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An optimization problem

A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0
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An optimization problem with uncertainty
Adding uncertainty ξ in the mix

min
u0

L(u0, ξ)

s.t. g(u0, ξ) ≤ 0
Remarks:

ξ is unknown. Two main way of modelling it:
ξ ∈ Ξ with a known uncertainty set Ξ, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈Ξ L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ Ξ.
SP : g(u, ξ) ≤ 0, P− a.s..
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Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want
to minimize its expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large
number of time (Law of Large Number).
In some cases the expectation is not really representative of
your risk attitude. Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to
win $10000 ?
You need to be at the airport in 1 hour or you miss your flight,
you have the choice between two mean of transport, one of
them take surely 50’, the other take 40’ four times out of five,
and 70’ one time out of five.
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Alternative cost functions II

Here are some cost functions you might consider
Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)
Value-at-Risk of costs V @Rα(L(u, ξ)), where for any real
valued random variable X ,

V @Rα(X) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a
cost worse than V @Rα(X).
Average Value-at-Risk of costs AV @Rα(L(u, ξ)), which is the
expected cost over the α worst outcomes.
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Alternative constraints I

The natural extension of the deterministic constraint
g(u, ξ) ≤ 0 to g(u, ξ) ≤ 0 P− as can be extremely
conservative, and even often without any admissible solutions.
For example, if u is a level of production that need to be
greated than the demand. In a deterministic setting the
realized demand is equal to the forecast. In a stochastic
setting we add an error to the forecast. If the error is
unbouded (e.g. Gaussian) no control u is admissible.
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Alternative constraints II

Here are a few possible constraints
E
[
g(u, ξ)

]
≤ 0, for quality of service like constraint.

P(g(u, ξ) ≤ 0) ≥ 1− α for chance constraint. Chance
constraint is easy to present, but might lead to misconception
as nothing is said on the event where the constraint is not
satisfied.
AV @Rα(g(u, ξ)) ≤ 0
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One-Stage Problem
Assume that Ξ as a discrete distribution1, with P

(
ξ = ξi

)
= pi > 0

for i ∈ J1, nK. Then, the one-stage problem

min
u0

E
[
L(u0, ξ)

]
s.t. g(u0, ξ) ≤ 0, P− a.s

can be written

min
u0

n∑
i=1

piL(u0, ξi )

s.t g(u0, ξi ) ≤ 0, ∀i ∈ J1, nK.

1If the distribution is continuous we can sample and work on the sampled
distribution, this is called the Sample Average Approximation approach with
lots of guarantee and results
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Recourse Variable

In most problem we can make a correction u1 once the uncertainty
is known:

u0  ξ1  u1.

As the recourse control u1 is a function of ξ it is a random
variable. The two-stage optimization problem then reads

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

σ(u1) ⊂ σ(ξ)
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Two-stage Problem

The extensive formulation of

min
u0,u1

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

is

min
u0,{ui

1}i∈J1,nK

n∑
i=1

piL(u0, ξi , ui
1)

s.t g(u0, ξi , ui
1) ≤ 0, ∀i ∈ J1, nK.
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Recourse assumptions

We say that we are in a complete recourse framework, if for all
u0, and all possible outcome ξ, every control u1 is admissible.
We say that we are in a relatively complete recourse
framework, if for all u0, and all possible outcome ξ, there
exists a control u1 that is admissible.
For a lot of algorithm relatively complete recourse is a
condition of convergence. It means that there is no induced
constraints.
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Linear 2-stage stochastic program
Consider the following problem

min E
[
cT x + qT y

]
s.t. Ax = b, x ≥ 0

Tx + W y = h, y ≥ 0, P− a.s.
x ∈ Rn, σ(y) ⊂ σ(q,T ,W ,h︸ ︷︷ ︸

ξ

)

With associated Extended Formulation

min cT x +
N∑

i=1
πiqT

i yi

s.t. Ax = b, x ≥ 0
Tix + Wiyi = hi , yi ≥ 0,∀i
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Decomposition of linear 2-stage stochastic program
We rewrite the extended formulation as

min cT x + θ

s.t. Ax = b, x ≥ 0
θ ≥ Q(x) x ∈ Rn

where Q(x) =
∑N

i=1 πiQi (x) with

Qi (x) := min
yi∈Rm

qT
i yi

s.t. Tix + Wiyi = hi , yi ≥ 0

Note that Q(x) is a polyhedral function of x , hence θ ≥ Q(x) can
be rewritten θ ≥ αT

k x + βk , ∀k.
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Obtaining cuts
Recall that

Qi (x) := min
yi∈Rm

qT
i yi

s.t. Tix + Wiyi = hi , yi ≥ 0

can also be written (through strong duality)

Qi (x) := max
λi∈Rm

λT
i
(
hi − Tix

)
s.t. W T

i λi ≤ qi

In particular we have, for the optimal solution λ]i ,

Qi (x) ≥ hT
i λ

]
i︸ ︷︷ ︸

βk
i

−(λ]i )
T Ti︸ ︷︷ ︸

αk
i

x .
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L-shaped method

1 We have a collection of K cuts, such that Q(x) ≥ αkx + βk .
2 Solve the master problem, with optimal primal solution xk .

min
Ax=b,x≥0

cT x + θ

s.t. θ ≥ αkx + βk , ∀k = 1, ..,K
3 Solve N slave dual problems, with optimal dual solution λ]i

max
λi∈Rm

λT
i
(
hi − Tixk)

s.t. W T
i λi ≤ qi

4 construct new cut with

αK+1 :=
N∑

i=1
−πi (λ]i )

T Ti , βK+1 :=
N∑

i=1
πihT

i λ
]
i .
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Managing a dam

A dam can be seen as a
battery, with random inflow of
free electricity to be used at
the best time.
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A multistage problem
Let formulate this as a mathematical problem

min
u1,...,uT−1

N∑
t=1

Lt(xt , ut)

s.t xt+1 = ft(xt , ut), x0 fixed t = 1, . . . ,T − 1
ut ∈ Ut , xt ∈ Xt t = 1, . . . ,T − 1

xt is the state of the system at time t (e.g. the stock of water)
ut is the control applied at time t (e.g. the water turbined)
ft is the dynamic of the system, i.e. the rule describing the
evolution of the system (e.g. ft(xt , ut) = xt − ut + Wt)
Ut (resp Xt) are constraints set on the control ut (resp the
state xt)
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Open-loop VS closed-loop solution

min
u1,...,uT−1

N∑
t=1

Lt(xt , ut)

s.t xt+1 = ft(xt , ut), x0 fixed t = 1, . . . ,T − 1
ut ∈ Ut , xt ∈ Xt t = 1, . . . ,T − 1

An open-loop solution to the problem is a planning
(u1, . . . , uT−1).
A closed-loop solution to the problem is a policy, i.e. a
function π take into argument the current state xt and the
current time t and return a control ut .
In a deterministic setting a closed loop solution can be
reduced to an open-loop solution.
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What happen with stochasticity ?

Assume now that the dynamic is not deterministic anymore
(e.g. the inflow are random).
In this case an open-loop solution is a solution where you
decide your production beforehand and stick to it, whatever
the actual current state.
Whereas a closed-loop solution will look at the current state
before choosing the control.
Even if you look for an open-loop solution, replacing the
random vector by its expectation is not optimal. It can even
give wrong indication.
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Where do we come from: two-stage programming

u0

(w1
1 , π1)

u1,1

(w2
1 , π2)

u1,2

(w3
1 , π3)

u1,3

(w4
1 , π4)

u1,4

(w5
1 , π5) u1,5

(w6
1 , π6) u1,6

(w7
1 , π7)

u1,7
(w8

1 , π8)

u1,8 We take decisions in two stages

u0 ; W 1 ; u1 ,

with u1: recourse decision .

On a tree, it means
solving the extensive formulation:

min
u0,u1,s

∑
s∈S

πs
[〈

cs , u0
〉

+
〈
ps , u1,s

〉]
.

We have as many u1,s as scenarios!
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Extending two-stage to multistage programming

u0

(w1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(w2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(w3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(w4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2 min

u
E
(
j(u,W )

)
U = (u0, · · · ,UT )

W = (w1, · · · ,W T )

We take decisions in T stages
W 0 ; u0 ; W 1 ; u1 ; · · ·; wT ; uT .
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Introducing the non-anticipativity constraint

We do not know what holds behind the door.

Non-anticipativity
At time t, decisions are taken sequentially, only knowing the past
realizations of the perturbations.

Mathematically, this is equivalent to say that at time t,
the decision ut is

1 a function of past noises
ut = πt(W 0, · · · ,W t) ,

2 taken knowing the available information,
σ(ut) ⊂ σ(W 0, · · · ,w t) .

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 22 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

From deterministic to stochastic multistage optimization
Decompositions methods

Multistage extensive formulation approach

u0

(w1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(w2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(w3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(w4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2

Assume that wt ∈ Rnw can take nw values
and that Ut(x) can take nu values.

Then, considering the extensive formulation
approach, we have

nT
w scenarios.

(nT +1
w − 1)/(nw − 1) nodes in the tree.

Number of variables in the optimization
problem is roughly
nu × (nT +1

w − 1)/(nw − 1) ≈ nunT
w .

The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!
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Multistage extensive formulation approach
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Illustrating extensive formulation with the damsvalley
example

5 interconnected dams
5 controls per timesteps
52 timesteps (one per week, over one
year)
nw = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.
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Mulstistage Stochastic Optimization: an Example

Objective function:

E
[ N∑

i=1

T−1∑
t=0

Li
t( x i

t︸︷︷︸
state

, u i
t︸︷︷︸

control

,w t+1︸ ︷︷ ︸
noise

)
]

Constraints:
dynamics:
xt+1 = ft

(
xt ,ut ,w t+1

)
,

nonanticipativity:
ut � Ft ,
spatial coupling:
z i+1

t = g i
t
(
x i

t ,u i
t ,w i

t+1
)
.
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Couplings for Stochastic Problems

unit

time

uncertainty

min
∑
ω

∑
i

∑
t
πωLi

t(x i
t ,u i

t ,w t+1)

s.t. x i
t+1 = f i

t (x i
t ,u i

t ,w t+1)

u i
t � Ft = σ

(
w1, . . . ,w t

)
∑

i
Θi

t(x i
t ,u i

t) = 0
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Dynamic Programming
Bellman (56)

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 26 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

From deterministic to stochastic multistage optimization
Decompositions methods

Decompositions for Stochastic Problems: in Uncertainty

unit

time

uncertainty

min
∑
ω

∑
i

∑
t
πωLi

t(x i
t ,u i

t ,w t+1)

s.t. x i
t+1 = f i

t (x i
t ,u i

t ,w t+1)

u i
t � Ft = σ

(
w1, . . . ,w t

)
∑

i
Θi

t(x i
t ,u i

t) = 0

Progressive Hedging
Rockafellar - Wets (91)
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Dual Approximate
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Stochastic Controlled Dynamic System

A stochastic controlled dynamic system is defined by its dynamic

xt+1 = ft(xt ,ut , ξt+1)

and initial state
x0 = x0

The variables
xt is the state of the system,
ut is the control applied to the system at time t,
ξt is an exogeneous noise.
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Examples

Stock of water in a dam:
xt is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
ξt is the inflow of water at time t.

Boat in the ocean:
xt is the position of the boat at time t,
ut is the direction and speed chosen at time t,
ξt is the wind and current at time t.

Subway network:
xt is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
ξt is the delay due to passengers and incident on the network
at time t.
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Optimization Problem
We want to solve the following optimization problem

min E
[ T−1∑

t=0
Lt
(
xt ,ut , ξt+1

)
+ K

(
xT
)]

(1a)

s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = x0 (1b)
ut ∈ Ut(xt) (1c)
σ(ut) ⊂ Ft := σ

(
ξ0, · · · , ξt

)
(1d)

Where
constraint (1b) is the dynamic of the system ;
constraint (1c) refer to the constraint on the controls;
constraint (1d) is the information constraint : ut is choosen
knowing the realisation of the noises ξ0, . . . , ξt but without
knowing the realisation of the noises ξt+1, . . . , ξT−1.
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Dynamic Programming Principle

Theorem
Assume that the noises ξt are independent and exogeneous. Then,
there exists an optimal solution, called a strategy, of the form
ut = πt

(
xt
)
.

We have

πt(x) ∈ arg min
u∈Ut (x)

E
[

Lt(x , u, ξt+1)︸ ︷︷ ︸
current cost

+ Vt+1 ◦ ft
(
x , u, ξt+1

)︸ ︷︷ ︸
future costs

]
,

where (Dynamic Programming Equation)
VT (x) = K (x)
Vt(x) = min

u∈Ut (x)
E
[
Lt(x , u, ξt+1) + Vt+1 ◦ ft

(
x , u, ξt+1

)︸ ︷︷ ︸
”X t+1”

]
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Interpretation of Bellman Value

The Bellman’s value function Vt0(x) can be interpreted as the
value of the problem starting at time t0 from the state x . More
precisely we have

Vt0(x) = min E
[ T−1∑

t=t0

Lt
(
xt ,ut , ξt+1

)
+ K

(
xT
)]

s.t. xt+1 = ft(xt ,ut , ξt+1), xt0 = x
ut ∈ Ut(xt)
σ(ut) ⊂ σ

(
ξ0, · · · , ξt

)
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Information structure I
In Problem (1), constraint (1d) is the information constraint.
There are different possible information structure.

If constraint (1d) reads σ(ut) ⊂ F0, the problem is open-loop,
as the controls are choosen without knowledge of the
realisation of any noise.
If constraint (1d) reads σ(ut) ⊂ Ft , the problem is said to be
in decision-hazard structure as decision ut is chosen without
knowing ξt+1.
If constraint (1d) reads σ(ut) ⊂ Ft+1, the problem is said to
be in hazard-decision structure as decision ut is chosen with
knowledge of ξt+1.
If constraint (1d) reads σ(ut) ⊂ FT−1, the problem is said to
be anticipative as decision ut is chosen with knowledge of all
the noises.
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Information structure II

Be careful when modeling your information structure:
Open-loop information structure might happen in practice
(you have to decide on a planning and stick to it). If the
problem does not require an open-loop solution then it might
be largely suboptimal (imagine driving a car eyes closed...). In
any case it yields an upper-bound of the problem.
In some cases decision-hazard and hazard-decision are both
approximation of the reality. Hazard-decision yield a lower
value then decision-hazard.
Anticipative structure is never an accurate modelization of the
reality. However it can yield a lower-bound of your
optimization problem relying on deterministic optimization
and Monte-Carlo.
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Non-independence of noise in DP

The Dynamic Programming equation requires only the
time-independence of noises.
This can be relaxed if we consider an extended state.
Consider a dynamic system driven by an equation

y t+1 = ft(xt ,ut , εt+1)
where the random noise εt is an AR1 process :

εt = αtεt−1 + βt + ξt ,

{ξt}t∈Z being independent.
Then y t is called the physical state of the system and DP can
be used with the information state xt = (y t , εt−1).
Generically speaking, if the noise ξt is exogeneous (not
affected by decisions ut), then we can always apply Dynamic
Programming with the state

(xt , ξ1, . . . , ξt).Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 34 / 54
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do
Vt(x) = min

u∈Ut (x)
E
(
Lt(x , u,W t+1) + Vt(ft(x , u,W t+1))

)
end

end
Algorithm 1: We iterate over the discretized state space
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Dynamic Programming Algorithm - Discrete Case
Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do
Vt(x) =∞;
for u ∈ Ut(x) do

vu = E
(
Lt(x , u,W t+1) + Vt(ft(x , u,W t+1))

)
if

vu < Vt(x) then
Vt(x) = vu ;
πt(x) = u ;

end
end

end
end

Algorithm 2: We iterate over the discretized control spaceVincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 36 / 54
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Dynamic Programming Algorithm - Discrete Case
Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do
Vt(x) =∞;
for u ∈ Ut(x) do

vu = 0;
for w ∈Wt do

vu = vu + P{w}
(
Lt(x , u,w) + Vt+1(ft

(
x , u,w

)
)
)
;

end
if vu < Vt(x) then

Vt(x) = vu ;
πt(x) = u ;

end
end

end
end
Algorithm 3: Classical stochastic dynamic programming algorithm
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3 curses of dimensionality
Complexity = O(T × |Xt | × |Ut | × |Wt |)
Linear in the number of time steps, but we have 3 curses of
dimensionality :

1 State. Complexity is exponential in the dimension of Xt
e.g. 3 independent states each taking 10 values leads to a
loop over 1000 points.

2 Decision. Complexity is exponential in the dimension of Ut .
 due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of
Wt .
 due to expectation computation. Can be accelerated
through Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.
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Wt .
 due to expectation computation. Can be accelerated
through Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.
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Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with
52 timesteps (common in energy management) plus 5 controls and
5 independent noises.

1 We discretize each state’s dimension in 100 values:
|Xt | = 1005 = 1010

2 We discretize each control’s dimension in 100 values:
|Ut | = 1005 = 1010

3 We use optimal quantization to discretize the noises’ space in
10 values: |Wt | = 10

Number of flops: O(52× 1010 × 1010 × 10) ≈ O(1023).
In the TOP500, the best computer computes 1017 flops/s.
Even with the most powerful computer, it takes at least 12 days to
solve this problem.
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Numerical considerations

The DP equation holds in (almost) any case.
The algorithm shown before compute a look-up table of
control for every possible state offline. It is impossible to do if
the state is (partly) continuous.
Alternatively, we can focus on computing offline an
approximation of the value function Vt and derive the optimal
control online by solving a one-step problem, solved only at
the current state :
πt(x) ∈ arg min

u∈Ut (x)
E
[
Lt(x , u, ξt+1) + Vt+1 ◦ ft

(
x , u, ξt+1

)]
The field of Approximate DP gives methods for computing
those approximate value function.
The simpler one consisting in discretizing the state, and then
interpolating the value function.
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Dynamic Programming : continuous and convex case

If the problem has continuous states and control the classical
approach consists in discretizing.
With further assumption on the problem (convexity, linearity)
we can look at a dual approach:

Instead of discretizing and interpolating the Bellman function
we choose to do a polyhedral approximation.
Indeed we choose a “smart state” in which we compute the
value of the function and its marginal value (tangeant).
Knowing that the problem is convex and using the power of
linear solver we can efficiently approximate the Bellman
function.

This approach is known as SDDP in the electricity community
and widely used in practice.
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Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

λ
(0)
t

λ
(0)
t λ

(0)
t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

u(0)
1,t

u(0)
2,t u(0)

3,t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

λ
(1)
t

λ
(1)
t λ

(1)
t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

u(1)
1,t

u(1)
2,t u(1)

3,t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

λ
(2)
t

λ
(2)
t λ

(2)
t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
u(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator

u(2)
1,t

u(2)
2,t u(2)

3,t

Vincent Leclère Decomposition Methods in Stochastic Optimization March 23 2017 47 / 54



Dealing with Uncertainty
Decompositions of Mulstistage Stochastic Optimization

Stochastic Dynamic Programming
Spatial Decomposition

Intuition
Stochastic Spatial Decomposition
DADP

Application to dam management

DECOMPOSITION
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Primal Problem

min
x,u

N∑
i=1

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+ K i(x i

T
)]

∀ i , x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

∀ i , u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

Solvable by DP with state (x1, . . . , xN)
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+ K i(x i

T
)]

∀ i , x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

∀ i , u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0  λt multiplier

Solvable by DP with state (x1, . . . , xN)
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Primal Problem with Dualized Constraint

min
x,u

max
λ

N∑
i=1

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+
〈
λt , θ

i
t(u i

t)
〉

+ K i (x i
T )
]

∀ i , x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

∀ i , u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

Coupling constraint dualized =⇒ all constraints are unit by unit
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Dual Problem

max
λ

min
x,u

N∑
i=1

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+
〈
λt , θ

i
t(u i

t)
〉

+ K i (x i
T )
]

∀ i , x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

∀ i , u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

Exchange operator min and max to obtain a new problem
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Decomposed Dual Problem

max
λ

N∑
i=1

min
x i ,ui

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+
〈
λt , θ

i
t(u i

t)
〉

+ K i (x i
T )
]

x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

For a given λ, minimum of sum is sum of minima
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Inner Minimization Problem

min
x i ,ui

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+
〈
λt , θ

i
t(u i

t)
〉

+ K i (x i
T )
]

x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

We have N smaller subproblems. Can they be solved by DP ?
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Inner Minimization Problem

min
x i ,ui

E
[ T∑

t=0
Li

t
(
x i

t ,u i
t ,w t+1

)
+
〈
λt , θ

i
t(u i

t)
〉

+ K i (x i
T )
]

x i
t+1 = f i

t (x i
t ,u i

t ,w t+1), x i
0 = x i

0,

u i
t ∈ Uad

t,i , u i
t � Ft ,

N∑
i=1

θi
t(u i

t) = 0

No : λ is a time-dependent noise  state
(
w1, . . . ,w t

)
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Dual approximation as constraint relaxation
The original problem is (abstract form)

min
u∈U

J(u)

s.t. Θ(u) = 0
written as

min
u∈U

max
λ

J(u) + E
[
〈λ,Θ(u)〉

]
Subsituting λ by E

(
λ
∣∣y) gives

min
u∈U

max
λ

J(u) + E
[〈
E
(
λ
∣∣y),Θ(u)

〉]

equivalent to
min
u∈U

J(u)

s.t. E
(
Θ(u)

∣∣y) = 0
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Multiplier
Process λ(k)

t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θi
t
(
u i

t
)

︸ ︷︷ ︸
∆(k)

t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆(k)

t

θi
t
(
u i ,(k)

t
)

Information Process
y t+1 = f̃ (y t ,w t+1)

Stochastic spatial
decomposition scheme
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Main idea of DADP: λt  µt := E
(
λt
∣∣∣y t

)
Multiplier

Process λ(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θi
t
(
u i

t
)

︸ ︷︷ ︸
∆(k)

t

= 0 ?

λ
(k

+
1)

t
=
λ

(k
)

t
+
ρ

∆
(k

)
t

θi
t
(
u i ,(k)

t
)

Main problems:
Subproblems not easily
solvable by DP

λ(k) live in a huge space

Multiplier
function µ(k)

t

· · ·Solving
subproblem 1

Solving
subproblem N

E
( N∑

i=1
θi

t
(
u i

t
)∣∣∣∣y t = y

)
︸ ︷︷ ︸

∆(k)
t (y)

= 0 ?

µ
(k

+
1)

t
(·)

=
µ

(k
)

t
(·)

+
ρ

∆
(k

)
t

(·)

θi
t
(
u i ,(k)

t
)

Advantages:
Subproblems solvable by DP
with state

(
x i

t , y t
)

µ(k) live in a smaller space
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Three Interpretations of DADP

DADP as an approximation of the optimal multiplier

λt  E
(
λt
∣∣y t
)
.

DADP as a decision-rule approach in the dual

max
λ

min
u

L
(
λ,u

)
 max

λt�y t
min

u
L
(
λ,u

)
.

DADP as a constraint relaxation in the primal
n∑

i=1
θi

t
(
u i

t
)

= 0  E
( n∑

i=1
θi

t
(
u i

t
)∣∣∣∣y t

)
= 0 .
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Conclusion

Large multistage stochastic program are numerically difficult.
To tackle such problems one can use decomposition methods.
If the number of stages is small enough, decomposition per
scenario (like Progressive-Hedging) is numerically efficient,
and use special deterministic methods.
If the noises are time-independent Dynamic Programming
equations are available.

If the state dimension is small enough direct discretized
dynamic programming is available.
If dynamics is linear and cost are convex SDDP approach allow
for larger states
Finally we can also spatially decompose problems, and with an
approximation recover Dynamic Programming equations for
the subproblems.
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