∂f

∂x(l)
(x) = a>l (Ax− b) = a>l alx

(l) + a>l (
∑
j 6=l

ajx
(j))− a>l b

23

Figure 5.1: The successive iterates of the coordinate descent method on a 2D example. The
function we are minimising is represented by its level sets: the bluer is the circle, the lower is
the function values.

so we get

z∗ = x
(l)
k+1 =

1

‖al‖22

(
− a>l (

∑
j 6=l

ajx
(j)
k) + a>l b

)
= x

(l)
k −

1

‖al‖22

(
a>l (

n∑
j=1

ajx
(j)
k)− a>l b

)
Example 5.2 (non-di�erentiable function). f(x(1), x(2)) = |x(1) − x(2)|−min(x(1), x(2))+ι[0,1]2(x)
f is convex but not di�erentiable. If we nevertheless try to run exact coordinate descent, the

algorithm proceeds as x
(1)
1 = arg minz f(z, x

(2)
0) = x

(2)
0 , x

(2)
2 = arg minz f(x

(1)
1 , z) = x

(2)
0 , and so

on. Thus exact coordinate descent converges in two iterations to (x
(2)
0 , x

(2)
0): the algorithm is

stuck on the non-di�erentiability point on the line {x(1) = x(2)} and does not reach the minimiser
(1, 1).

Example 5.3 (non-convex di�erentiable function).
f(x(1), x(2), x(3)) = −(x(1)x(2) + x(2)x(3) + x(3)x(1)) +

∑3
i=1 max(0, |x(i)| − 1)2

As shown by [Pow76], exact coordinate descent on this function started at the initial point
x(0) = (−1− ε, 1 + ε/2,−1− ε/4) has a limit cycle around the 6 corners of the cube that are not
minimisers and avoids the 2 corners that are minimisers.
Exercise: Show Powell's result.

Example 5.4 (Adaboost). The Adaboost algorithm [CSS02] was designed to minimise the expo-
nential loss given by

f(x) =
m∑
j=1

E(−yjh>j x).

At each iteration, we select the variable l such that l = arg maxi|∇if(x)| and we perform an
exact coordinate descent step along this coordinate.
This variable selection rule is called the greedy or Gauss-Southwell rule. Like the cyclic rule,
it leads to a converging algorithm but requires to compute the full gradient at each iteration.
Greedy coordinate descent is interesting in the case of the exponential loss because the gradient
of the function has a few very large coe�cients and many negligible coe�cients.

24

x
0

x
1
 = x

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: The function in Example 5.2

Exercise: Suppose that yj ∈ {−1, 1} and hj,i ∈ {−1, 0, 1} for all j, i. Give the explicit formulas
of ∇if(x) and of the next update xk+1 knowing xk.

5.2 Coordinate gradient descent

Solving a one-dimensional optimisation problems is generally easy and the solution can be ap-
proximated very well by algorithms like the bisection method. However, for the exact coordinate
descent method, one needs to solve a huge number of one-dimensional problems and the expense
quickly becomes prohibitive. Moreover, why should we solve to high accuracy the 1-dimensional
problem and destroy this solution at the next iteration?
The idea of coordinate gradient descent is to perform one iteration of gradient descent in the

1-dimensional problem minz∈Xl f(x
(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k) instead of solving it com-

pletely. In general, this reduces drastically the cost of each iteration while keeping the same
convergence behaviour.

Algorithm 9: Coordinate gradient descent

Start at x0.
At iteration k, choose ik+1 ∈ {1, . . . , n} and de�ne xk+1 by{

x
(i)
k+1 = x

(i)
k − γi∇if(xk) if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

When choosing the cyclic or greedy rule, the algorithm does converge for any convex function f
that has a Lipschitz-continuous gradient and such that arg minx f(x) 6= ∅.
In fact we will assume that we actually know the coordinate-wise Lipschitz constants of the
gradient of f , namely the Lipschitz constants of the functions

gi,x : Xi → R

h 7→ f(x+ Uih) = f(x(1), . . . , x(i−1), x(i) + h, x(i+1), . . . , x(n))

25

We will denote Li = L(∇gi,x) this Lipschitz constant. Written in terms of f , this means that

∀x ∈ X,∀i ∈ {1, . . . , n},∀h ∈ Xi, ‖∇f(x+ Uih)−∇f(x)‖2 ≤ Li‖Uih‖2.

Lemma 5.2. If f has a coordinate-wise Lipschitz gradient with constants L1, . . . , Ln, then

∀x ∈ X, ∀i ∈ {1, . . . , n},∀h ∈ Xi,

f(x+ Uih) ≤ f(x) + 〈∇if(x), h〉+
Li
2
‖h‖2

Proof. This is Taylor's inequality applied to gi,x. Note that we do not require the function to
be twice di�erentiable.

Proposition 5.3 ([BT13]). Assume that f is convex, ∇f is Lipschitz continuous and arg minx∈X f(x) 6=
∅. If ik+1 is chosen with the cyclic rule ik+1 = (k mod n)+1 and ∀i, γi = 1

Li
, then the coordinate

gradient descent method (Alg. 9) satis�es

f(xk+1)− f(x∗) ≤ 4Lmax(1 + n3L2
max/L

2
min)

R2(x0)

k + 8/n

where R2(x0) = maxx,y∈X{‖x−y‖ : f(y) ≤ f(x) ≤ f(x0)}, Lmax = maxi Li and Lmin = mini Li.

The proof of this result is quite technical and in fact the bound is much more pessimistic than
what is observed in practice (n3 is very large if n is large). This is due to the fact that the
cyclic rule behaves particularly bad on some extreme examples. To avoid such traps, it has been
suggested to randomise the coordinate selection process.

Proposition 5.4 ([Nes12]). Assume that f is convex, ∇f is Lipschitz continuous and arg minx∈X f(x) 6=
∅. If ik+1 is randomly generated, independently of i1, . . . , ik and ∀i ∈ {1, . . . , n}, P(ik+1 =
i) = 1

n and γi = 1
Li
, then the coordinate gradient descent method (Alg. 9) satis�es for all

x∗ ∈ arg minx f(x)

E[f(xk+1)− f(x∗)] ≤
n

k + n

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
where ‖x‖2L =

∑n
i=1 Li‖x(i)‖22.

Proof. This is a particular case of the method developed in the next section.

Comparison with gradient descent The iteration complexity of the gradient descent method
is

f(xk+1)− f(x∗) ≤
L(∇f)

2(k + 1)
‖x∗ − x0‖22

This means that to get an ε-solution (i.e. such that f(xk) − f(x∗) ≤ ε), we need at most
L(∇f)

2ε ‖x∗ − x0‖22 iterations. What is most expensive in gradient descent is the evaluation of the
gradient ∇f(x) with a cost C, so the total cost of the method is

Cgrad = C
L(∇f)

2ε
‖x∗ − x0‖22

Neglecting the e�ect of randomisation, we usually have an ε-solution with coordinate descent
in n

ε

(
(1− 1

n)(f(x0)− f(x∗)) + 1
2‖x∗ − x0‖2L

)
iterations. The cost of one iteration of coordinate

descent is of the order of the cost of evaluation one partial derivative ∇if(x), with a cost c, so
the total cost of the method is

Ccd = c
n

ε

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
How do these two quantities compare?
Let us consider the case where f(x) = 1

2‖Ax− b‖
2
2.

26

� Computing ∇f(x) = A>(Ax − b) amounts to updating the residuals r = Ax − b (one
matrix vector product and a sum) and computing one matrix vector product. We thus
have C = O(nnz(A)).

� Computing ∇if(x) = e>i A
>(Ax− b) amounts to

1. updating the residuals r = Ax − b: one scalar-vector product and a sum since we

have rk+1 = rk + (x
(ik+1)
k+1 − x(ik+1)

k)Aeik+1
,

2. computing one vector-vector product (the ith column of A versus the residuals).

Thus c = O(nnz(Aeik+1
)) = O(nnz(A)/n) = C/n if the columns of A are equally sparse.

� f(x0)−f(x∗) ≤ L(∇f)
2 ‖x0−x∗‖22 and it may happen that f(x0)−f(x∗)� L(∇f)

2 ‖x0−x∗‖22

� L(∇f) = λmax(A>A) and Li = a>i ai with ai = Aei. We always have Li ≤ L(∇f) and it
may happen that Li = O(L(∇f)/n).

To conclude, in the quadratic case, Ccd ≤ Cgrad and we may have Ccd = O(Cgrad/n).

5.3 Proximal coordinate descent

We are often interested in solving problems of the type

min
x∈X

F (x) = min
x∈X

f(x) + g(x) (5.3.1)

where f and g are convex so that F = f + g is convex, f has a Lipschitz continuous gradient
and g may be nonsmooth but is separable. This means that for all x ∈ X = X1 × . . . Xn,

g(x) =
n∑
i=1

gi(x
(i)).

We can solve this kind of problems with the proximal coordinate descent method (Alg. 10,
[Tse01]), which is also using the coordinate-wise Lipschitz constant.

Algorithm 10: Proximal coordinate descent

Start at x0 ∈ X.
At iteration k, choose ik+1 ∈ {1, . . . , n} and de�ne xk+1 ∈ X byx

(i)
k+1 = arg min

x∈Xi
gi(x) + f(xk) + 〈∇if(xk), x− x

(i)
k 〉+

Li
2
‖x− x(i)

k ‖
2 if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

For this algorithm to be practical, we need to be able to compute e�ciently

proxγ,g(y) = arg min
x∈X

g(x) +
1

2
‖x− y‖2γ−1 ,

the proximal operator of g (remember that ‖x‖2γ−1 =
∑n

i=1
1
γi
‖x(i)‖22).

Example 5.5 (Simple proximal operators).

27

� Indicator of a box: if g(x) = ι[a,b](x), then proxγ,g(y) = max(a,min(x, b)). This is the
projection on [a, b] (it does not depend on γ).

� Absolute value: if g(x) = λ|x|, then proxγ,g(y) = sign(y) max(0, |y| − γλ). This is the
soft-thresholding operator.

We de�ne

x̄k+1 = proxL−1,g(xk − L−1∇f(xk)) = arg min
x∈X

g(x) + f(xk) + 〈∇f(xk), x− xk〉+
1

2
‖x− xk‖2L,

so that

x
(i)
k+1 =

{
x̄

(i)
k+1 if i = ik+1

x
(i)
k if i 6= ik+1

Lemma 5.5. For all γ ∈ Rn+∗ and x ∈ X

g(x̄k+1)+〈∇f(xk), xk+1−xk〉+
1

2
‖xk+1−xk‖2γ−1 ≤ g(x)+〈∇f(xk), x−xk〉+

1

2
‖x−xk‖2γ−1−

1

2
‖xk+1−x‖2γ−1

Proof. The function ψ : x 7→ g(x) + 〈∇f(xk), x− xk〉+ 1
2‖x− xk‖

2
γ−1 is strongly convex and its

minimiser is x̄k+1. The inequality is just the strong convexity inequality of this function with
respect to the norm ‖·‖2γ−1 and applied at x and x̄k+1.

Theorem 5.6 ([RT14]). The proximal coordinate descent method (Alg. 10) with the random

selection rule applied to Problem 5.3.1 satis�es for all x∗ ∈ arg minx F (x)

E[F (xk+1)− F (x∗)] ≤
n

k + n

(
(1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L

)
where ‖x‖2L =

∑n
i=1 Li‖x(i)‖22.

Proof. By de�nition of the algorithm, xk+1 − xk = Uik+1
(x

(ik+1)
k+1 − x(ik+1)

k), so by Lemma 5.2,

f(xk+1) ≤ f(xk) + 〈∇ik+1
f(xk), x

(ik+1)
k+1 − x(ik+1)

k 〉+
Lik+1

2
‖x(ik+1)

k+1 − x(ik+1)
k ‖2

= f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2L (5.3.2)

Using the notation x̄k+1 = arg minx∈X g(x) + f(xk) + 〈∇f(xk), x− xk〉+ 1
2‖x− xk‖

2
L, we have

x
(i)
k+1 =

{
x̄

(i)
k+1 if i = ik+1

x
(i)
k if i 6= ik+1

Using the conditional expectation knowing Fk = (i1, . . . ik), we get

E[x
(i)
k+1|Fk] = P(ik+1 = i)x̄

(i)
k+1 + P(ik+1 6= i)x

(i)
k =

1

n
x̄

(i)
k+1 + (1− 1

n
)x

(i)
k

E[〈∇if(xk), x
(i)
k+1 − x

(i)
k 〉|Fk] = P(ik+1 = i)〈∇if(xk), x̄

(i)
k+1 − x

(i)
k 〉+ P(ik+1 6= i)〈∇if(xk), x

(i)
k − x

(i)
k 〉

=
1

n
〈∇if(xk), x̄

(i)
k+1 − x

(i)
k 〉

E[〈∇f(xk), xk+1 − xk〉|Fk] =

n∑
i=1

E[〈∇if(xk), x
(i)
k+1 − x

(i)
k 〉|Fk] =

1

n
〈∇f(xk), x̄k+1 − xk〉 (5.3.3)

E[
1

2
‖xk+1 − xk‖2L|Fk] =

n∑
i=1

E[
Li
2
‖x(i)

k+1 − x
(i)
k ‖

2|Fk] =
1

2n
‖x̄k+1 − xk‖2L (5.3.4)

E[g(xk+1)− g(xk)|Fk] =

n∑
i=1

E[gi(x
(i)
k+1)− gi(x(i)

k)|Fk] =
1

n
(g(x̄k+1)− g(xk)) (5.3.5)

28

Combining (5.3.3), (5.3.4) and (5.3.5) with (5.3.2), we get

E[g(xk+1) + f(xk+1)|Fk] ≤ E[g(xk+1)|Fk] + E
[
f(xk) + 〈∇f(xk), xk+1 − xk〉+

1

2
‖xk+1 − xk‖2L

∣∣∣Fk]
= (1− 1

n
)g(xk) +

1

n
g(x̄k+1) + f(xk) +

1

n
〈∇f(xk), x̄k+1 − xk〉+

1

2n
‖x̄k+1 − xk‖2L

Using Lemma 5.5 with x = xk, we get

E[F (xk+1)|Fk] = E[g(xk+1) + f(xk+1)|Fk] ≤ g(xk) + f(xk)−
1

n
‖x̄k+1 − xk‖22

≤ g(xk) + f(xk) = F (xk) (5.3.6)

Then, using Lemma 5.5 again, with x = x∗, we get

E[F (xk+1)|Fk] = E[g(xk+1) + f(xk+1)|Fk]

≤ (1− 1

n
)g(xk) + f(xk) +

1

n
g(x∗) +

1

n
〈∇f(xk), x∗ − xk〉+

1

2n
‖x∗ − xk‖2L −

1

2n
‖x∗ − x̄k+1‖2L

We remark that

E[
1

2
‖x∗ − xk‖2L −

1

2
‖x∗ − xk+1‖2L|Fk] =

1

2n
‖x∗ − xk‖2L −

1

2n
‖x∗ − x̄k+1‖2L,

so that

E[F (xk+1)|Fk] ≤ (1− 1

n
)g(xk) + f(xk) +

1

n
g(x∗) +

1

n
〈∇f(xk), x∗ − xk〉

+
1

2
‖x∗ − xk‖2L −

1

2
E[‖x∗ − xk+1‖2L|Fk].

We use the convexity of f :

E[F (xk+1)|Fk] ≤ (1− 1

n
)(g(xk)+f(xk))+

1

n
(g(x∗)+f(x∗))+

1

2
‖x∗−xk‖2L−

1

2
E[‖x∗−xk+1‖2L|Fk].

We rearrange and we apply total expectation:

E[F (xk+1)− F (x∗) +
1

2
‖x∗ − xk+1‖2L] ≤ E[(1− 1

n
)(F (xk)− F (x∗)) +

1

2
‖x∗ − xk‖2L].

Summing for k from 0 to K-1 yields

E[F (xK+1)− F (x∗)] +
1

2
E[‖x∗ − xK+1‖2L] +

K−1∑
k=1

E[
1

n
(F (xk)− F (x∗)]

≤ (1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L].

Using (5.3.6) and the fact that E[‖x∗ − xK+1‖2L] ≥ 0,

(1 +
k

n
)E[F (xK+1)− F (x∗)] ≤ (1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L]

We just need to divide by n
k+1 to conclude.

29

Example 5.6 (Lasso). Proximal coordinate descent is widely used to solve the Lasso problem
given by

min
x∈Rp

1

2
‖y − Zx‖22 + λ‖x‖1

Here, f(x) = 1
2‖y − Zx‖

2
2 is di�erentiable while g(x) = λ‖x‖1 is a non-di�erentiable function

whose proximal operator is the soft-thresholding operator.

Example 5.7 (Multi-task Lasso). In the multi-task framework, the Lasso problem can be gener-
alised as

min
x∈Rp×q

1

2
‖Y − Zx‖2F + λ

p∑
j=1

‖xj,:‖2.

Here, the optimisation variable is a p × q matrix. One can see that the nonsmooth part of
the objective is g(X) = λ

∑p
j=1 ‖xj,:‖2. This function is not separable when we consider the

entries of x one by one but it is separable if we group these entries column-wise. Hence, we
can consider block coordinate descent with p blocks of size q for the resolution of the multi-task
Lasso problem.

Example 5.8 (`1/`2-regularised multinomial logistic regression). Logistic regression is famous for
classi�cation problems. One observes for each i ∈ [n] a class label ci ∈ {1, . . . , q} and a vector
of features zi ∈ Rp. This information can be recast into a matrix Y ∈ Rn×q �lled by 0's and
1's: Yi,k = 1{ci=k}. A matrix B ∈ Rp×q is formed by q vectors encoding the hyperplanes for the
linear classi�cation. The multinomial `1/`2 regularized regression reads:

min
B∈Rp×q

n∑
i=1

(
q∑

k=1

−Yi,kz>i B:,k + log

(
q∑

k=1

E
(
z>i B:,k

)))
+ λ

p∑
j=1

‖Bj,:‖2,

Like the multi-task Lasso problem, this problem can be solved with proximal coordinate descent
as long as we consider blocks of variables corresponding to the columns of B rather than single
variables.

Exercise:

1. Find the proximal operator of the non-smooth function g(B) = λ
∑p

j=1 ‖Bj,:‖2.

2. Give the expression of the partial derivatives of the smooth function

f(B) =
n∑
i=1

(
q∑

k=1

−Yi,kz>i B:,k + log

(
q∑

k=1

E
(
z>i B:,k

)))

3. Give an estimate of the p block-wise Lipschitz constants of ∇f .

4. Write the proximal coordinate descent method for `1/`2-regularised multinomial logistic
regression.

5.4 Stochastic dual coordinate ascent for support vector ma-

chines

In this section, we focus on the linear Support Vector Machines (SVM) problem

min
w∈Rp

C
n∑
i=1

max(0, 1− yiz>i w) +
1

2
‖w‖22

30

where C is a positive real number, y ∈ Rn and ∀i, zi ∈ Rp. Note that we consider the formulation
without intercept. The objective function contains a non-smooth and non-separable term so we
cannot apply coordinate descent to it.
However, a dual formulation of the SVM problem is given by

max
α∈Rn

−1

2

p∑
j=1

(n∑
i=1

Zi,jyiα
(i)
)2

+

n∑
i=1

α(i) − ι[0,C]n(α).

The objective function of this problem does decompose into a di�erentiable concave function
f(α) = −1

2

∑p
j=1

(∑n
i=1 Zi,jyiα

(i)
)2

+
∑n

i=1 α
(i) and a nonsmooth concave and separable function

g(α) = −ι[0,C]n(α). Stochastic Dual Coordinate Ascent (SDCA) is proximal coordinate ascent
(the version of coordinate descent for concave functions) on this problem.

Exercise 5.1. Write an implement of SDCA. It may be useful to maintain �residuals� wk de�ned

by w
(j)
k =

∑n
i=1 Zi,jyiα

(i)
k for all j ∈ {1, . . . , p}.

Even if we are running the algorithm in the dual, we are interested in the primal problem. The
following result shows that we can recover a good primal solution from the dual solution and
gives theoretical guarantees for the convergence in the primal.

Theorem 5.7 ([SSZ13]). Let us de�ne a primal point wk = Z>Diag (y)αk, where (αk)k≥0 is

generated by SDCA. The duality gap satis�es for all K ≥ n,

E
[1

K

2K−1∑
k=K

P (wk)−D(αk)
]
≤ n

K + n

(
(1− 1

n
)(D(α∗)−D(α0)) +

1

2
‖α∗−α0‖2L

)
+

n

2K
C2

n∑
i=1

Li

where the primal value is P (wk) = C
∑n

i=1 max(0, 1 − yiz
>
i wk) + 1

2‖wk‖
2
2, the dual value is

D(αk) = −1
2‖Z

>Diag (y)αk‖22 +
∑n

i=1 α
(i)
k − ι[0,C]n(αk) and ∀i, Li = y2

i ‖zi‖2.

Proof. As SDCA solves the dual problem with coordinate ascent, by Theorem 5.6,

E[D(α∗)−D(αk+1)] ≤ n

k + n

(
(1− 1

n
)(D(α∗)−D(α0)) +

1

2
‖α∗ − α0‖2L

)
.

The goal of the theorem is to upper bound E[P (wk)−D(αk)] by quantities involving E[D(α∗)−
D(αk+1)]. Note that by weak duality, P (wk)−D(αk) ≥ D(α∗)−D(αk+1) but what we need is
an inequality in the other way. For this, we will need to use the fact that (αk)k≥0 is generated
by the coordinate ascent method.
Using the feasibility of αk and the de�nition of wk, we can simplify D(αk+1) as

D(αk+1) = −1

2
‖Z>Diag (y)αk+1‖22 +

n∑
i=1

α
(i)
k+1 − ι[0,C]n(αk+1) = −1

2
‖wk+1‖2 + e>αk+1

As αk+1 = αk + Uik+1
(ᾱ

(ik+1)
k+1 − α(ik+1)

k), wk+1 = wk + zik+1
yik+1

(ᾱ
(ik+1)
k+1 − α(ik+1)

k) and

D(αk+1) = −1

2
‖wk + zik+1

yik+1
(ᾱ

(ik+1)
k+1 − α(ik+1)

k)‖2 + e>αk + ᾱ
(ik+1)
k+1 − α(ik+1)

k

To simplify notations, we will write here i = ik+1. Note that

ᾱ
(i)
k+1 = arg max

a∈[0,C]
(yiziZ

>Diag (y)αk + 1)(a− α(i)
k)− ‖yizi‖

2

2
(a− α(i)

k)2

= arg max
a∈[0,C]

−1

2
‖wk + ziyi(a− α(i)

k)‖2 + a− α(i)
k .

31

So let us consider φ : x 7→ C max(0, 1− x), u ∈ −∂φ(yiz
>
i wk) ⊆ [0, C] and s ∈ [0, 1].

D(αk+1) = max
a∈[0,C]

−1

2
‖wk + ziyi(a− α(i)

k)‖2 + e>αk + a− α(i)
k

≥ −1

2
‖wk + ziyi((su+ (1− s)α(i)

k)− α(i)
k)‖2 + e>αk + (su+ (1− s)α(i)

k)− α(i)
k

≥ −1

2
‖wk + ziyis(u− α(i)

k)‖2 + e>αk + s(u− α(i)
k)

= −1

2
‖wk‖2 −

s2

2
‖ziyi‖22(u− α(i)

k)2 − s(u− α(i)
k)yiz

>
i wk + e>αk + s(u− α(i)

k)

= D(αk)−
s2

2
‖ziyi‖22(u− α(i)

k)2 − s(u− α(i)
k)yiz

>
i wk + s(u− α(i)

k)

As u ∈ −∂φ(yiz
>
i wk) ⊆ [0, C] and φ∗(q) = q + ι[−C,0](q), Fenchel-Young equality leads to:

φ(yiz
>
i wk)− u = −uyiz>i wk. Hence,

D(αk+1) ≥ D(αk)−
s2

2
‖ziyi‖22(u− α(i)

k)2 + sφ(yiz
>
i wk) + sα

(i)
k yiz

>
i wk − sα

(i)
k

Applying conditional expectation, we get

E[D(αk+1)|Fk] ≥ D(αk)−
s2

2n

n∑
i=1

‖ziyi‖22(u− α(i)
k)2 +

s

n

n∑
i=1

(
φ(yiz

>
i wk) + α

(i)
k yiz

>
i wk − α

(i)
k

)
Now,

P (wk)−D(αk) = C

n∑
i=1

max(0, 1− yiz>i wk) +
1

2
‖wk‖22 − (−1

2
‖wk‖2 + e>αk)

=
n∑
i=1

φ(yiz
>
i wk) + α

(i)
k yiz

>
i wk − α

(i)
k

So that

E[D(αk+1)|Fk]−D(αk) ≥ −
s2

2n

n∑
i=1

‖ziyi‖22(u− α(i)
k)2 +

s

n
(P (wk)−D(αk))

≥ − s
2

2n

n∑
i=1

(‖ziyi‖22)C2 +
s

n
(P (wk)−D(αk))

where the last inequality derives from α
(i)
k ∈ [0, C] and u ∈ [0, C].

We apply total expectation and we sum for k from K1 to K − 1:

s

n

K−1∑
k=K1

E[P (wk)−D(αk)] ≤ E[D(αK)]− E[D(αK1)] +
s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

≤ E[D(α∗)]− E[D(αK1)] +
s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

≤ c0n

K1 + n
+
s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

32

where c0 = (1− 1
n)(D(α∗)−D(α0)) + 1

2‖α∗−α0‖2L. Choosing K = 2K1 and s = n
K1

, we obtain,
for K1 ≥ n (because we need s ≤ 1)

1

K1

2K1−1∑
k=K1

E[P (wk)−D(αk)] ≤
c0n

K1 + n
+

n

2K1
C2

n∑
i=1

(‖ziyi‖22)

33

Bibliography

[Bot10] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of COMPSTAT'2010, pages 177�186. Springer, 2010. 14

[BT13] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent
type methods. SIAM Journal on Optimization, 23(4):2037�2060, 2013. 26

[CSS02] Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost
and bregman distances. Machine Learning, 48(1-3):253�285, 2002. 24

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7),
2011. 17

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 20

[KHR20] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don't jump through hoops
and remove those loops: Svrg and katyusha are better without the outer loop. In
Algorithmic Learning Theory, pages 451�467. PMLR, 2020. 14

[Nes12] Yu Nesterov. E�ciency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341�362, 2012. 26

[Pow76] MJD Powell. Some global convergence properties of a variable metric algorithm for
minimization without exact line searches. Nonlinear programming, 9:53�72, 1976. 24

[RT14] Peter Richtárik and Martin Taká£. Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function. Mathematical Pro-

gramming, 144(1-2):1�38, 2014. 28

[Sei74] Ludwig Seidel. Ueber ein verfahren, die gleichungen, auf welche die methode der klein-
sten quadrate führt, sowie lineäre gleichungen überhaupt, durch successive annäherung
aufzulösen:(aus den abhandl. dk bayer. akademie ii. cl. xi. bd. iii. abth. Verlag der k.

Akademie, 1874. 23

[SSZ13] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss. The Journal of Machine Learning Research, 14(1):567�599, 2013. 31

[SZL13] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In Inter-

national Conference on Machine Learning, pages 343�351. PMLR, 2013. 17

[Tse01] Paul Tseng. Convergence of a block coordinate descent method for nondi�erentiable
minimization. Journal of optimization theory and applications, 109(3):475�494, 2001.
27

34

[War63] Jack Warga. Minimizing certain convex functions. Journal of the Society for Industrial
& Applied Mathematics, 11(3):588�593, 1963. 23

[Wri15] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming,
151(1):3�34, 2015.

35

	Introduction
	Expected risk minimization
	Gradient descent
	How to compute gradient?
	Using partial derivatives
	Using the definition
	Using the chain rule

	Subgradient method
	Implementation project

	Stochastic gradient
	Algorithm
	Convergence
	Nonconvex objective
	Convex objective
	Step size sequence
	Strongly convex objective

	Proximal stochastic gradient
	Comparison of the results depending on the assumption

	Stochastic variance-reduced gradient
	Motivation and algorithm
	Convergence

	Adaptive step-sizes
	Adagrad
	Adam

	Coordinate descent
	Exact coordinate descent
	Coordinate gradient descent
	Proximal coordinate descent
	Stochastic dual coordinate ascent for support vector machines

