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1 Free energy and metastability

The aim of molecular dynamics computations is to
evaluate numerically macroscopic quantities from
models at the microscopic scale.

Some examples of macroscopic quantities:
• thermodynamics quantities: stress, heat capacity,

free energy;
• dynamical quantities: diffusion coefficients,

viscosity, transition rates.

Many applications in various fields: biology, physics,
chemistry, materials science. Molecular dynamics
computations consume today a lot of CPU time.
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1 Free energy and metastability

A molecular dynamics model amounts essentially in
choosing a potential V which associates to a
configuration (x1, ...,xN ) = x ∈ R

3N an energy
V (x1, ...,xN ).
In the NVT ensemble, configurations are distributed
according to the Boltzmann-Gibbs probability
measure:

dµ(x) = Z−1 exp(−βV (x)) dx,

where Z =
∫

exp(−βV (x)) dx is the partition function
and β = (kBT )−1 is proportional to the inverse of the
temperature.

Aim: compute averages with respect to µ.
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1 Free energy and metastability

Examples of quantities of interest:
• specific heat

C ∝ 〈V 2〉µ − 〈V 〉2µ
• pressure

P ∝ −〈q · ∇V (q)〉µ
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1 Free energy and metastability

Typically, V is a sum of potentials modelling interaction
between two particles, three particles and four
particles:

V =
∑

i<j

V1(xi,xj) +
∑

i<j<k

V2(xi,xj ,xk) +
∑

i<j<k<l

V3(xi,xj ,xk,xl).

For example, V1(xi,xj) = VLJ (|xi − xj |) where

VLJ(r) = 4ǫ
(

(

σ
r

)12 −
(

σ
r

)6
)

is the Lennard-Jones

potential.

Difficulties: (i) high-dimensional problem (N ≫ 1) ;
(ii) µ is a multimodal measure.
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1 Free energy and metastability

To sample µ, Markov Chain Monte Carlo methods are
used.

A typical example is the over-damped Langevin (or
gradient) dynamics:

dXt = −∇V (Xt) dt+
√

2β−1dW t.

Under suitable assumption, we have the ergodic
property: for µ-a.e. X0,

lim
T→∞

1

T

∫ T

0
φ(Xt)dt =

∫

φ(x)dµ(x).
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1 Free energy and metastability

Probabilistic insert (1): discretization of SDEs.
The discretization of (GD) by the Euler scheme is (for
a fixed timestep ∆t):

Xn+1 = Xn −∇V (Xn) ∆t+
√

2β−1∆tGn

where (Gin)1≤i≤3N,n≥0 are i.i.d. random variables with
law N (0, 1). Indeed,

(W (n+1)∆t − W n∆t)n≥0
L
=

√
∆t(Gn)n≥0.

In practice, a sequence of i.i.d. random variables with
law N (0, 1) may be obtained from a sequence of i.i.d.
random variables with law U((0, 1)).
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1 Free energy and metastability

Proof (invariant measure): One needs to show that if
the law of X0 is µ, then the law of Xt is also µ. Let us
denote Xx

t the solution to (GD) such that X0 = x. Let
us consider the function u(t,x) solution to:

{

∂tu(t,x) = −∇V (x) · ∇u(t,x) + β−1∆u(t,x),

u(0,x) = φ(x)(+ assumptions on decay at infinity),

then, u(t,x) = E(φ(Xx
t )). Thus, the measure µ is

invariant:
d

dt

∫

E(φ(Xx
t ))dµ(x) = Z−1

∫

∂tu(t,x) exp(−βV (x))dx

= Z−1

∫

(

−∇V · ∇u+ β−1∆u
)

exp(−βV )= 0.

Therefore,
∫

E(φ(Xx
t ))dµ(x) =

∫

φ(x)dµ(x).
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1 Free energy and metastability

Probabilistic insert (2): Feynman-Kac formula.
Why u(t,x) = E(φ(Xx

t )) ? For 0 < s < t, we have
(characteristic method):

du(t− s,Xx
s ) = −∂tu(t− s,Xx

s ) ds+ ∇u(t− s,Xx
s ) · dXx

s

+β−1∆u(t− s,Xx
s ) ds,

=
(

− ∂tu(t− s,Xx
s ) −∇V (Xx

s ) · ∇u(t− s,Xx
s )

+ β−1∆u(t− s,Xx
s )
)

ds+
√

2β−1∇u(t− s,Xx
s ) · dW s.

Thus, integrating over s ∈ (0, t) and taking the
expectation:

E(u(0,Xx
t )) − E(u(t,Xx

0 )) =
√

2β−1E

(
∫ t

0
∇u(t− s,Xx

s ) · dW s

)

= 0.
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1 Free energy and metastability

Probabilistic insert (3): Itô’s calculus. (in 1d.)

Where does the term ∆u come from ? Starting from
the discretization:

Xn+1 = Xn − V ′(Xn) ∆t+
√

2β−1∆tGn,

we have (for a time-independent function u):
u(Xn+1) = u

(

Xn − V ′(Xn) ∆t+
√

2β−1∆tGn

)

,

= u(Xn) − u′(Xn)V
′(Xn) ∆t+

√

2β−1∆tu′(Xn)Gn

+β−1(Gn)
2u′′(Xn)∆t+ o(∆t).

Thus, summing over n ∈ [0...t/∆t] and taking the limit ∆t→ 0,

u(Xt) = u(X0) −
∫ t

0
V ′(Xs)u

′(Xs) ds+
√

2β−1

∫ t

0
u′(Xs)dWs

+β−1

∫ t

0
u′′(Xs) ds.
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1 Free energy and metastability

In practice, (GD) is discretized in time, and Cesaro
means are computed: limNT→∞

1
NT

∑NT
n=1 φ(Xn).

Remark: Practitioners do not use over-damped
Langevin dynamics but rather Langevin dynamics:
{

dXt = M−1P t dt,

dP t = −∇V (Xt) dt− γM−1P t dt+
√

2γβ−1dW t,

where M is the mass tensor and γ is the friction
coefficient. In the following, we mainly consider
over-damped Langevin dynamics.
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1 Free energy and metastability

Problem: In practice, Xt is a metastable process, so
that the convergence of the ergodic limit is very slow.

A bi-dimensional example: X1
t is a slow variable of the

system.

x1

x2

V (x1, x2)
X1
t

t
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1 Free energy and metastability

A more realistic example (Dellago, Geissler): Influence of
the solvation on a dimer conformation.
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Left: compact state (ξ = d0). Right: stretched state (ξ = d1).

A slow variable is ξ(Xt) where ξ(x) = |x1 − x2| is a
so-called reaction coordinate.
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1 Free energy and metastability

A “real” example: ions canal in a cell membrane.
(C. Chipot).

T. Lelièvre, Cornell University, February 2010 – p. 15



1 Free energy and metastability

Metastability: How to quantify this bad behaviour ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. “Decorrelation time”.

4. Rate of convergence of the law of Xt to µ.

In the following we use the fourth criterium.
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1 Free energy and metastability

The PDE point of view: convergence of the pdf ψ(t,x)

of Xt to ψ∞(x) = Z−1e−βV (x). ψ satisfies the
Fokker-Planck equation

∂tψ = div (∇V ψ + β−1∇ψ),

which can be rewritten as ∂tψ = β−1div
(

ψ∞∇
(

ψ
ψ∞

))

.

Let us introduce the entropy

E(t) = H(ψ(t, ·)|ψ∞) =

∫

ln

(

ψ

ψ∞

)

ψ.

We have (Csiszár-Kullback inequality):

‖ψ(t, ·) − ψ∞‖L1 ≤
√

2E(t).
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1 Free energy and metastability

dE

dt
=

∫

ln

(

ψ

ψ∞

)

∂tψ

= β−1

∫

ln

(

ψ

ψ∞

)

div

(

ψ∞∇
(

ψ

ψ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

ψ =: −β−1I(ψ(t, ·)|ψ∞).

If V is such that the following Logarithmic Sobolev
inequality (LSI(R)) holds: ∀ψ pdf,

H(ψ|ψ∞) ≤ 1

2R
I(ψ|ψ∞)

then E(t) ≤ C exp(−2β−1Rt) and thus ψ converges to
ψ∞ exponentially fast with rate β−1R.

Metastability ⇐⇒ small R
T. Lelièvre, Cornell University, February 2010 – p. 18



1 Free energy and metastability

Metastability: How to attack this problem ?
We suppose in the following that the slow variable is of
dimension 1 and known: ξ(Xt), where ξ : R

n → T.

Functionals to be averaged are typically functions of
this slow variable.
Let us introduce the free energy A which is such that
the image of the measure µ by ξ is Z−1 exp(−βA(z)) dz.
From the co-area formula, one gets:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV |∇ξ|−1dσΣ(z)

)

,

where Σ(z) = {x, ξ(x) = z} is a (smooth) submanifold
of R

n, and σΣ(z) is the Lebesgue measure on Σ(z).
T. Lelièvre, Cornell University, February 2010 – p. 19



1 Free energy and metastability

Co-area formula: Let X be a random variable with law
ψ(x) dx in R

n. Then ξ(X) has law
∫

Σ(z) ψ |∇ξ|−1 dσΣ(z) dz,

and the law of X conditioned to a fixed value z of ξ(X)

is dµΣ(z) =
ψ |∇ξ|−1 dσΣ(z)

R

Σ(z)
ψ |∇ξ|−1 dσΣ(z)

.

Indeed, for any bounded functions f and g,

E(f(ξ(X))g(X)) =

∫

Rn

f(ξ(x))g(x)ψ(x) dx,

=

∫

Rp

∫

Σ(z)
f ◦ ξ g ψ |∇ξ|−1dσΣ(z) dz,

=

∫

Rp

f(z)

∫

Σ(z) g ψ |∇ξ|−1dσΣ(z)
∫

Σ(z) ψ |∇ξ|−1dσΣ(z)

∫

Σ(z)
ψ |∇ξ|−1dσΣ(z) dz

T. Lelièvre, Cornell University, February 2010 – p. 20



1 Free energy and metastability

Remarks:

- The measure |∇ξ|−1dσΣ(z) is sometimes denoted
δξ(x)−z in the literature.

- A is the free energy associated with the reaction
coordinate or collective variable ξ (angle, length, ...).
A is defined up to an additive constant, so that it is
enough to compute free energy differences, or the
derivative of A (the mean force).

- A(z) = −β−1 lnZΣ(z) and ZΣ(z) is the partition function
associated with the conditioned probability measures:

µΣ(z) = Z−1
Σ(z)

e−βV |∇ξ|−1dσΣ(z).

T. Lelièvre, Cornell University, February 2010 – p. 21



1 Free energy and metastability

Example of a free energy profile (solvation of a dimer)
(Profiles computed using TI)
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The density of the solvent molecules is lower on the left than on the right. At high (resp.

low) density, the compact state is more (resp. less) likely. The “free energy barrier” is

higher at high density than at low density. Related question: interpretation of the free

energy barrier in terms of dynamics ?
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1 Free energy and metastability

Some direct numerical simulations...

Remark: Free energy is not energy !
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Left: The potential is 0 in the region enclosed by the
curve, and +∞ outside.

Right: Associated free energy profile when the x
coordinate is the reaction coordinate (β = 1).
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1 Free energy and metastability

Examples of methods to compute free energy
differences A(z2) − A(z1):

• Thermodynamic integration (Kirkwood) (homogeneous

Markov process),
• Perturbation methods (Zwanzig) and histogram

methods,
• Out of equilibrium dynamics (Jarzynski) (non-homogeneous

Markov process),
• Adaptive methods (ABF, metadynamics) (non-homogeneous

and non-linear Markov process).

Numerically, this amounts to: (i) sampling efficiently a
multi-modal measure in high dimension, (ii) computing
the marginal law of such a measure along a given
low-dimensional function.
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1 Free energy and metastability

(a) Thermodynamic integration. (b) Histogram method.

(c) Out of equilibrium dynamics. (d) Adaptive dynamics.

T. Lelièvre, Cornell University, February 2010 – p. 25



2 Constrained dynamics

• Thermodynamic integration (Kirkwood)

• Perturbation methods (Zwanzig) and histogram
methods,

• Out of equilibrium dynamics (Jarzynski),
• Adaptive methods (ABF, metadynamics).

T. Lelièvre, Cornell University, February 2010 – p. 26



2.1 Thermodynamic integration

Thermodynamic integration

T. Lelièvre, Cornell University, February 2010 – p. 27



2.1 Thermodynamic integration

Thermodynamic integration is based on two remarks:

(1) The derivative A′(z) can be obtained by sampling
the conditioned probability measure µΣ(z) (Sprik, Ciccotti,
Kapral, Vanden-Eijnden, E, den Otter, ...)

A′(z) = Z−1
Σ(z)

∫
(∇V · ∇ξ

|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))

exp(−βV )|∇ξ|−1dσΣ(z)

= Z−1
Σ(z)

∫ ∇ξ
|∇ξ|2 ·

(

∇Ṽ + β−1H
)

exp(−βṼ )dσΣ(z),

=

∫

fdµΣ(z),

where Ṽ = V + β−1 ln |∇ξ|, f = ∇V ·∇ξ
|∇ξ|2 − β−1div

(

∇ξ
|∇ξ|2

)

and H = −∇ ·
(

∇ξ
|∇ξ|

)

∇ξ
|∇ξ| is the mean curvature vector.
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2.1 Thermodynamic integration

Proof: (based on the co-area formula)
∫
(
∫

exp(−βṼ )dσΣ(z)

)′

φ(z) dz = −
∫∫

exp(−βṼ )dσΣ(z)φ
′ dz,

= −
∫ ∫

exp(−βṼ )φ′ ◦ ξ dσΣ(z) dz,

= −
∫

exp(−βṼ )φ′ ◦ ξ|∇ξ|dx,

= −
∫

exp(−βṼ )∇(φ ◦ ξ) · ∇ξ
|∇ξ|2 |∇ξ|dx,

=

∫

∇ ·
(

exp(−βṼ )
∇ξ
|∇ξ|

)

φ ◦ ξ dx,

=

∫ ∫

(

−β∇Ṽ · ∇ξ
|∇ξ|2 + |∇ξ|−1∇ ·

( ∇ξ
|∇ξ|

)

)

exp(−βṼ )dσΣ(z)φ(z) dz.
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2.1 Thermodynamic integration

(2) It is possible to sample the conditioned probability
measure µΣ(z) = Z−1

Σ(z)
exp(−βṼ )dσΣ(z) by considering

the following constrained dynamics:

(RCD)

{

dXt = −∇Ṽ (Xt) dt+
√

2β−1dW t + ∇ξ(Xt)dΛt,

dΛt such that ξ(Xt) = z.

Thus, A′(z) = limT→∞
1
T

∫ T
0 f(Xt) dt.

The free energy profile is then obtained by
thermodynamic integration:

A(z) − A(0) =

∫ z

0
A′(z) dz ≃

K
∑

i=0

ωiA
′(zi).
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2.1 Thermodynamic integration

Notice that there is actually no need to compute f in
practice since the mean force may be obtained by
averaging the Lagrange multipliers.

Indeed, we have dΛt = dΛm
t + dΛf

t, with
dΛm

t = −
√

2β−1 ∇ξ
|∇ξ|2 (Xt) · dW t and

dΛf
t = ∇ξ

|∇ξ|2 ·
(

∇Ṽ + β−1H
)

(Xt) dt = f(Xt) dt so that

A′(z) = lim
T→∞

1

T

∫ T

0
dΛt = lim

T→∞

1

T

∫ T

0
dΛf

t.

Of course, this comes at a price: essentially, we are using the fact that

lim
M→∞

lim
∆t→0

1

M∆t

M
X

m=1

h

ξ
“

q +
√

∆t Gm
”

− 2ξ(q) + ξ
“

q −
√

∆tGm
”i

= ∆ξ(q),

and this estimator has a non zero variance.
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2.1 Thermodynamic integration

More explicitly, the rigidly constrained dynamics writes:

(RCD) dXt = P (Xt)
(

−∇Ṽ (Xt) dt+
√

2β−1dW t

)

+ β−1H(Xt) dt,

where P (x) is the orthogonal projection operator:

P (x) = Id − n(x) ⊗ n(x),

with n the unit normal vector: n(x) =
∇ξ
|∇ξ|(x).

(RCD) can also be written using the Stratonovitch
product: dXt = −P (Xt)∇Ṽ (Xt) dt+

√

2β−1P (Xt)◦dW t.

It is easy to check that ξ(Xt) = ξ(X0) = z for Xt

solution to (RCD).
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2.1 Thermodynamic integration

[G. Ciccotti, TL, E. Vanden-Einjden, 2008] Assume wlg that z = 0. The
probability µΣ(0) is the unique invariant measure with
support in Σ(0) for (RCD).

Proposition: Let Xt be the solution to (RCD) such that
the law of X0 is µΣ(0). Then, for all smooth function φ

and for all time t > 0,

E(φ(Xt)) =

∫

φ(x)dµΣ(0)(x).

Proof: Introduce the infinitesimal generator and apply the divergence
theorem on submanifolds : ∀φ ∈ C1(R3N , R3N ),

∫

div Σ(0)(φ) dσΣ(0) = −
∫

H · φ dσΣ(0),

where div Σ(0)(φ) = tr(P∇φ).
T. Lelièvre, Cornell University, February 2010 – p. 33



2.1 Thermodynamic integration

Discretization: These two schemes are consistent with
(RCD):

(S1)

{

Xn+1 = Xn −∇Ṽ (Xn)∆t+
√

2β−1∆W n + λn∇ξ(Xn+1),

with λn ∈ R such that ξ(Xn+1) = 0,

(S2)

{

Xn+1 = Xn −∇Ṽ (Xn)∆t+
√

2β−1∆W n + λn∇ξ(Xn),

with λn ∈ R such that ξ(Xn+1) = 0,

where ∆W n = W (n+1)∆t − W n∆t. The constraint is
exactly satisfied (important for longtime computations).
The discretization of A′(0) = limT→∞

1
T

∫ T
0 dΛt is:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = A′(0).
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2.1 Thermodynamic integration

In practice, the following variance reduction scheme
may be used:

{

Xn+1 = Xn −∇Ṽ (Xn)∆t+
√

2β−1∆W n + λ∇ξ(Xn+1),

with λ ∈ R such that ξ(Xn+1) = 0,

{

X∗ = Xn −∇Ṽ (Xn)∆t−
√

2β−1∆W n + λ∗∇ξ(X∗),

with λ∗ ∈ R such that ξ(X∗) = 0,

and λn = (λ+ λ∗)/2.

The martingale part dΛm
t (i.e. the most fluctuating part)

of the Lagrange multiplier is removed.
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2.1 Thermodynamic integration

An over-simplified illustration: in dimension 2,
V (x) = β−1

2 |x|2 and ξ(x) = x2
1

a2 + x2
2

b2 − 1.

 0
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 0.2

 0.25
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Measures samples theoretically and numerically (as a

function of the angle θ), with β = 1, a = 2, b = 1, ∆t = 0.01, and 50 000 000 timesteps.
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2.1 Thermodynamic integration

Computation of the mean force: β = 1, a = 2, b = 1. The
exact value is: 0.9868348150. The numerical result
(with ∆t = 0.001, M = 50000) is: [0.940613 ; 1.03204].

The variance reduction method reduces the variance
by a factor 100. The result (with ∆t = 0.001, M = 50000)
is: [0.984019 ; 0.993421].
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2.1 Thermodynamic integration

App. mean force as a function of ∆t and M = T/∆t:

 1e-05
 1e-04

 0.001
 0.01

 0.1 1000
 10000

 100000
 1e+06

 1e+07

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

dt
M

A balance needs to be find between the discretization
error (∆t→ 0) and the convergence in the ergodic limit
(T → ∞).
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2.1 Thermodynamic integration

Error analysis [Faou,TL, Mathematics of Computation, 2010]: Using
classical technics (Talay-Tubaro like proof), one can
check that the ergodic measure µ∆t

Σ(0) sampled by the
Markov chain (Xn) is an approximation of order one of
µΣ(0): for all smooth functions g : Σ(0) → R,

∣

∣

∣

∣

∣

∫

Σ(0)
gdµ∆t

Σ(0) −
∫

Σ(0)
gdµΣ(0)

∣

∣

∣

∣

∣

≤ C∆t.
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2.1 Thermodynamic integration

Metastability issue: Using TI, we have to sample the
conditional measures µΣ(z) rather than the original
Gibbs measure µ. The long-time behaviour of the
constrained dynamics (RCD) will be essentially limited
by the LSI contant ρ(z) of the conditional measures
µΣ(z) (to be compared with the LSI constant R of the
original measure µ). For well-chosen ξ, ρ(z) ≫ R,
which explains the efficiency of the whole procedure.
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2.1 Thermodynamic integration

Remarks:
- There are many ways to constrain the dynamics
(GD). We chose one which is simple to discretize. We
may also have used, for example (for z = 0)

dXη
t = −∇V (Xη

t ) dt−
1

2η
∇(ξ2)(Xη

t ) dt+
√

2β−1dW t,

where the constraint is penalized. One can show that
limη→0 X

η
t = Xt (in L∞

t∈[0,T ]
(L2
ω)-norm) where Xt satisfies

(RCD). Notice that we used V and not Ṽ in the
penalized dynamics.
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2.1 Thermodynamic integration

The statistics associated with the dynamics where the
constraints are rigidly imposed and the dynamics
where the constraints are softly imposed through
penalization are different: “a stiff spring 6= a rigid rod”
(van Kampen, Hinch,...).
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2.1 Thermodynamic integration

- TI yields a way to compute
∫

φ(x)dµ(x):
∫

φ(x)dµ(x) = Z−1

∫

φ(x)e−βV (x)dx,

= Z−1

∫

z

∫

Σ(z)
φe−βV |∇ξ|−1dσΣ(z) dz, (co-area formula)

= Z−1

∫

z

∫

Σ(z) φe
−βV |∇ξ|−1dσΣ(z)

∫

Σ(z) e
−βV |∇ξ|−1dσΣ(z)

∫

Σ(z)
e−βV |∇ξ|−1dσΣ(z) dz,

=

(
∫

z
e−βA(z) dz

)−1 ∫

z

(

∫

Σ(z)
φdµΣ(z)

)

e−βA(z) dz.

with Σ(z) = {x, ξ(x) = z},
A(z) = −β−1 ln

(

∫

Σ(z)e
−βV |∇ξ|−1dσΣ(z)

)

and

µΣ(z) = e−βV |∇ξ|−1dσΣ(z)/
∫

Σ(z)e
−βV |∇ξ|−1dσΣ(z).T. Lelièvre, Cornell University, February 2010 – p. 43



2.1 Thermodynamic integration

- [C. Le Bris, TL, E. Vanden-Einjden, CRAS 2008] For a general SDE
(with a non isotropic diffusion), the following diagram
does not commute:

Pcont

Pdisc
Projected discretized process

?

Discretized process

Projected continuous process

Continuous process

Discretized projected continuous process

∆t

∆t
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2.1 Thermodynamic integration

Generalization to Langevin dynamics. Interests:
(i) Newton’s equations of motion are more “natural”;
(ii) leads to numerical schemes which sample the
constrained measure without time discretization error.










dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+
√

2γβ−1dWt + ∇ξ(qt) dλt,
ξ(qt) = z.

The probability measure sampled by this dynamics is

µT ∗Σ(z)(dqdp) = Z−1 exp(−βH(q, p))σT ∗Σ(z)(dqdp),

where H(q, p) = V (q) + 1
2p
TM−1p.
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2.1 Thermodynamic integration

The marginal of µT ∗Σ(z)(dqdp) in q writes:

νMΣ(z) =
1

Z
exp(−βV (q))σMΣ(z)(dq) 6=

1

Z
exp(−βV (q))δξ(q)−z(dq).

Thus, the “free energy” which is naturally computed by
this dynamics is

AM (z) = −β−1 ln

(

∫

Σ(z)
exp(−βV (q))σMΣ(z)(dq)

)

.

The original free energy may be recovered from the
relation: for GM = ∇ξTM−1∇ξ,

A(z) − AM (z) = −β−1 ln

(

∫

Σ(z)
det(GM )−1/2dνMΣ(z)

)

.
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2.1 Thermodynamic integration

Moreover, one can check that:

lim
T→∞

1

T

∫ T

0
dλt = (AM )′(z).

Discretization: A natural numerical scheme is to use a
splitting:

• 1/2 midpoint Euler on the fluctuation-dissipation
part,

• 1 Verlet step on the Hamiltonian part (RATTLE
scheme) and

• 1/2 midpoint Euler on the fluctuation-dissipation
part.
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2.1 Thermodynamic integration
8

>

<

>

:

pn+1/4 = pn − ∆t

4
γ M−1(pn + pn+1/4) +

r

∆t

2
σGn + ∇ξ(qn)λn+1/4,

∇ξ(qn)TM−1pn+1/4 = 0,

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

pn+1/2 = pn+1/4 − ∆t

2
∇V (qn) + ∇ξ(qn)λn+1/2,

qn+1 = qn + ∆tM−1 pn+1/2,

ξ(qn+1) = z,

pn+3/4 = pn+1/2 − ∆t

2
∇V (qn+1) + ∇ξ(qn+1)λn+3/4,

∇ξ(qn+1)TM−1pn+3/4 = 0,

8

>

>

>

>

<

>

>

>

>

:

pn+1 = pn+3/4 − ∆t

4
γ M−1(pn+3/4 + pn+1) +

r

∆t

2
σGn+1/2

+∇ξ(qn+1)λn+1,

∇ξ(qn+1)TM−1pn+1 = 0.

and limT→∞ lim∆t→0
1
T

PT/∆t
n=1

`

λn+1/2 + λn+3/4
´

= (AM )′(z).
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2.1 Thermodynamic integration

Using the symmetry of the Verlet step, it is easy to add
a Metropolization step to the previous numerical
scheme, thus removing the time discretization error.
For this modified scheme, it is easy to prove that

lim
∆t→0

lim
T→∞

1

T

T/∆t
∑

n=1

(

λn+1/2 + λn+3/4
)

= (AM )′(z).

Notice that it is not clear how to use such a
Metropolization step for the constrained dynamics
(RCD) since the proposal kernel is not symmetric, and
has not simple analytical expression.
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2.1 Thermodynamic integration

Moreover, by choosing M = ∆tγ/4 = Id, this leads to
an original sampling scheme in the configuration
space (generalized Hybrid Monte Carlo scheme).

Algorithm: Let us introduce R∆t which is such that, if
(qn, pn) ∈ T ∗Σ(z), and |pn|2 ≤ R∆t, one step of the
RATTLE scheme is well defined (i.e. there exists a unique solution

to the constrained problem).

Then the scheme writes:
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2.1 Thermodynamic integration

Consider an initial configuration q0 ∈ Σ(z). Iterate on n ≥ 0,

1. Sample a random vector in the tangent space TqnΣ(z) (∇ξ(qn)T pn = 0):

pn = β−1/2 P (qn)Gn,

where (Gn)n≥0 are i.i.d. standard random Gaussian variables, and compute the

energy En =
1

2
|pn|2 + V (qn) of the configuration (qn, pn);

2. If |pn|2 > R∆t, set En+1 = +∞ and go to (3); otherwise perform one integration
step of the RATTLE scheme:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

pn+1/2 = pn − ∆t

2
∇V (qn) + ∇ξ(qn)λn+1/2,

eqn+1 = qn + ∆t pn+1/2,

ξ(eqn+1) = z,

epn+1 = pn+1/2 − ∆t

2
∇V (eqn+1) + ∇ξ(eqn+1)λn+1,

∇ξ(eqn+1)T epn+1 = 0;
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2.1 Thermodynamic integration

3. If |epn+1|2 > R∆t, set En+1 = +∞; otherwise compute the energy

En+1 =
1

2
|epn+1|2 + V (eqn+1) of the new phase-space configuration. Accept the

proposal and set qn+1 = eqn+1 with probability

min
“

exp(−β(En+1 − En)), 1
”

;

otherwise, reject and set qn+1 = qn.

Proposition: The probability measure

νMΣ(z) =
1

Z
exp(−βV (q))σMΣ(z)(dq)

is invariant for the Markov Chain (qn)n≥1.
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2.2 Non-equilibrium dynamics

Non-equilibrium dynamics

T. Lelièvre, Cornell University, February 2010 – p. 53



2.2 Non-equilibrium dynamics

Let us consider a stochastic process such that
X0 ∼ µΣz(0) and











dXt = −P (Xt)∇Ṽ (Xt) dt+
√

2β−1P (Xt) ◦ dW t

+∇ξ(Xt)dΛ
ext
t ,

dΛext
t = z′(t)

|∇ξ(Xt)|2
dt,

where z : [0, T ] → [0, 1] is a fixed deterministic evolution
of the reaction coordinate ξ, such that z(0) = 0 and
z(T ) = 1.
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2.2 Non-equilibrium dynamics

The dynamics can also be written using a Lagrange
multiplier:
{

dXt = −∇Ṽ (Xt) dt+
√

2β−1dW t + ∇ξ(Xt)dΛt,

ξ(Xt) = z(t).

And we have

dΛt = dΛm
t + dΛf

t+dΛ
ext
t ,

where dΛm
t = −

√

2β−1 ∇ξ
|∇ξ|2 (Xt) · dW t , dΛf

t = f(Xt) dt

and dΛext
t = z′(t)

|∇ξ(X t)|2
dt.
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2.2 Non-equilibrium dynamics

How to get equilibrium quantities (like the free energy)
through non-equilibrium simulations ?

The idea is to associate to each trajectory Xt a weight

W(t) =

∫ t

0
f(Xs)z

′(s) ds =

∫ t

0
z′(s)dΛf

s.

and to compute free energy differences by a
Feynman-Kac formula (Jarzynski identity):

A(z(t)) − A(z(0)) = −β−1 ln (E (exp(−βW(t)))).
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2.2 Non-equilibrium dynamics

[TL, M. Rousset, G. Stoltz, 2007] The proof consists in introducing the semi-group
associated with the dynamics

u(s,x) = E

„

ϕ(Xs,x
t ) exp

„

−β
Z t

s
f(Xs,x

r )z′(r) dr

««

and to show that d
ds

R

u(s, .) exp(−βṼ )dσΣz(s)
= 0 using the divergence theorem on

submanifolds. Then

Z

u(t, .) exp(−βṼ )dσΣz(t)
=

Z

u(0, .) exp(−βṼ )dσΣz(0)

is equivalent to

Z

ϕ exp(−βṼ )dσΣz(t)
= exp(−βA(z(0)))E

„Z

ϕ(Xt) exp

„

−β
Z t

0
f(Xr)z

′(r) dr

««

.
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2.2 Non-equilibrium dynamics

A more general relation is the so-called Crooks
identity which is a more general formula relating the
free energy to the work of forward and backward
switched processes. Let qft and qbt satisfy: qf0 ∼ µΣ(z(0)),
qb0 ∼ µΣ(z(T )),







dqft = −∇Ṽ (qft ) dt+
√

2β−1dW f
t + ∇ξ(qft )dΛft ,

ξ(qft ) = z(t),

{

dqbt′ = −∇Ṽ (qbt′) dt
′ +
√

2β−1dW b
t′ + ∇ξ(qbt′)dΛbt′,

ξ(qbt′) = z(T − t′).
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2.2 Non-equilibrium dynamics

Then, for any θ ∈ [0, 1], for any path functional φ,

exp
(

− β(A(z(T )) − A(z(0))
)

E

(

φ({qbT−s}0≤s≤T ) exp(−βθWb(T ))
)

= E

(

φ({qfs }0≤s≤T ) exp(−β(1 − θ)Wf (T ))
)

,

where Wf (T ) =
∫ t
0 f(qfs )z′(s) ds and

Wb(T ) = −
∫ t
0 f(qbs)z

′(T − s) ds.

This identity can be used to combine forward and
backward processes to get better estimates of the free
energy difference, see for example bridge sampling
methods [Bennett, Meng and Wong, Shirts].
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2.2 Non-equilibrium dynamics

The discretization of the constrained process is (as
before):

(S1)

{

Xn+1 = Xn −∇Ṽ (Xn)∆t+
√

2β−1∆W n + λn∇ξ(Xn+1),

with λn such that ξ(Xn+1) = z(tn+1),

(S2)

{

Xn+1 = Xn −∇Ṽ (Xn)∆t+
√

2β−1∆W n + λn∇ξ(Xn),

with λn such that ξ(Xn+1) = z(tn+1).

To extract λf
n from λn, one can e.g. compute:

λf
n = λn −

z(tn+1) − z(tn)

|∇ξ(Xn)|2
+
√

2β−1
∇ξ
|∇ξ|2 (Xn) · ∆W n.
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2.2 Non-equilibrium dynamics

Another method to compute λf
n consists in:

{

XR
n+1 = Xn −∇Ṽ (Xn)∆t−

√

2β−1∆W n + λRn∇ξ(XR
n+1),

with λRn such that 1
2

(

ξ(XR
n+1) + ξ(Xn+1)

)

= ξ(Xn).

We then have λf
n = 1

2

(

λn + λRn
)

.
The weight is then approximated by

{

W0 = 0,

Wn+1 = Wn + z(tn+1)−z(tn)
tn+1−tn

λf
n,

and a (biased) estimator of the free energy difference

A(z(T )) −A(z(0)) is −β−1 ln
(

1
M

∑M
m=1 exp

(

−βWm
T/∆t

))

.
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2.2 Non-equilibrium dynamics

In practice, the efficiency of this numerical method is
not clearly demonstrated. If the transition is too fast,
the variance of the estimator is very large. If the
transition is slow, we are back to thermodynamic
integration...

Ideas: (i) combine forward and backward trajectories,
(ii) add selection mechanisms [M. Rousset, G. Stoltz, 2006] or
(iii) use importance sampling to help the transition
(escorting) [Vaikuntanathan, Jarzynski, 2008].

All this can be generalized to Langevin (phase-space)
dynamics, with the additional difficulty that generalized
free energies for constraints on both positions and
momenta are obtained.
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3 Adaptive methods

• Thermodynamic integration (Kirkwood)

• Perturbation methods (Zwanzig) and histogram
methods,

• Out of equilibrium dynamics (Jarzynski),
• Adaptive methods (ABF, metadynamics).
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3 Adaptive methods

Adaptive methods
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3.1 Adaptive methods: algorithms

The bottom line of adaptive methods is the following:
for “good” ξ the potential V − A ◦ ξ is less metastable
than V . But A is unknown !

Principle: use a time dependent potential of the form

Vt(x) = V (x) −At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:
• build a dynamics which goes quickly to equilibrium,
• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello,

Wang, Landau,... T. Lelièvre, Cornell University, February 2010 – p. 65



3.1 Adaptive methods: algorithms

How to update At ? Two methods depending on
wether A′

t (Adaptive Biasing Force) or At (Adaptive
Biasing Potential) is approximated.

For the Adaptive Biasing Force method, the idea is to
use the formula

A′(z) =

∫
(∇V · ∇ξ

|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))

e−βV |∇ξ|−1dσΣ(z)

∫

e−βV |∇ξ|−1dσΣ(z)

=

∫

fdµΣ(z) = Eµ(f(X)|ξ(X) = z).

The mean force A′(z) is the mean of f with respect to
µΣ(z) = Z−1

Σ(z)
e−βV |∇ξ|−1dσΣ(z).
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3.1 Adaptive methods: algorithms

Important remark: whatever At, the mean force
associated with the Gibbs distribution

ψeq
∝ exp(−βVt)(x) dx = exp(−β(V − At ◦ ξ))(x) dx

is the original mean force A′:
∫

fψeq|∇ξ|−1dσΣ(z)
∫

ψeq|∇ξ|−1dσΣ(z)

= A′(z).

Thus, use as an approximation of A′(z):

A′
t(z) = E(f(Xt)|ξ(Xt) = z).
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3.1 Adaptive methods: algorithms

A typical ABF dynamics is thus:
{

dXt = −∇(V − At ◦ ξ)(Xt) dt+
√

2β−1dW t,

A′
t(z) = E (f(Xt)|ξ(Xt) = z) .

The associated (nonlinear) Fokker-Planck equation
writes:



























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ|∇ξ|−1dσΣ(z)
∫

ψ|∇ξ|−1dσΣ(z)

,

where ψ(t,x) dx ∼ Xt.
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3.1 Adaptive methods: algorithms

Two variants:
• A may be approximated instead of A′, using the

formula

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV |∇ξ|−1dσΣ(z)

)

.

This leads to Adaptive Biasing Potential (ABP)
methods. A typical example is:






dXt = −∇(V −At ◦ ξ)(Xt) dt+
√

2β−1dW t,

∂At
∂t

(z) = −1

τ
β−1 ln

(

E (δ(ξ(Xt) − z))
)

.
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3.1 Adaptive methods: algorithms

• To avoid geometry problem, an extended
configurational space (x, z) ∈ R

n+1 may be
considered, together with the meta-potential:

V k(x, z) = V (x) + k(z − ξ(x))2.

Choosing (x, z) 7→ z as a reaction coordinate, the
associated free energy Ak is close to A (in the limit

k → ∞, up to an additive constant).
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3.1 Adaptive methods: algorithms

[TL, M. Rousset, G. Soltz, J Chem Phys, 2007] Adaptive algorithms
used in molecular dynamics fall into one of these four
possible combinations:

A′
t At

V ABF Wang-Landau
V k ... metadynamics
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3.1 Adaptive methods: algorithms

Consistency of the method : the stationary state yields
the mean force. Indeed, if the system reaches a
stationary state

(ψt(x), At(z)),−→ (ψ∞(x), A∞(z)),

then
ψ∞ = Z−1 exp(−β(V − A∞ ◦ ξ))

and we have:
• for (ABP), 0 = −β−1 ln

∫

ψ∞|∇ξ|−1dσΣ(z),

• for (ABF), 0 =
R

f ψ∞|∇ξ|−1dσΣ(z)
R

ψ∞|∇ξ|−1dσΣ(z)
− A′

∞(z),

and thus, in both cases, (up to an additive constant),

A∞ = A.
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3.2 Adaptive methods: convergence

Let us now study the rate of convergence of the ABF
methods:











∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

fψ|∇ξ|−1 dσΣ(z)
∫

ψ|∇ξ|−1 dσΣ(z)
.

Questions: Does A′
t converge to A′ ? What did we

gain compared to the original gradient dynamics ?
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3.2 Adaptive methods: convergence

A fundamental remark. Let us consider the problem in
a simple situation: n = 2, the configuration space is
T × R, and ξ(x, y) = x.











∂tψ = div
(

∇V ψ + β−1∇ψ
)

− ∂x(A
′
tψ),

A′
t(x) =

∫

∂xV (x, y)ψ(t, x, y) dy
∫

ψ(t, x, y) dy
.

Let ψ(t, x) =
∫

ψ(t, x, y) dy. Then

∂tψ = β−1∂x,xψ + ∂x

∫

∂xV ψ dy − ∂x(A
′
tψ)

= β−1∂x,xψ.

The metastability along the reaction coordinate
direction has been eliminated.
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3.2 Adaptive methods: convergence

Theorem: Suppose

(H1) ergodicity of the microscopic variables: the
conditioned probability measures µΣ(z) satisfy a
logarithmic Sobolev inequality LSI(ρ),

(H2) bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ|∇ξ|−1 dσΣ(z) to
ψ∞, at the macroscopic level,

• the constant ρ of LSI at the microscopic level.
−→ The real limitation.
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3.2 Adaptive methods: convergence

Main ingredients of the proof in the simple setting
(n = 2 on T × R, with ξ(x, y) = x).

Ingredient 1: ψ(t, x) =
∫

ψ(t, x, y) dy satisfies a closed
PDE

∂tψ = β−1∂x,xψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with
exponential speed C exp(−4π2β−1t).

Ingredient 2: Decomposition of entropy: E = EM + Em.
“Total entropy = macroscopic entropy + microscopic
entropy.”
Cf. works by F. Otto et al.
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3.2 Adaptive methods: convergence

Equilibrium is ψ∞ = Z−1 exp(−β(V − A ◦ ξ)).

The total entropy is E(t) = H(ψ(t, .)|ψ∞),

The macroscopic entropy is EM (t) = H(ψ(t, .)|ψ∞),

The microscopic entropy is

Em(t) =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz

=

∫

H

(

ψ(t, x, .)

ψ(t, x)

∣

∣

∣

ψ∞(x, .)

ψ∞(x)

)

ψ(t, x) dx.

We already know that EM goes to zero: it remains to
consider Em.
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3.2 Adaptive methods: convergence

Notice that

∂tψ = β−1div

(

ψ∞∇
(

ψ

ψ∞

))

+ ∂x((A
′ − A′

t)ψ).

Ingredient 3: We have (algebraïc miracle)

∂tEm = ∂tE − ∂tEM

≤ −β−1

∫∫
∣

∣

∣

∣

∂y ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

ψ −
∫

∂x ln

(

ψ

ψ∞

)

ψ(A′
t − A′).

Using (H1) the conditioned prob. measures ψ∞(x,y)

ψ∞(x)
dy

satisfy a logarithmic Sobolev inequality LSI(ρ), then

−β−1

∫∫
∣

∣

∣

∣

∂y ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ ≤ −2ρβ−1Em.
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3.2 Adaptive methods: convergence

(H1) also implies a Talagrand inequality (Ingredient 4):
∣

∣A′
t(x) −A′(x)

∣

∣

=

∣

∣

∣

∣

∫

∂xV (x, y)
ψ(t, x, y)

∫

ψ(t, x, y) dy
dy −

∫

∂xV (x, y)
ψ∞(x, y)

∫

ψ∞(x, y) dy
dy

∣

∣

∣

∣

≤ ‖∂x,yV ‖L∞

∫

∣

∣y − y′
∣

∣πt,x(dy, dy
′)

≤ ‖∂x,yV ‖L∞

√

2

ρ
H

(

ψ(t, x, .)

ψ(t, x)

∣

∣

∣

ψ∞(x, .)

ψ∞(x)

)

,

where πt,x is any coupling measure:
Z

(f(y) + g(y′))πt,x(dy, dy
′) =

Z

f(y)
ψ(t, x, y)

R

ψ(t, x, y) dy
dy +

Z

g(y′)
ψ∞(x, y′)

R

ψ∞(x, y) dy
dy′.

This requires (H2) ∂x,yV ∈ L∞.
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3.2 Adaptive methods: convergence

Thus, we have

−
∫

∂x ln

(

ψ

ψ∞

)

ψ(A′
t − A′) ≤

√

∫

|A′
t −A′|2 ψ

√

∫
∣

∣

∣

∣

∂x ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ

≤ ‖∂x,yV ‖L∞

√

2

ρ
EmC exp(−4π2β−1t).

We have proved that

∂tEm ≤ −2ρβ−1Em + ‖∂x,yV ‖L∞

√

2

ρ
EmC exp(−4π2β−1t),

and this yields
√
Em(t) ≤ C exp(−β−1 min(ρ, 4π2)t).
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3.2 Adaptive methods: convergence

These arguments can be generalized to prove the
theorem in the following frameworks:

• ξ : R
n → T (with a slight modification of the

dynamics),
• ξ : R

n → R (with a slight modification of the
dynamics and a constraining potential on ξ(x)),

• ξ : R
n → T

m or ξ : R
n → R

m with a suitable
modification of the dynamics,

• ξ : R
n → T

m or ξ : R
n → R

m with the original ABF
dynamics, if the coupling is small enough.
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3.2 Adaptive methods: convergence

The case ξ : R
n → R: the convergence result holds for

the following adaptive dynamics:

dXt = −∇
(

V−β−1 ln(|∇ξ|−2)−At ◦ ξ+Π ◦ ξ
)

(Xt)|∇ξ|−2(Xt) dt

+
√

2β−1|∇ξ|−1(Xt) dWt,

A′
t(z) = E

((∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))

(Xt)
∣

∣

∣
ξ(Xt) = z

)

.

The blue terms are required to obtain a closed
parabolic PDE on ψ(t, z) =

∫

Σ(z) |∇ξ|−1ψ(t, .)dσΣ(z):

∂tψ = ∂z(Π
′ ψ + β−1∂zψ).

The green term is required for ψ to converge to a
stationary state.
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3.2 Adaptive methods: convergence

In summary [TL, G. Stoltz, M. Rousset, Nonlinearity 2008] :
• Original gradient dynamics: exp(−β−1Rt) where R

is the ISL constant for µ ;
• ABF dynamics: exp(−β−1ρt) where ρ is the ISL

constant for the conditioned probability
measures µΣ(z).

If ξ is well chosen, ρ≫ R.

Remarks:
• if there are metastabilities in µΣ(z), only “local LSI”

is needed (work in progress with K. Minoukadeh)

• the ABP case is not understood so far...
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3.2 Adaptive methods: convergence

Other results based on this set of assumptions:
• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ ∗ µ(dz)
+ bdd coupling (‖∇Σ(z)f‖L∞ <∞) =⇒ LSI for µ.

• [F. Legoll, TL, 2009] Effective dynamics for ξ(Xt). Uniform
control in time:

H(L(ξ(Xt))|L(zt)) ≤ C

(‖∇Σ(z)f‖L∞

ρ

)2

H(L(X0)|µ).
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3.3 Multiple replicas implementations

Discretization of adaptive methods can be done using
two (complementary) approaches:

• Use trajectorial averages along a single path:

E(f(Xt)|ξ(Xt) = z) ≃
∫ t
0 f(Xs)δ

α(ξ(Xs) − z) ds
∫ t
0 δ

α(ξ(Xs) − z) ds
.

• Use empirical means over many replicas
(interacting particle system):

E(f(Xt)|ξ(Xt) = z) ≃
∑N

m=1 f(Xm,N
t )δα(ξ(Xm,N

t ) − z)
∑N

m=1 δ
α(ξ(Xm,N

t ) − z)
.
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3.3 Multiple replicas implementations

Interest of a discretization using an interacting particle
system:

• Very efficient parallelization.
• Better sampling of all reactive paths.
• A selection mechanism may be added to duplicate

“innovative particles” and kill “redundant particles”.

−→ We propose a selection mechanism which
accelerates the convergence “at the macroscopic
level” (increase r). [TL, G. Stoltz, M. Rousset, J Chem Phys 2007].
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3.3 Multiple replicas implementations

Numerical analysis of the particle system [B. Jourdain, TL, R.

Roux, M2AN, 2010]

Theorem: We suppose that the configuration space is
T
d, V is smooth, and ξ(x) = x1. We consider the

following particle approximation:

dXt,n,N =

 

−∇V (Xt,n,N ) +

PN
m=1 φ

α
ǫ (X1

t,n,N −X1
t,m,N )∂1V (Xt,m,N )

PN
m=1 φ

α
ǫ (X1

t,n,N −X1
t,m,N )

e1

!

dt+
√

2dWn
t

where φαǫ = α + ǫ−1φ(ǫ−1·). Then we have,

E

Z T

0

‚

‚

‚

‚

‚

PN
m=1 φ

α
ǫ (· −X1

t,m,N )∂1V (Xt,m,N )
PN
m=1 φ

α
ǫ (· −X1

t,m,N )
−A′

t

‚

‚

‚

‚

‚

L∞

T

dt

= O

0

@α+
√
ǫ+

exp
“

K
αǫ2

”

√
N

1

A .
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3.3 Multiple replicas implementations

The selection mechanism

On the ABF dynamics, a selection mechanism can
enhance the diffusion at the “macroscopic“ level.































∂tψ = div
(

|∇ξ|−2
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
))

+Wψ ◦ ξ ψ,
A′
t(z) =

∫

Σ(z)

(∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))

|∇ξ|−1ψ(t, .)dσΣ(z)

×
(

∫

Σ(z)
|∇ξ|−1ψ(t, .)dσΣ(z)

)−1

.

Then, we have: ∂tψ = β−1∂z,zψ+Wψ ψ.
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3.3 Multiple replicas implementations

How to choose W? A typical choice :

Wψ = c
∂z,zψ

ψso that

∂tψ = (β−1+c)∂z,zψ.

The rate of convergence of ψ to ψ∞, at the
“macroscopic“ level, is thus enhanced.

Numerically, it amounts to associate a weight

wn,N (t) = exp

(
∫ t

0
Wψ(ξ(Xs,n,N )) ds

)

to the n-th replica trajectory, and to make weighted
means to compute A′

t.
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3.3 Multiple replicas implementations

We use an histogram to discretize ψ and thus

Wψ(z) ≃ c
ψ(z + δz) − 2ψ(z) + ψ(z − δz)

ψ(z)δz2

≃ 3c

ψ(z)δz2

(

ψ(z + δz) + ψ(z) + ψ(z − δz)

3
− ψ(z)

)

Weights of particles in locally under-explored regions
are increased.

An adequate selection process can then be
implemented, using these weights (like in genetic
algorithm).

This should help to efficiently detect and take
advantage of rare events.
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3.3 Multiple replicas implementations

Numerical illustration on the example of the solvation
of a dimer.
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Left: compact state Right: stretched state.

Recall the reaction coordinate is ξ(x) = |x1 − x2|.
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3.3 Multiple replicas implementations

Free energy profile with parallel ABF obtained at t =
0.1, with 2000 replicas.
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3.3 Multiple replicas implementations

Proportion of replicas which have crossed the free
energy barrier.
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3.4 Application to Bayesian statistics

Adaptive methods can be seen as adaptive
importance sampling methods rather than free energy
calculation methods. −→ compute a bias adaptively,
and then unbias.

Compare to classical importance sampling methods,
only ξ is provided and a “good” bias function of ξ is
then computed. Only ξ has to be chosen, and not the
whole importance biasing function.
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3.4 Application to Bayesian statistics

This gives many freedom in the way to use them. For
example:

• Instead of computing the complicated local mean

force f = ∇V ·∇ξ
|∇ξ|2 − β−1div

(

∇ξ
|∇ξ|2

)

, use simpler

expressions, like ∇V ·∇ξ
|∇ξ|2 .

• Use ABF for high dimensional reaction coordinates
by postulating a separated representations of the
mean force:
A(z1, . . . , zN ) = A1(z1) + A2,3(z2, z3) + A4(z4) + . . .
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3.4 Application to Bayesian statistics
Preliminary results on the alanine dipeptide: A1(φ) +A2(ψ).

−kT ln(P(δ(φ,ψ)(Xt)−(φ0,ψ0))) Tensor product of the bias

Reconstructed PMF Reference PMF

Work in progress with C. Chipot and J. Hénin.
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3.4 Application to Bayesian statistics

Application to Bayesian statistics [N. Chopin, TL, G. Stoltz]:
Sampling of posterior distributions using a MCMC
ABF algorithm.

• The fishery problem: the size of Ndata = 256 fishes
are measured, and the corresponding histogram is
approximated by a mixture of N Gaussians:

f(y |x) =
N
∑

i=1

qi

√

vi
2π

exp
(

−vi
2

(y − µi)
2
)

,

• parameters describing the mixture (qN = 1 −PN−1
i=1 qi):

x = (q1, . . . , qN−1, µ1, . . . , µN , v1, . . . , vN ) ∈
SN−1 × [µmin, µmax]

N × [vmin,+∞) ⊂ R
3N−1, where

SN−1 =
n

(q1, . . . , qN−1)
˛

˛

˛ 0 ≤ qi ≤ 1,
PN−1
i=1 qi ≤ 1

o

.
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3.4 Application to Bayesian statistics

• given the parameters, the likelihood of observing
the data {yi, 1 ≤ i ≤ Ndata} is

Π(y |x) =

Ndata
∏

d=1

f(yd |x).

• the prior on the parameters is: µi ∼ N (M,R2/4),
vi ∼ Gamma(a, β) with β ∼ Gamma(g, h) and
(q1, . . . , qN ) ∼ DirichletN (1, . . . , 1) for fixed values
(M,R, a, g, h) (random beta model).

So actually x = (q1, . . . , qN−1, µ1, . . . , µN , v1, . . . , vN , β).

Objective: sample the posterior distribution
(distribution of the parameters given the observations):

Π(x|y) =
Π(y|x) Prior(x)

∫

Π(y|x) Prior(x) dx
.
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3.4 Application to Bayesian statistics

The potential associated with the posterior (posterior
is proportional to exp(−V )) is

V = Vprior + Vlikelihood

with Vprior = 2
R2

∑N
i=1(µi −M)2 −Nα ln β + β

∑N
i=1 vi −

(a− 1)
∑N

i=1 ln vi + hβ − (g − 1) ln β and

Vlikelihood =
∑Ndata

d=1 ln
[

∑N
i=1 qi

√
vi exp

(

−vi
2 (yd − µi)

2
)

]

.

The posterior distribution is a metastable (multimodal)
measure. In particular, the invariance by permutation of the Gaussians leads to a

metastability.

Idea: use ABF within a MCMC Metropolis Hastings
algorithm. The biasing potential modifies the target
probability measure in the acception-rejection step.
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3.4 Application to Bayesian statistics

Algorithm: Metropolis Hastings-ABF.
Iterate on n ≥ 0

1. Update the biasing potential by computing and then integrating
(An+1)′ (the conditional expectation of f at a fixed value of ξ).

2. Propose a move from xn to x̄n+1 according to T (xn, x̄n+1).

3. Acceptance ratio

rn = min

(

πAn+1(x̄n+1) T (x̄n+1, xn)

πAn+1(xn) T (xn, x̄n+1)
, 1

)

,

where the biased probability is πAn+1(x) ∝ π(x) exp(An+1(ξ(x))).

4. Draw a random variable Un uniformly distributed in [0, 1]

(Un ∼ U [0, 1]).

(a) if Un ≤ rn, accept the move and set xn+1 = x̄n+1;

(b) if Un > rn, reject the move and set xn+1 = xn.
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3.4 Application to Bayesian statistics

More precisely, the results below have been obtained
with the following ingredients:

• The proposal density kernel T (x, x′) is a fixed
Gaussian centered on x.

• Binning procedure and trajectorial average: mean
force and bias in bin (zi, zi+1)

Γ∆z
n (z) =

n
∑

j=0

f(xj)1zi≤ξ(xj)≤zi+1

n
∑

j=0

1zi≤ξ(xj)≤zi+1

, A∆z
n (z) =

i−1
∑

k=0

∆z Γ∆z
n

(

k +
1

2
∆z

)

• M is the mean of the data, R is the range of the
data, α = 2, g = 0.2 and h = 100g/(αR2).

The question is now: Is there a good “reaction
coordinate” ξ(x)? T. Lelièvre, Cornell University, February 2010 – p. 101



3.4 Application to Bayesian statistics

Methodology: (i) choose a reaction coordinate, (ii)
compute the associated free energy, (iii) use the free
energy to bias the MCMC sampler.

Measures of the efficiency of the whole procedure:
• Sampling efficiency: observation of mode

switchings;
• Relevance of the samples generated by the biased

dynamics: efficiency factor EF . The effective
sample size is EF N .
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3.4 Application to Bayesian statistics

For w(x) = exp(−A(ξ(x))), the efficiency factor is

EF =

(

∑N
n=1w(xn)

)2

N
∑N

n=1w
2(xn)

.

Using the fact that ξ(xn) are approximately uniformly
distributed over (zmin, zmax), one obtains:

EF ≃

(

∫ zmax

zmin
exp(−A(z)) dz

)2

(zmax − zmin)
∫ zmax

zmin
exp(−2A(z)) dz

.

Thus, EF is close to one ⇐⇒ maxA− minA is small.
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3.4 Application to Bayesian statistics

Some results for N = 3.
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Left: evolution of the averages µi without bias.
Right: evolution of the averages µi with ξ = q1.
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3.4 Application to Bayesian statistics

0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
2

5

8

11

141414

Iterations

M
u

0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
2

5

8

11

141414

Iterations

M
u

Left: evolution of the averages µi with ξ = β.
Right: evolution of the averages µi with ξ = µ1.

A good reaction coordinate seems to be ξ = β.
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3.4 Application to Bayesian statistics
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Converged bias.

The efficiency factor for ξ = β is approximately 0.18.
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3.4 Application to Bayesian statistics

Comparison of the mixture with the datas.

3.0 6.0 9.0 12.0
0.0

0.2

0.4

0.6

Data value

P
ro

ba
bi

lit
y

q1 = 0.42227 q2 = 0.118506
µ1 = 5.1818 µ2 = 3.29704 µ3 = 7.79154
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3.4 Application to Bayesian statistics

Why does it work with ξ = β ? The bias is relatively
small; forcing large values of β is forcing large values
of the variances, which allows for a mixing of the
components.

Samples of (µ1, λ1) conditional on (from left to right)
β ∈ [0, 0.5], β ∈ [1.5, 2] and β ∈ [3.5, 4].
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3.4 Application to Bayesian statistics

Extension: Bayesian model choice. Look for the best
number of components. It seems that the bias (for
ξ = β) for K = 3 is also a good bias for K = 4 and
K = 5.
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3.4 Application to Bayesian statistics

Same computations for another set of data: the
Hidalgo stamp problem.
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Left: evolution of the averages µi without bias.
Right: evolution of the averages µi with ξ = q1.
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3.4 Application to Bayesian statistics
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Left: evolution of the averages µi with ξ = β.
Right: evolution of the averages µi with ξ = µ1.

Again, ξ = β seems to be a good reaction coordinate.
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3.4 Application to Bayesian statistics

Bias for ξ = q1, ξ = β, ξ = µ.
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3.4 Application to Bayesian statistics

Comparison of the mixture with the datas.
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Conclusion

SDEs with constraints:
• The discretization of the projected dynamics may

be different from the projection of the discretized
dynamics,

• Constraining the dynamics with “rigid bonds” is
different from constraining the dynamics with “very
stiff springs”,

• The mean force can be computed by averaging the
Lagrange multipliers associated with the
constraints,

• Going to phase space enables
Metropolis-Hastings algorithms,

• The free energy differences can be obtained by
non-equilibrium stochastic dynamics.
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Conclusion

Adaptive algorithms:
We proposed a unified formulation of adaptive
methods using conditional distributions.

Theoretically, this allows a proof of convergence in the
longtime limit for a certain class of algorithm (ABF-like
algorithms). The rate of convergence is related to the
logarithmic Sobolev inequality constant of the
conditioned Boltzmann-Gibbs probability measures at
fixed values of the reaction coordinate.

Numerically, the conditional distributions are naturally
approximated by empirical means on many replicas.
We have shown how a selection mechanism on the
replicas can speed up the computation.
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Conclusion

These techniques can be seen as adaptive
importance sampling methods. They may be applied
more generally to the sampling of metastable
potentials, as soon as some knowledge of the
directions of metastability is assumed.
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