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1 Free energy and metastability

e aim of molecular dynamics computations is to
valuate numerically macroscopic quantities from
odels at the microscopic scale.

ome examples of macroscopic quantities:

* thermodynamics quantities: stress, heat capacity,
free energy;

* dynamical quantities: diffusion coefficients,
viscosity, transition rates.

Many applications in various fields: biology, physics,
chemistry, materials science. Molecular dynamics
computations consume today a lot of CPU time.
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molecular dynamics model amounts essentially in
hoosing a potential V" which associates to a

onfiguration (z1, ..., zx) = = € R*V an energy

(wl, cees CBN).

n the NVT ensemble, configurations are distributed
according to the Boltzmann-Gibbs probability
measure:

du(x) = Z~ exp(—fV (z)) de

where Z = [ exp(—5V (x)) dx is the partition function

and 3 = (kgT)~! is proportional to the inverse of the
temperature.

Aim: compute averages with respect to .
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amples of quantities of interest:

 specific heat

C o <V2>u — <V>Z
° pressure

Po—(q-VVI(q))
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1 Free energy and metastability

pically, V' is a sum of potentials modelling interaction
etween two particles, three particles and four
articles:

— ZV1(£Ui,£IJj) + Z Vz(wi,mj,mk) -+ Z ‘/é(x%wjaxk;wl)-
1<J 1<g<k 1<g<k<l
For example, Vl(wi, Jlj) = VLJ(|$Z' — $J|) where
Vig(r) = 4e ((%)12 — (%)6) is the Lennard-Jones
potential.

Difficulties: (i) high-dimensional problem (N > 1) ;
(1) 1S a multimodal measure.
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1 Free energy and metastability

sample ;, Markov Chain Monte Carlo methods are
ed.

typical example is the over-damped Langevin (or
radient) dynamics:

dX; = —VV(Xt) dt + / 26—1th.

Under suitable assumption, we have the ergodic
property: for u-a.e. Xy,

i 1 [ ok = [ o@inta)

T—oo I

. T Lelievre. Cornell Universitv. Februarv 2010 = p. 7



1 Free energy and metastability

Probabilistic insert (1): discretization of SDESs.
The discretization of (GD) by the Euler scheme is (for
fixed timestep At):

Xor1 =X, — VV(X,) At + /26 1AtG,,

where (G%)1<i<3n.n>0 @re i.i.d. random variables with
law N(0,1). Indeed,

L
(W(n+1)At - WnAt)nZO — At(Gn)nZO-

In practice, a sequence of 1.1.d. random variables with
law N (0, 1) may be obtained from a sequence of I.1.d.
random variables with law ¢/((0, 1)).
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1 Free energy and metastability

oof (Invariant measure). One needs to show that if
e law of X Is u, then the law of X, Is also ... Let us
enote X7 the solution to (GD) such that Xy = x. Let
s consider the function u(¢, ) solution to:

{ ou(t,x) = —VV(x) - Vu(t,z) + 7 Au(t, x),

u(O, CIZ) = qb(m) (+ assumptions on decay at infinity),

then, u(t,z) = E(¢(X7Y)). Thus, the measure p IS
Invariant:

% E(¢(X¥))du(z) / Oru(t, ) exp(—LV (x))dx

_ 7! / (~VV - Vu+ 57 Au) exp(—FV)=

Therefore, /E(gb (X?))du(x /qb d/i



1 Free energy and metastability

Probabilistic insert (2): Feynman-Kac formula.
u(t,x) = E(p(XT)) ? For 0 < s < t, we have
racteristic method):

— 5, X3)=—0w(t —s, X35)ds+ Vu(t — s, X3) - dX5
+587 AUt — s, X*) ds,

= ( — Owu(t — 5, X5 ) — VV(XYS) - Vu(t — s, X3)

+ 8 Au(t — s, Xf;)) ds + /28 Vu(t — s, XT) - dW ;.

Thus, integrating over s € (0,¢) and taking the
expectation:

E(u(0, X?)) — E(u(t, XT)) = /26~ E(/ Vu(t — s, X% - dW)
m = 0. -



1 Free energy and metastability

babilistic insert (3): It0’s calculus. (in 1d.)
here does the term Au come from ? Starting from
he discretization:

X1 = Xn — V(X)) At + /287 TALG,,

e have (for a time-independent function w):
w(Xpi1) = u (Xn ~ V(X)) At + \/26—1Ath) |

= uw(X,) — (X)) V' (X,) At + /2871 Atd (X,) G,

+67 G2 (X ) At 4 o(At).
Thus, summing over n € [0 t/At] and taking the limit At — 0,

(X)) = u(Xo) — / V(X (Xa) ds + /25 /
. —I_/B / T Lelievre. Cornell Universitv. Februarv 2010 = p. 11



n practice, (GD) Is discretized in time, and Cesaro
eans are computed: limy, oo 5= Sy #(Xn).

emark: Practitioners do not use over-damped
Langevin dynamics but rather Langevin dynamics:

dX; = M~'P;dt,
dP; = —VV (X)) dt — yM 1Py dt + /2y~ 1dW7,

where M Is the mass tensor and ~ Is the friction
coefficient. In the following, we mainly consider
over-damped Langevin dynamics.
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1 Free energy and metastability

oblem: In practice, X, Is a metastable process, so
at the convergence of the ergodic limit is very slow.

bi-dimensional example: X} is a slow variable of the
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more realistic example (Dellago, Geissler): Influence of
e solvation on a dimer conformation.

Left: compact state (¢ = q).

- -
= S s
= =
- e =
= - S

Right: stretched state ¢ = a)).

A slow variable Is £(X;) where £(x) = |x1 — xo| IS @

so-called reaction coordinate.
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1 Free energy and metastability

“real” example: ions canal in a cell membrane.
. Chipot).
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etastability: How to quantify this bad behaviour ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. “Decorrelation time”.

4. Rate of convergence of the law of X to ..

In the following we use the fourth criterium.
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1 Free energy and metastability

e PDE point of view: convergence of the pdf ¢ (¢, )
X, 10 Yoo (x) = Z71e BV (®) ¢ satisfies the
okker-Planck equation

O = div (VV + 71V,

which can be rewritten as o, = 5~ 1div (zpoov (w%))
Let us introduce the entropy

B() = HO( o) = [ (w%) .

We have (Csiszar-Kullback inequality):

19(t, ) = Yoollr < V2E(R).



[
~ ot

- = flom ()

If V' Is such that the following

1 Free energy and metastability

() (=9 (52)

2

Y= =B (P ) [ihso).

_ogarithmic Sobolev

iInequality (LSI(R)) holds: Vi pdf,

1
H(|hso) < ﬁl(wwm)

then E(t) < Cexp(—23~!'Rt) and thus v converges to
Vs €Xponentially fast with rate 371 R.

Metastability «<— small R
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1 Free energy and metastability

etastability: How to attack this problem ?

We suppose in the following that the slow variable is of
Imension 1 and known: &£(X), where £ : R — T.

unctionals to be averaged are typically functions of
his slow variable.

Let us introduce the free energy A which is such that
the image of the measure 1 by ¢ is Z7 exp(—BA(2)) dz.
From the co-area formula, one gets:

A(z) = ="' In </2( >€ﬁV|V§1d02(z)>,

where ¥(z) = {«x, £(x) = z} IS a (Smooth) submanifold
of R", and oy, Is the Lebesgue measure on X(z).
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1 Free energy and metastability

formula: Let X be a random variable with law
nR"™. Then {(X) has law [5; )¢ [VE[™ doyy) dz,

e law of X conditioned to a fixed value z of £(X)

_ ¥ Ve dos )
sy ¥ IVEIT doss

, for any bounded functions f and g,

FE(X))g(X)) = - f&(x))g(x)p(x) de,

:/R/ fo &g |VeE| Ldos, d

fz 9¢|V§‘ 1d02
Js) ¥ IVE[ oy

_ 10.
- [ 1 / ¥ V€| Loy

. T Lelievre. Cornell Universitv. Februarv 2010 = p. 20



1 Free energy and metastability

emarks:

The measure |V¢|~ldoy,,) is sometimes denoted
¢(x)—» 1N the literature.

A Is the free energy associated with the reaction
coordinate or collective variable ¢ (angle, length, ...).
A I1s defined up to an additive constant, so that it Is
enough to compute free energy differences, or the
derivative of A (the mean force).

- A(z) = =3~ ' In Zy,,) and Zy,) is the partition function
associated with the conditioned probability measures:

Ky (z) = Z§<1z)€_5v|vf\_1d02(z)-
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1 Free energy and metastability

ample of a free energy profile (solvation of a dimer)

ofiles computed using TI)
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The density of the solvent molecules is lower on the left than on the right. At high (resp.
low) density, the compact state is more (resp. less) likely. The “free energy barrier” is
higher at high density than at low density. Related question: interpretation of the free

energy barrier in terms of dynamics ?
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1 Free energy and metastability

me direct numerical simulations...
emark: Free energy is not energy !

15 w

[EnY
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y coordinate
=
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Free energy
|
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X coordinate X coordinate

Left: The potential is O in the region enclosed by the
curve, and +oo outside.

Right: Associated free energy profile when the »
coordinate is the reaction coordinate (6 = 1).
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~ree energy and metastability

Examples of methods to compute free energy
differences A(zy) — A(z1):

* Thermodynamic integration (Kirkwood) (homogeneous

Markov process),

* Perturbation methods (zwanzig) and histogram
methods,

* QOut of equilibrium dynamics (Jarzynski) (non-homogeneous

Markov process),

* Adaptive methods (ABF, metadynamics) (non-homogeneous

and non-linear Markov process).

Numerically, this amounts to: (1) sampling efficiently a
multi-modal measure in high dimension, (ii) computing
the marginal law of such a measure along a given

= low-dimensional function.
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1 Free energy and metastability

2

(a) Thermodynamic integration. (b) Histogram method.

(C) Out of equilibrium dynamics. (d) Adaptive dynamics.
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2 Constrained dynamics

Thermodynamic integration (Kirkwood)

* Perturbation methods (zwanzig) and histogram
methods,

* Out of equilibrium dynamics (Jarzynski),
* Adaptive methods (ABF, metadynamics).
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2.1 Thermodynamic integration

Thermodynamic integration

>> (<
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2.1 Thermodynamic integration

dynamic integration is based on two remarks:

|

e derivative A'(z) can be obtained by sampling
nditioned probability measure py,, (Sprik, Ciccotti,
Vanden-Eijnden, E, den Otter, ...)

, _ VV .V 1. V _
(2)2223@/ (Mrver 7 (fogp) ) oot-svIverans

L /3
Ve

/fduz

where V =V + 37 1In|V¢|, f = V&Eg — B div (Ivvsglz)

(V‘? + ﬁ_lI‘I) exp(—ﬁ\N/)daz(z),

- and H = -V - (éé) |§§| IS the mean curvature vector



2.1 Thermodynamic integration

oof: (based on the co-area formula)

( / exp(—B7)dos, ) / / exp(— 07 )do 8 d
— [ [ exp(-p7)6f o oy

— [ exp(-pV)6 o €[ Velda,

i v
= — [ew(-07)V(908) |v§2|vadw,

_ V¢
- [ (oo

vV . Ve » ( Ve ) :
= — + |V V- exp(—BV )doy\¢(2) dz




2.1 Thermodynamic integration

) It Is possible to sample the conditioned probability
easure yuy,) = Zg(lz) exp(—BV)dos,) by considering
he following constrained dynamics:

dX; = —VV (X)) dt + /2871 dW; + VE(X ) dA,,

(RCD) { d\; such that f(Xt) = Z.

Thus, A'(z2) = limp o & [ f(X4) dt.

The free energy profile is then obtained by
thermodynamic integration:

Z K
A(z) — A(0) = / A2y dz = S wid ().
1=0

0
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2.1 Thermodynamic integration

otice that there is actually no need to compute f in
actice since the mean force may be obtained by
veraging the Lagrange multipliers.

ndeed we have dAt dAm + dAL, with
/9 Véf
dAf = ks (vv s 1H) (X;)dt = f(X;)dt SO that

T T
A'(z) = lim L aa = im = [ aal
B T /), U T/,

T—o00 T—o00

Of course, this comes at a price: essentially, we are using the fact that

i tim LS [e (g4 VATGT) - 26(a) + € (4 - VETG™)] = Aco)

. and this estimator has a non zero variance.
T Lelievre. Cornell Universitv. Februarv 2010 = pn. 31



Thermodynamic integration

ore explicitly, the rigidly constrained dynamics writes:

iX, = P(X;) (—VV(Xt) dt + \/25—1th) +BYH(X) dt,

here P(x) Is the orthogonal projection operator:
P(x)=1d — n(x) ® n(x),

_VE

= ve

(RCD) can also be written using the Stratonovitch
product: dX; = —P(X;)VV(X;)dt++/28"1P(X;) o dWy.

It IS easy to check that {(X;) = {(X ) = = for X
solution to (RCD).

with n the unit normal vector: n(x)
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2.1 Thermodynamic integration

Ciccotti, TL, E. Vanden-Einjden, 2008] ASSUMeE ng that = = 0. The
robability 15,y Is the unique invariant measure with

upport in 3(0) for (RCD).

roposition: Let X; be the solution to (RCD) such that
he law of X IS 15y Then, for all smooth function ¢

and for all time ¢ > 0,

E($(X 1)) — / o) dpzo) ().

Proof: Introduce the infinitesimal generator and apply the divergence
theorem on submanifolds : V¢ € C1(R3V, R3Y),

/diV 2(0)(¢) dos0) = —/H - @ dos (o),

m where div 5) (@) = tr(PV o).
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2.1 Thermodynamic integration

Iscretization: These two schemes are consistent with
CD):

Xpi1 =X, — VV(X )AL+ /28 1AW, + A\ VE(X 41),
with \,, € R such that £(X,, 1) =0,

32) Xn+1 =Xy, — VV(XH)At T v Qﬁ_lAWn T Anv£(Xn)a
with \,, € R such that £(X,,1) =0,

where AW,, = W,11)ar — Whae. The constraint is
exactly satisfied (important for longtime computations).

The discretization of A’(0) = limy o & [; dA; is:

| T/

I§ I§ — A\ —A’
Jim lim o Z "
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2.1 Thermodynamic integration

practice, the following variance reduction scheme
ay be used:

ntl = Xn — VV (X)) At+/28" 1AW, + \VE(X p11),
Ith A € R such that £(X,,.1) =0,

X, =X, - VV(X,)At—/26-1AW, + \.VE(X ),
with A\, € R such that {(X,) =0,

|

and A\, = (A + \.)/2.

The martingale part dA}" (i.e. the most fluctuating part)
of the Lagrange multiplier is removed.
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2.1 Thermodynamic integration

over-simplified illustration: in dimension 2,

—1 2 2
B 2 T L2
() = 5-]x|” and &(x) = 23 + 22 — 1.
2 a b
0.35 T T :
mes_int
mes_non_int ——-----
dyn_int_proj 1+
dyn_int_proj 2 X
03 | dyn_non_int_proj_ 1  x
;2@%% dyn_non_int_proj 2 O
0.25 - 4 - f %
:
0.2
0.15
0.1 |
0.05
0 1

Measures samples theoretically and numerically @sa
function of the angle 0), with 3 =1,a = 2, b =1, At = 0.01, and 50 000 000 timesteps.
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2.1 Thermodynamic integration

omputation of the mean force: 3 =1,a=2,b=1. The
xact value 1s: 0.9868348150. The numerical result
with At = 0.001, M = 50000) is: [0.940613 ; 1.03204].

he variance reduction method reduces the variance
by a factor 100. The result (with A¢ = 0.001, M = 50000)
IS: [0.984019; 0.993421].
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2.1 Thermodynamic integration

p. mean force as a function of At and M = T/ At:

0.98
0.96
094
092

09
0.88 -
0.86 -

+07
le-

A balance needs to be find between the discretization
error (At — 0) and the convergence in the ergodic limit
(T — 00).
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2.1 Thermodynamic integration

'ror analysis [Faou,TL, Mathematics of Computation, 2010]. USing
lassical technics (Talay-Tubaro like proof), one can

heck that the ergodic measure N%) sampled by the

arkov chain (X,,) Is an approximation of order one of
15 0)- for all smooth functions g : ¥(0) — R,

/E 0 gdu%) - /2 0 gdps )| < CAL.
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2.1 Thermodynamic integration

etastability issue: Using TI, we have to sample the
onditional measures py,, rather than the original

Ibbs measure ;. The long-time behaviour of the
onstrained dynamics (RCD) will be essentially limited
by the LSI contant p(z) of the conditional measures
i) (to be compared with the LS| constant R of the

original measure ). For well-chosen &, p(z) > R,
which explains the efficiency of the whole procedure.

. T Lelievre. Cornell Universitv. Februarv 2010 — p. 40



2.1 Thermodynamic integration

emarks:

There are many ways to constrain the dynamics
GD). We chose one which is simple to discretize. We
ay also have used, for example (for z = 0)

1
dX] = -VV(X])dt — %V(?)(X?) dt + /26~ 1dWy,
where the constraint is penalized. One can show that
limn_>() X? = X (inL>=, . (L2)-norm) where X, satisfies

te[0,T]

(RCD). Notice that we used V and not V' in the
penalized dynamics.
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e statistics associated with the ©
onstraints are rigidly imposed anc

2.1 Thermodynamic integration

ynamics where the
the dynamics

here the constraints are softly im

(van Kampen, Hinch,...).

posed through

enalization are different: “a stiff spring # a rigid rod”
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2.1 Thermodynamic integration
| yields a way to compute [ ¢(x)du(x):

o(@)dyu(x) = 7! / o(@)e V@) de,

— 71 ¢€—ﬂV V¢E _1d02 ) dz, (co-area formula)

BV |1
oz 9™ IVE[dose [ Vel o
. fz( 6—ﬁV|v£|—1dUZ ) s Y (z) %=y

([ o) /(/ . ) )i

with ¥(z2) = {x, {(x) = 2},
A(z) = —p"'1In (fz z53_5V|V£|_1d02 )) and
L s = e VIV os ) [PV IVE T oy,
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2.1 Thermodynamic integration

C. Le Bris, TL, E. Vanden-Einjden, CRAS 2008] FOr a general SDE
with a non isotropic diffusion), the following diagram
0oes not commute:

At
F%;o/t{ Projected continuous process }

{Discreti zed projected continuous proceﬁs}

[ Continuous process } ?
m Discretized | [ pro iscreti
iscretized process J L Projected discretized process
Risc
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2.1 Thermodynamic integration

eneralization to Langevin dynamics. Interests:
Newton’s equations of motion are more “natural’;
Il) leads to numerical schemes which sample the
onstrained measure without time discretization error.

[ dgy = M~ py dt,

dps = —VV (q) dt — yM'pydt + /2y871dW; + VE(qr) de,
E(qr) =

\

The probability measure sampled by this dynamics is
pr-s () (dgdp) = Z~" exp(—BH (g, p))or-s(») (dgdp),

where H(q,p) = V(q) 4+ 5p" M~ 'p.
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2.1 Thermodynamic integration
e marginal of ji7.s,)(dgdp) In g writes:

1 1

= — exp(=0V (q))o5.)(dg) # — exp(—pV (9))d¢(q)—-(da).

&
|

hus, the “free energy” which is naturally computed by
this dynamics Is

AM(z) =37 In ( /E . exp(—ﬁV(Q))Oé‘;f(z)(dqo -

The original free energy may be recovered from the
relation: for Gy, = VeI M—1VE,

A(z) — AM(z) = ="' In ( /Z ( )det(GM)Wdyg{Z)) |
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nermodynamic integration

oreover, one can check that:

1111 — — 2.
T—oo 1’ 0 t

Iscretization: A natural numerical scheme Is to use a
splitting:

* 1/2 midpoint Euler on the fluctuation-dissipation
part,

* 1 Verlet step on the Hamiltonian part (RATTLE
scheme) and

* 1/2 midpoint Euler on the fluctuation-dissipation
part.
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N\

N\

.

qn+1 — qn + AtM_lpn+1/2,

E(g"th) =z,

2.1 Thermodynamic integration

| At
+pn+1/4)+ 7O_Gn+v£(qn)>\n—|—1/47

— VV(g") + V(") A2,

pn—|—3/4 — pn—|—1/2 o gvv(qn—l—l) 4+ vf(qn—l—l) )\n—i—3/47

2

| VE(q"TH)T M~ 1pt3/t =0,

At At
pn—}-l :pn—|—3/4 ; ,_YM 1(pn—}—3/4 +pn+1) + 7 O_Gn—|—1/2
+VE(Q T AT

\vg(qn—l—l)TM—lpn—i—l = 0.

and limy_, oo limay—0 ZT/At (APFL/2 4 \nt3/4) = (AM)/(2).
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sing the symmetry of th
Metropolization step to

T/A
| A

At—0T—oo0 1’
n=1

Notice that it is not clear
Metropolization step for t
(RCD) since the proposa
has not simple analytical

2.1 Thermodynamic integration

e Verlet step, It Is easy to add
the previous numerical

cheme, thus removing the time discretization error.
or this modified scheme, it is easy to prove that

lim lim S (A2 A = (M) (),

Now to use such a
ne constrained dynamics

kernel is not symmetric, and
expression.
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2.1 Thermodynamic integration

oreover, by choosing M = At~/4 = 1d, this leads to
n original sampling scheme in the configuration
pace (generalized Hybrid Monte Carlo scheme).

Algorithm: Let us introduce Ra; which is such that, if
(¢",p") € T*X(2), and |p"|? < Ra¢, One step of the
RATTLE scheme is well defined (i.e. there exists a unique solution

to the constrained problem).

Then the scheme writes:
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N\

2.1 Thermodynamic integration

nsider an initial configuration ¢° € 3(z). Iterate on n > 0,

. Sample a random vector in the tangent space Ty» 3 (2) (V&(g™)T p™ = 0):

pn _ ,8_1/2 P(qn)Gn7

where (G™),,>0 are i.i.d. standard random Gaussian variables, and compute the

1 . .
energy E" = [p" % + V(¢™) of the configuration (¢", p");

If |p™|? > Ra¢, Set E™T1 = 400 and go to (3); otherwise perform one integration
step of the RATTLE scheme:

At
(2 = pt = TR VV(g") + VE(H) AT,
a—n—}-l — qn —|—Atpn+1/2,
(@) ==,

At
prt =pt R = V(@) + V@@ AT

\Vﬁ(ﬁn“)Tﬁ”H = 0;
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2.1 Thermodynamic integration

. Nf P2 > Ray, set EnTL = +00; otherwise compute the energy

1 . :
Entl = 5 " T2 + V(g™™!) of the new phase-space configuration. Accept the

proposal and set g1 = gt with probability
min ((exp(—B(E"*! — E™)),1);

otherwise, reject and set ¢" 11! = ¢".
Proposition: The probability measure

1
Uiy = 7 exp(=BV ()05 (dg)

IS Invariant for the Markov Chain (¢");,>1.
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2.2 Non-equilibrium dynamics

Non-equilibrium dynamics
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2.2 Non-equilibrium dynamics

t us consider a stochastic process such that
0~ K5, and

dX;= —P(X)VV(Xy)dt++/2671P(X;) o dW,
_|_v€( ) Aext
ext __ ()
AT = e At

where z : [0,T] — [0, 1] is a fixed deterministic evolution
of the reaction coordinate ¢, such that z(0) = 0 and
2(T) = 1.
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2.2 Non-equilibrium dynamics

e dynamics can also be written using a Lagrange
ultiplier:

dX; = —VV (X)) dt + /2871 dW; + VE(X ) dAy,
§(X¢) = =2(1).

And we have

dA; = dA™ 4+ dAL+dAS

where dAI" = —/23~! |vs|2 ) - dW , dAL = f(Xy) dt
ext __ < ( )
and dASXt = e dt.
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2.2 Non-equilibrium dynamics

ow to get equilibrium quantities (like the free energy)
rough non-equilibrium simulations ?

he idea Is to associate to each trajectory X; a weight

/f ds_/otz’(s)dAg.

and to compute free energy differences by a
Feynman-Kac formula (Jarzynski identity):

A(2(1)) = A(2(0)) = =47 In (E (exp(=6W(1)))).
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2.2 Non-equilibrium dynamics

, M. Rousset, G. Stoltz, 2007] The proof consists in introducing the semi-group
ssociated with the dynamics

uts.2) =& (wxiyesp (< [ ) mar)

and to show that d% [ u(s,.) exp(—ﬁf/)dagz(s) = 0 using the divergence theorem on
submanifolds. Then

[ utt, yexp(~67)dos, , = [ u(0,)exp(~pV)dos,

IS equivalent to

[ esn-o0ydos, ) = exp(-saGONE ([ exen (-5 [ 1) war)).
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2.2 Non-equilibrium dynamics

more general relation is the so-called Crooks
entity which is a more general formula relating the
ree energy to the work of forward and backward

witched processes. Let q{ and ¢/ satisfy: q{; ~ U5(2(0))

0~ WS (:(T)):

.

dgf = =V (q])dt + /2871w + Ve(q) )],
£(gl) = 2(b),

\

{ dgl = =VV (X)) dt’ + /26 1dW) + VE(¢S)dAL,
E(gp) = 2(T =),

. T Lelievre. Cornell Universitv. Februarv 2010 = p.



2.2 Non-equilibrium dynamics

en, for any ¢ € [0, 1], for any path functional ¢,

~ BA((T)) = A(2(0))) E(6({ah_ Josssr) exp(~BOWH(T)))
— E(0({g] Yozszr) exp(=5(1 - )W/ (1)),

where Wf fo s)ds and
= — f() ) — 3) ds.

This identity can be used to combine forward and
backward processes to get better estimates of the free
energy difference, see for example bridge sampling
methods [Bennett, Meng and Wong, Shirts].



2.2 Non-equilibrium dynamics

e discretization of the constrained process is (as
fore):

Xpi1 =X, — VV(X )AL+ /20 1AW, + N\, VE(X 1),
with A, such that (X, 1) = z(tp11),

SQ) Xn+1 — Xn — VV(XH)At T V Qﬁ_lAWn -+ Anv€(Xn)a
with \,, such that (X, 1) = z(tpe1).

To extract Al from ), one can e.g. compute:

n o n V
) S .
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2.2 Non-equilibrium dynamics

other method to compute ! consists in:

N =X, - VV(X,)At — /287 1AW, + \Eve(X T ),
ith A% such that 1 (g(Xﬁ,?H) + §(Xn+1)) — £(X,).

We then have M, = 3 (), + \E).
The weight Is then approximated by

Wo = 0,
Wn—l—l — Wn + 2tntr) =2 (i) )‘fw

tn—l—l_tn

and a (biased) estimator of the free energy difference
AGAT)) = A((0)) is =67 In (7 S0 exo (=0, ) )
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2.2 Non-equilibrium dynamics

practice, the efficiency of this numerical method is
not clearly demonstrated. If the transition Is too fast,
he variance of the estimator is very large. If the
ransition is slow, we are back to thermodynamic
ntegration...

Ideas: (i) combine forward and backward trajectories,
(i) add selection mechanisms [m. Rousset, G. Stoltz, 2006] OF
(111) use iImportance sampling to help the transition
(escorting) [Vaikuntanathan, Jarzynski, 2008].

All this can be generalized to Langevin (phase-space)
dynamics, with the additional difficulty that generalized
free energies for constraints on both positions and
momenta are obtained.
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Thermodynamic integration (Kirkwood)

Perturbation methods (zwanzig) and histogram
methods,

Out of equilibrium dynamics (Jarzynski),
Adaptive methods (ABF, metadynamics).
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3 Adaptive methods

Adaptive methods
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3.1 Adaptive methods: algorithms

Ihe bottom line of adaptive methods is the following:
for “good” ¢ the potential vV — A o £ is less metastable
han V. But A is unknown !

rinciple: use a time dependent potential of the form
Vix) = V(z) — A(§(x))

where A; Is an approximation at time ¢ of A, given the

configurations visited so far.

Hopes:

* build a dynamics which goes quickly to equilibrium,

* compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Henin, Chipot, Laio, Parrinello,
. Wang, Landau,...
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3.1 Adaptive methods: algorithms

w to update A; ? Two methods depending on
ther A, (Adaptive Biasing Force) or A; (Adaptive
lasing Potential) is approximated.

or the Adaptive Biasing Force method, the idea is to
se the formula

VV . V¢& 1. \Y4S _ _
) ( veg 7 (\VﬁP))e Ve do
A(z) =

/€5V|Vf|ld02(z)

/fduz: — B, (f(X)|E(X) = 2).

The mean force A’(z) Is the mean of f with respect to
ps(s) = Ziye PV IVE T oy,
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3.1 Adaptive methods: algorithms

portant remark: whatever A,, the mean force
soclated with the Gibbs distribution

Y o exp(—Vy)(x) de = exp(—F8(V — Ay o &))(x) dx
s the original mean force A’:
/f¢eq|V§\1dOz:(z)

= A'(2).
/¢GQ|V€|_1d02(z)

Thus, use as an approximation of A’(z):

Ai(2) = E(f(X)|E(Xe) = 2).



3.1 Adaptive methods: algorithms

typical ABF dynamics is thus:

{ dX; = —V(V — Ay 0 &) (X)) dt + /28" 1dW7,
Aj(z) =E(f(X1)|E(X¢) = 2).

The associated (nonlinear) Fokker-Planck eguation
writes:

[ O =div (V(V — A0 &)+ 71V)
/ 10|V Loy,
/¢|V€|1d02(z)

/"

Ai(2)

)

\

= where (¢, ) de ~ X;.



3.1 Adaptive methods: algorithms

O variants:

* A may be approximated instead of A’, using the
formula

A(Z) = —ﬁ_l In (L( )65V|Vfld02(z)> :

This leads to Adaptive Biasing Potential (ABP)
methods. A typical example is:

( dXt = —V(V — At O f)(Xt) dt + \/ 25_1th,

5’At 1 —1
\ W(Z) = ——(""In (E (0(§(X¢) — Z)))

-

/"




3.1 Adaptive methods: algorithms

* To avoid geometry problem, an extended
configurational space (x, z) € R"*! may be
considered, together with the meta-potential:

VF(@, 2) = Vi) + k(z — &(x))%

Choosing (x, z) — z as a reaction coordinate, the
associated free energy A” is close to A (n the limit

k — oo, up to an additive constant).
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3.1 Adaptive methods: algorithms

. M. Rousset, G. Soltz, J Chem Phys, 2007] Adaptive algorithms
sed in molecular dynamics fall into one of these four
ossible combinations:

Al Ay

vV | ABF Wang-Landau
VE 1l ... metadynamics
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onsistency of the method : the stationary state yields
e mean force. Indeed, If the system reaches a
tationary state

then

VYoo = Z~1 exp(—B(V — A 0§))
and we have:

* for (ABP), 0 = —37! lnfwoo\Vﬂ_ldag(z),

. _ [ Y| VE| T doss
for (ABF), 0 = fwoo|vg|—1daz(;> — Al _(2),

and thUS, INn both CAaSes, (up to an additive constant),

m Ax = A.

T Lelievre. Cornell Universitv. Februarv 2010 —

3.1 Adaptive methods: algorithms

D. 72



t us now study the rate of convergence of the ABF
ethods:

[ Oy = div (V(V — 14,5 0 &)+ BTIVY)
/ ff¢|V€|_ dgE(z)

Al(2) = |

) = TN T dony

/"

Questions: Does A} converge to A’ ? What did we
gain compared to the original gradient dynamics ?
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3.2 Adaptive methods: convergence

fundamental remark. Let us consider the problem in
simple situation: n = 2, the configuration space Is

x R, and &(xz,y) = .

[ Opp =div (VVY + B7IVY) — 0,(AJw),

\ [ 0.V (2, )¢t x,y) dy
\A() f@btxy)dy |

Let (¢, z) = [(t, x,y)dy. Then

O = 80,47 + 0, / 8,V dy — By ALD)

— 5_1395,95@-

The metastability along the reaction coordinate
direction has been eliminated

| |
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3.2 Adaptive methods: convergence

eorem:. Suppose

H1) ergodicity of the microscopic variables: the
onditioned probability measures uy, ) satisty a

ogarithmic Sobolev inequality LSI(p),
(H2) bounded coupling: ||V, f||, . < o,

then
|A; — A'l| 2 < Cexp(—6~" min(p, r)t).

The rate of convergence is limited by:

» the rate r of convergence of ¢ = [¢|V¢| ™ doy,) tO
1+, at the macroscopic level,

* the constant p of LS| at the microscopic level.
— — The real limitation.
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3.2 Adaptive methods: convergence

ain ingredients of the proof in the simple setting
n=20nT xR, with {(z,y) = x).

ngredient 1: ¢(t,z) = [¢(t,z,y) dy satisfies a closed
DE
at@ — ﬁ_lax,xa on T,

and thus, ¢ converges towards ¢, = 1, with
exponential speed C exp(—4n25~1t).

Ingredient 2. Decomposition of entropy: £ = Ey; + Epy,.
“Total entropy = macroscopic entropy + microscopic
entropy.”

Cf. works by F. Otto et al.
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3.2 Adaptive methods: convergence

uilibrium is ¢, = Z texp(—B(V — Ao &)).
The total entropy Is E(t) = H(y(t, .)|¢0),

The macroscopic entropy is Ey(t) = H(W(t, )|tso),
he microscopic entropy Is

En(t) = [ H(601€@) = 2)|un(le(@) = 2)) 3(e) dz

- [ (Sl oo

We already know that £, goes to zero: it remains to
consider E,,.




3.2 Adaptive methods: convergence

Notice that
(0

o = 5 div (zboov (@)) +0,((A" — A)p).

redient 3: We have (algebraic miracle)

i B = O E — O By
2 —_
w v /

()

Using (H1) the conditioned prob. measures ‘”%(”(”’5;) dy

satisfy a logarithmic Sobolev inequality LSI(p), then

_g1 // 0y In (w%) 2¢ < 208 'E,.
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3.2 Adaptive methods: convergence

) also imp
— A'(z)

les a Talagrand inequality (Ingredient 4):

W(t, z,y) B N Voo (2, )
/ava [(t :vy)dydy /&UV( ’y)fwoo(:vjy)dydy

< |02,y V|| Lo / ly — | T o (dy, dy)

< 00y V1 \/ %H (1%%)’ %Zﬁ)

where 7, IS any coupling measure:

/(f(y)+g Nt (dy, dy') = /f(y) vl y))d dy+/g(y’)

wOO (xa y/)

dy .
[ Yoo (z,y) dy Y

This requires (H2) 0, ,V € L*°

| |
. 7
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3.2 Adaptive methods: convergence

. we have
o ln

08 ) b /
In (A, — A" A — A
(woo \// A - ATV woo
< HaxyVHLOO\/;E mC exp(— A5 1t)

_ /2 _
O Em < —2p3 ' Ep + |00y V| 1o ;EmC' exp(—4m257 1),

w

We have proved that

and this yields /E,,(t) < Cexp(—4~'min(p, 472)t).
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These arguments can be generalized to prove the
heorem in the following frameworks:

* £:R"™ — T (with a slight modification of the
dynamics),

* £:R™ — R (with a slight modification of the
dynamics and a constraining potential on &(x)),

o £:R" — T™or ¢ : R* — R™ with a suitable
modification of the dynamics,

o £:R™ = T™or ¢ : R" — R™ with the original ABF
dynamics, If the coupling is small enough.
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3.2 Adaptive methods: convergence

The case ¢ : R™ — R: the convergence result holds for
ollowing adaptive dynamics:

e ==V (V=8 In(IVE| 2= Aro 4110 € ) (X0)|VE| (X o) dt
26-1VE[TH(X ) W,

5 { (T () e )

The blue terms are required to obtain a closed
parabolic PDE on 4 (t,z) =[5, [VE[T'¥(L, )dos.):

Opp = 0,(11" Y + B710,0).
The green term is required for ¢ to converge to a
stationary state.

. T Lelievre. Cornell Universitv. Februarv 2010 — p. 82




3.2 Adaptive methods: convergence

IN summMmary [rL, G. Stoltz, M. Rousset, Nonlinearity 2008] .

* Original gradient dynamics: exp(—3~'Rt) where R
Is the ISL constant for 4 ;

* ABF dynamics: exp(—3~!pt) where p is the ISL
constant for the conditioned probabillity
MEASUIES piy(,)-

If £ iIs well chosen, p > R.
Remarks:

* If there are metastabilities in ysy,,), only “local LSI”
IS needed (work in progress with K. Minoukadeh)

* the ABP case is not understood so far...
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3.2 Adaptive methods: convergence

ther results based on this set of assumptions:

* [1L, 9ra 2008] LS| for the cond. meas. us,)

+ LSI for the marginal 7(dz) = € * u(dz)
+ bdd coupling ([|Vy,) fll~ < o) = LSl for p.

* [F. Legoll, TL, 2009] Effective dynamics for £(X ;). Uniform
control in time:

H(L(E(X0)|L(2)) < C (”VEW I~

0

2
) H(L(X0) ).

1.5

1
0.5
0

05 |
-1
15

-2
. 0 20 40 60 80 100
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3.3 Multiple replicas implementations

Discretization of adaptive methods can be done using
wo (complementary) approaches:

* Use trajectorial averages along a single path:

f() X)—z)ds.

E(f(X)|§(Xt) = 2) =~ f 5a )
0 < S

* Use empirical means over many replicas
(Interacting particle system):

Sy JX )5 (X7 — 2)
E(f(X¢)][§(Xt) = z) =~ |
FXDIEX) = 2) = SN — e X )




3.3 Multiple replicas implementations

nterest of a discretization using an interacting particle
ystem:

* Very efficient parallelization.
» Better sampling of all reactive paths.

* A selection mechanism may be added to duplicate
“Innovative particles” and kill “redundant particles”.

— We propose a selection mechanism which
accelerates the convergence “at the macroscopic
level” (increase r). [TL, G. Stoltz, M. Rousset, J Chem Phys 2007].
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3.3 Multiple replicas implementations

umerical analysis of the particle system . sourdain, TL, R.
ux, M2AN, 2010]

heorem: We suppose that the configuration space Is

4V is smooth, and ¢(x) = «'. We consider the
ollowing particle approximation:

N
N
Zm:l Pe (Xg,n,N o th,m,N)

XinN = <—VV(Xt,n,N) + e1> dt+2dW}

where ¢¢ = o + ¢ 1¢(e~1.). Then we have,
Pt 80 = X W)LV (X )
2%21 ¢ea( - Xﬁ,m,N)

E/OT
()

. —O(a+\/g+ N

— Aj dt

Ly°
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3.3 Multiple replicas implementations

e selection mechanism

n the ABF dynamics, a selection mechanism can
nhance the diffusion at the “macroscopic” level.

[ O =div (V€72 (V(V = Ao Oy + B7IV)) +TW5 0 £,
/ . vv | VS . —1 q- VS —1

1
X </E(z) |V§1¢(t,-)d02(z)> -

Then, we have: 9y = 719, .o+ 4.

N\
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3.3 Multiple replicas implementations

ow to choose W? A typical choice :

e - Caz,iw

O that

at@ — (ﬂ_l ‘|'C) az,z@

The rate of convergence of ¥ to ¥, at the
“macroscopic” level, is thus enhanced.

Numerically, it amounts to associate a weight

wp,N(t) = exp (/Ot W5 (E(Xsn,N)) dS)

to the n-th replica trajectory, and to make weighted
- means to compute A..
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3.3 Multiple replicas implementations

e use an histogram to discretize ¢ and thus

W@(z) N Czb(z + 62) —_2¢(z) + (2 — 02)

()22

. 3c (¢(2—|—52) —I—Qbéz) +(z —02) —@(2)>

(2)02°

Welights of particles in locally under-explored regions
are increased.

An adequate selection process can then be
Implemented, using these weights (like in genetic
algorithm).

This should help to efficiently detect and take
advantage of rare events.
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3.3 Multiple replicas implementations

umerical illustration on the example of the solvation
f a dimer.

e = = s _ =
= = = =
g & = = =
= . © s s =
e © < - = S
Left: compact state Right: stretched state.

Recall the reaction coordinate Is &£(x) = |1 — x3.
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ee energy profile with parallel ABF obtained att =
1, with 2000 replicas.

Mean force

T T T
1.2 1.4 1.6 1.8 2.0 2.2 2.4
Bond length

Red: with selection (¢ = 10); Blue: without selection
- Dashed lines: 95 % confidence interval,

re. Cornell Universitv. Februarv 2010 —
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3.3 Multiple replicas implementations

oportion of replicas which have crossed the free
ergy barrier.

0.5

0.4+

0.3

Escape rate

0.2+

0.1+

00 T | T | T | T
0.0 0.1 0.2 0.3 0.4
Time

Black: without selection: Blue: c=2; Green: ¢=5;
. Red: ¢=10.
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3.4 Application to Bayesian statistics

daptive methods can be seen as adaptive
mportance sampling methods rather than free energy
alculation methods. — compute a bias adaptively,
nd then unbias.

Compare to classical importance sampling methods,
only ¢ is provided and a “good” bias function of ¢ Is
then computed. Only ¢ has to be chosen, and not the
whole importance biasing function.
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3.4 Application to Bayesian statistics

his gives many freedom in the way to use them. For
xample:

* Instead of computing the complicated local mean

force f = %ﬁf 3 div (%), use simpler
VV.-V¢

expressions, like e

* Use ABF for high dimensional reaction coordinates
by postulating a separated representations of the
mean force:

A(Zl, . ,ZN) — Al(zl) -+ A2’3(22, 23) -+ A4(Z4) -+
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3.4 Application to Bayesian statistics

liminary results on the alanine dipeptide: A;(¢) + A2().

w Loo =0 -1% 100 -0 = e 1%

—kT 1ﬁ(P(5(¢.,¢)(Xt)—(¢O,¢O))) Tensor product of the bias

-i
0

Reconstructed PMF Reference PMF
. Work in progress with C. Chipot and J. Hénin.
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3.4 Application to Bayesian statistics

plication to Bayesian statisticS [N. chopin, TL, G. Stoltz]:
mpling of posterior distributions using a MCMC
BF algorithm.

* The fishery problem: the size of Ng4,, = 256 fishes
are measured, and the corresponding histogram Is
approximated by a mixture of N Gaussians:

N
flylz) = qi\/;—;exp (—%(?/_M)Z)a
1

o parameters describing the mixture gy =1- 2" ¢):
(ql,...,qN_l,,ul,...,ILLN,?Jl,...,”UN) =
SN—l X [,umm, ,Uma,x]N X [Umm, —I—OO) C RBN_l, where
SN_lz{(ql ----- qN_l)‘Oqu<1,Z " lai <1
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3.4 Application to Bayesian statistics

* given the parameters, the likelihood of observing
| thedata {y;,1 <i < Ngatat IS

M(y|z) = ][ fvale).

» the prior on the parameters is: pu; ~ N (M, R?/4),
v; ~ Gamma/(a, 3) With § ~ Gamma(g, h) and
(q1,...,qN) ~ Dirichlety (1, ..., 1) for fixed values
(M, R,a,qg,h) (random beta model).

S0 actually Tr = (ql, e s N =1, U1y o s UN, UL, . - ,UN,ﬁ).

Objective: sample the posterior distribution
(distribution of the parameters given the observations):

~ II(y|z) Prior(x)
: [(z|y) = TTi(y[) Prior(x) dz
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3.4 Application to Bayesian statistics

The potential associated with the posterior (posterior
IS proportional to exp(—V)) is

V"= Vorior + Viikelihood

ith Virior = 2 Sy (i — M)? — Naln g+ 330 v —
(a—1)S0  Inv;+h— (g —1)Ing and

Viikelihood = Zéviafa In [ij\il Gi/Vi exp (=5 (ya — Mi)z)} -

The posterior distribution is a metastable (multimodal)
MeaSurle. In particular, the invariance by permutation of the Gaussians leads to a

metastability.

ldea: use ABF within a MCMC Metropolis Hastings
algorithm. The biasing potential modifies the target
probability measure in the acception-rejection step.
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3.4 Application to Bayesian statistics

gorithm: Metropolis Hastings-ABF.

rate onn > 0

. Update the biasing potential by computing and then integrating
(A™T1) (the conditional expectation of f at a fixed value of ¢).

. Propose a move from z™ to z"*! according to T'(z", z""1).
. Acceptance ratio

R 7TAn+1(CI_Zn+1)T(fn—f1,CEn)’ 1),
T an+1(x™) T (x™, zn 1)

where the biased probability is 7 4n+1(2) o< 7(x) exp(A™ T (E(x))).
. Draw a random variable U™ uniformly distributed in |0, 1]
(U™ ~ U[0,1)).

(a) if U™ < r™, accept the move and set z"T! = z"+1;
(b) if U™ > r", reject the move and set 2! = z".
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3.4 Application to Bayesian statistics

ore precisely, the results below have been obtained
ith the following ingredients:

* The proposal density kernel T'(z,2’) Is a fixed
Gaussian centered on z.

* Binning procedure and trajectorial average: mean
force and bias in bin (z;, z;11)

Z F(@5) 1 <(@i)<zign - 1
T2%(z) = I . ART(z) =) AzDy” (k + §Az>
Z 1Z¢§€(9Cj)§27;+1 w=0
j=0

* M Is the mean of the data, R is the range of the
data, a =2, g = 0.2 and h = 100g/(aR?).

The question Is now: Is there a good “reaction
. Coordina‘te” g(ﬂj)? T Lelievre. Cornell Universitv. Februarv 2010 = p. 101



3.4 Application to Bayesian statistics

ethodology: (1) choose a reaction coordinate, (i)
ompute the associated free energy, (iii) use the free
nergy to bias the MCMC sampler.

Measures of the efficiency of the whole procedure:

» Sampling efficiency: observation of mode
switchings;

* Relevance of the samples generated by the biased
dynamics: efficiency factor EF'. The effective
sample size Is EF N.
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3.4 Application to Bayesian statistics

or w(x) = exp(—A(&(x))), the efficiency factor Is

2
N> o w(z™)

Using the fact that £(z™) are approximately uniformly
distributed over (zmin, zmax), ONE obtains:

(2 exp(~A()) dz)

Zmin

EF ~ .
(Zmax — Zmin) f;r:izx eXp(—QA(Z)) dz

Thus, EF Is close to one «<— max A — min A 1S small.

. T Lelievre. Cornell Universitv. Februarv 2010 — p. 103



3.4 Application to Bayesian statistics

me results for N = 3.

14 14

114 114

W | A

A
b il Lol EMY MMIMMIMM\\ UL L IR

T T T T T T T T T T T 1
0 2.5e+08 5.0e+08 7.5e+08 1.0e+09 0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
Iterations Iterations

Left: evolution of the averages u; without bias.
Right: evolution of the averages u; with £ = ¢;.
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3.4 Application to Bayesian statistics

14

11

L

S
= 81

NM il Hl\ i, W‘W, wﬂ. M‘ M ‘MW

O O A :
B0 P o ol T T m} I

0 25 +08 50 +08 75 +08 10 +09 0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
Iterations Iterations

Left: evolution of the averages p; with £ = £.
Right: evolution of the averages p; with £ = p4.

il
m

A good reaction coordinate seems to be ¢ = g.



3.4 Application to Bayesian statistics

-8.0 T T T T T T T -40—F"7 T 77T

ConvergMued bias.

6.0
4.0
2.0

[2]

I

= i

0.0

-2.01

_40 T T T T T T T
0.0 1.0 2.0 3.0 4.0

The efficienBéy factor for ¢ = 3 Is approximately 0.18.
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3.4 Application to Bayesian statistics

omparison of the mixture with the datas.

o
T

Probability
N

O
N

3.0 6.0 9.0
Data value

q1 — 0.42227 qo — 0.118506
(1 =5.1818 9 =3.29704 pg = 7.79154

i

12.0
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3.4 Application to Bayesian statistics

Why does it work with ¢ = 3 ? The bias Is relatively
mall; forcing large values of j3 Is forcing large values

f the variances, which allows for a mixing of the
omponents.

log{A; }

-

|
[ (=] = o Y] =
T T T T T

-2+ 4 =2}

-3 4 6 8 10 12 33

iy

Samples of (11, A1) conditional on (from left to right)
5 €10,0.5], 6 €[1.5,2] and 5 € [3.5,4].
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tension: Bayesian model choice. Look for the best
umber of components. It seems that the bias (for
= () for K = 3 Is also a good bias for K = 4 and

= D.

. i

~

L L |
[o) B O, B S V)
. .

A ARNAN

o0
o
o
ul
=
o
=
(6]
N;
o
N
6]
w
o
wl |
6]
N
o
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3.4 Application to Bayesian statistics

ame computations for another set of data: the
iIdalgo stamp problem.

14 14

M

114 11

j |
L A \IHIIII

WNIW

T T T T T T T T T T T T T T
0 2.5e+08 5.0e+08 7.5e+08 1.0e+09 0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
Iterations Iterations

Left: evolution of the averages u; without bias.
Right: evolution of the averages u; with £ = ¢;.
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3.4 Application to Bayesian statistics

14

11

Mu

i

5 T T T T T T 5 T T T T T T T
6 2.5é+08 5.0e+08 7.5e+08 1.0e+09 0 2.5e+08 5.0e+08 7.5e+08 1.0e+09

Iterations Iterations

Left: evolution of the averages p; with £ = £.
Right: evolution of the averages p; with £ = p4.

Again, ¢ = 3 seems to be a good reaction coordinate.
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3.4 Application to Bayesian statistics

6.0 ‘ 9.0 ‘ 12.0
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3.4 Application to Bayesian statistics

omparison of the mixture with the datas.

0.75

o
T

Probability

0.25- Z B

00 = | : : m
5.0 8.0 11.0 14.0
Value
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Conclusion

Es with constraints:

* The discretization of the projected dynamics may
be different from the projection of the discretized
dynamics,

» Constraining the dynamics with “rigid bonds” is
different from constraining the dynamics with “very
stiff springs”,

* The mean force can be computed by averaging the
Lagrange multipliers associated with the
constraints,

* GGoing to phase space enables
Metropolis-Hastings algorithms,

* The free energy differences can be obtained by
- non-equilibrium stochastic dynamics.
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Conclusion

aptive algorithms:
We proposed a unified formulation of adaptive

ethods using conditional distributions.

heoretically, this allows a proof of convergence in the
ongtime limit for a certain class of algorithm (ABF-like
algorithms). The rate of convergence Is related to the
logarithmic Sobolev inequality constant of the
conditioned Boltzmann-Gibbs probability measures at
fixed values of the reaction coordinate.

Numerically, the conditional distributions are naturally
approximated by empirical means on many replicas.
We have shown how a selection mechanism on the
replicas can speed up the computation.
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Conclusion

ese techniques can be seen as adaptive
mportance sampling methods. They may be applied
ore generally to the sampling of metastable
otentials, as soon as some knowledge of the
directions of metastability is assumed.
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This monograph provides a general introduction [ ]
to advanced computational methods for free
energy calculations, from the systematic and
rigorous point of view of applied mathematics.
Free energy calculations in molecular dynamics
have become an outstanding and increasingly
broad computational field in physics, chemistry
and molecular biology within the past few years,

by making possible the analysis of complex
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molecular systems. This work proposes a new,
general and rigorous presentation, intended both
for practitioners interested in a mathematical
treatment, and for applied mathematicians

interested in molecular dynamics. Lelievre
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