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1 Free energy and metastability

e consider a molecular system with N particles with
osition (z1,...,zy) = = € R3" interacting through the
otential V' (xq,...,xy).

n the NVT ensemble, one wants to sample the
oltzmann-Gibbs probability measure:

du(x) = Z~ exp(—fV (z)) de

where Z = [ exp(—5V (x)) dx is the partition function

and 3 = (kgT)~! is proportional to the inverse of the
temperature.

Aim: compute “macroscopic quantities” like the
likelihood of molecular conformations, reaction
rates, ...
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1 Free energy and metastability

pically, V' Is a sum of potentials modelling interaction
etween two particles, three particles and four
articles:

V = Z Vl(ilj‘z', :B]) -+ Z VQ(wi, Cll‘j, fL‘k) -+ Z Vé(m% wja Lk, wl:

1<J 1<j<k 1<g<k<l
For example, Vi(xz;, x;) = Vis(|z; — x;|) where

Vi(r) =4 ((%)12 — (%)6) is the Lennard-Jones
potential.

. T Lelievre. ECODOOUIL. November 2008 —p. 4



amples of quantities of interest:

 specific heat

C o <V2>u — <V>Z
° pressure

Po—(q-VV(q)u

l T Lel
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1 Free energy and metastability

nce this is a high-dimensional problem (N > 1)
onte Carlo methods are used, typically based on
arkov chains.

or example, to sample ;, one can use X, solution to
he Stochastic Differential Equation (SDE):

(GD) dXt = —VV(Xt) dt + AV 26_1th.

(gradient or over-damped Langevin dynamics).
Under suitable assumption, we have the ergodic
property: for y-a.e. Xy,

lim /O (X )t / o(x)du(x).

T—oo I
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1 Free energy and metastability

Probabilistic insert (1): discretization of SDEs.
The discretization of (GD) by the Euler scheme is (for
fixed timestep At):

Xor1 =X, — VV(X,) At + /26 1AtG,,

where (G%)1<i<3n.n>0 @re i.i.d. random variables with
law N(0,1). Indeed,

L
(W(n+1)At - WnAt)nZO — At(Gn)nZO-

In practice, a sequence of 1.1.d. random variables with
law N (0, 1) may be obtained from a sequence of I.1.d.
random variables with law /((0,1)) (given by the rand()
function on computers).
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1 Free energy and metastability

oof (Invariant measure). One needs to show that if
e law of X Is u, then the law of X, Is also ... Let us
enote X7 the solution to (GD) such that Xy = x. Let
s consider the function u(¢, ) solution to:

{ ou(t,x) = —VV(x) - Vu(t,z) + 7 Au(t, x),

u(O, CIZ) = qb(m) (+ assumptions on decay at infinity),

then, u(t,z) = E(¢(X7Y)). Thus, the measure p IS
Invariant:

% E(¢(X¥))du(z) / Oru(t, ) exp(—LV (x))dx

_ 7! / (~VV - Vu+ 57 Au) exp(—FV)=

Therefore,/iE( (X?))du(x /qb Ydpu(x



1 Free energy and metastability

Probabilistic insert (2): Feynman-Kac formula.
u(t,x) = E(p(XT)) ? For 0 < s < t, we have
racteristic method):

— 5, X3)=—0w(t —s, X35)ds+ Vu(t — s, X3) - dX5
+587 AUt — s, X*) ds,

= ( — Owu(t — 5, X5 ) — VV(XYS) - Vu(t — s, X3)

+ 8 Au(t — s, Xf;)) ds + /28 Vu(t — s, XT) - dW ;.

Thus, integrating over s € (0,¢) and taking the
expectation:

E(u(0, X%)) — E(u(t, X%)) WE(/ Vu(t — s, X%) - dW)
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1 Free energy and metastability

babilistic insert (3): It0’s calculus. (in 1d.)
here does the term Au come from ? Starting from
he discretization:

X1 = Xn — V(X)) At + /287 TALG,,

e have (for a time-independent function w):
w(Xpi1) = u (Xn ~ V(X)) At + \/26—1Ath) |

= uw(X,) — (X)) V' (X,) At + /2871 Atd (X,) G,

+67 G2 (X ) At 4 o(At).
Thus, summing over n € [0 t/At] and taking the limit At — 0,

(X)) = u(Xo) — / V(X (Xa) ds + /25 /
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In practice, (GD) Is discretized in time, and Cesaro
eans are computed: limy, oo 5= > nq #(Xn).
emark: Practitioners do not use over-damped
angevin dynamics but rather Langevin dynamics:
dX; = M_lPt dt,
dP; = —VV(Xt) dt — WM_lpt dt + +/ QWﬂ_lth,
where M is the mass tensor and ~ Is the friction

coefficient. In the following, we only consider
over-damped Langevin dynamics.
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system.

L2

Vizy, x2)

L1

<

N

X}

1 Free energy and metastability

e therefore have a method to compute (an
proximation of) [ ¢(x)du(x), using X;. But, in
ractice, X, iIs a metastable process, so that the
onvergence of the ergodic limit is very slow.
bi-dimensional example: X} is a slow variable of the
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more realistic example : (Dellago, Geissler). Influence
f the solvation on a dimer conformation. The
nteraction potentials are (J.D. Weeks, D. Chandler et H.C.
ndersen).

V12 1506 .
Ve ) { te () ) |+ e
0,

(r—m—w>2r,

w2

Vs(r) = h [1 -

where ¢, 0 and w are positive constants and ry, = 21/65.

Vs 1S a double-well potential.
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1 Free energy and metastability

- =
= S s
= =
= e &
= = S

Left: compact state (¢ =0). Right: stretched state (¢ = 1).

_|zi—m2|=T0

A slow variable Is {(X;) where {(x) = ==
so-called reaction coordinate.

IS a
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1 Free energy and metastability

“real” example: ions canal in a cell membrane.
. Chipot).
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Imension 1 and known: &£(x), where ¢ : R™ — R.

his slow variable contains most of the information
eeded In practice so that it would be enough to

ompute the law of £(X), for X with law .

Lemme 1 The image of the measure . by € Is
Z texp(—BA(z))dz, where

A(z)=—p"1In (/2 65V|V§\1dagz> = 1InZys |

where ¥, = {x, {(x) = z} IS a (Smooth) submanifold of
R™, and oy._ IS the Lebesgue measure on ..
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1 Free energy and metastability

rea formula: Let X be a random variable with law
z iNR". Then ¢(X) has law [, ¢ |VE| ™ dox, dz,

the law of X conditioned to a fixed value z of £(X)

__Y|VE dos,
c fzzw|v§|_1 dos,

ed, for any bounded functions f and g,

E(f(£(X))g(X)) = - f&(x))g(x)y () d,

z/Rp/EZwawIVfl_ldUzz 2,

fz} g¢|Vf|_1 1
doy, dz.
O e o o ¥ IVEI s, d:




1 Free energy and metastability

emarks:

The measure |V¢|~tdoy,, is sometimes denoted
¢(x)—- 1N the literature.

A Is the free energy associated with the reaction
oordinate or collective variable ¢ (angle, length, ...).
A I1s defined up to an additive constant, so that it Is
enough to compute free energy differences, or the
derivative of A (the mean force).

- A(z) = =71 In Zs,. and Zy_ is the partition function
associated with the conditioned probability measures:

Uy, = Zgje_ﬁv\Vﬂ_ldagz .
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1 Free energy and metastability

Example of a free energy profile (solvation of a dimer)

Profiles computed using TI)
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The density of the solvent molecules is lower on the
left than on the right. At high density, the compact
state is more likely but (claim of physicists)
spontaneous transitions are less frequent (free energy
barrier) ... to be better understood.

-0.6
0
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1 Free energy and metastability

me direct numerical simulations...
emark: Free energy is not energy !

15 w

[EnY
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y coordinate
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Left: The potential is O in the region enclosed by the
curve, and +oo outside.

Right: Associated free energy profile when the »
coordinate is the reaction coordinate (6 = 1).
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1 Free energy and metastability

amples of methods to compute free energy
Ifferences A(zy) — A(z1):

* Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

* Perturbation methods (zwanzig) (importance
sampling),

* Qut of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

* Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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1 Free energy and metastability

)

(C) Out of equilibrium dynamics. (d) Adaptive dynamics.
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2 Constrained dynamics

Examples of methods to compute free energy
Ifferences A(zy) — A(z1):

* Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

* Perturbation methods (zwanzig) (Importance
sampling),

* QOut of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

* Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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2.1 Thermodynamic integration

Thermodynamic integration is based on two remarks:

he derivative A’(z) can be obtained by sampling
onditioned probability measure us._ (Sprik, Ciccotti,
|, Vanden-Eijnden, E, den Otter, ...)

/ | VVVS_ 1 - vf <D — —10
&=z ( - (‘W))e b(—BV)|VE|\dos

V¢
VE|?

— | raus..

where V =V + 3 ' In|V¢|, f = V,égﬁg — 87 div (lvvng)

_ Z—l

(V‘N/ + ﬁ_lﬂ) exp(—ﬁff)dagz,

and H = -V - (Igél) |§§| is the mean curvature vector.
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2.1 Thermodynamic integration

oof: (based on the co-area formula)

(/ exp(—FV)dos., ) o(2) //exp Vdos,. ¢ dz,
=~ [ [exw(-7)df o do. a,

— [ exp(-pV)6 o €[ Velda,

i v
= — [exp(=p7)V (00 €) - g5 Velda,

_ V¢
- [ (oo

- B VVon | \V/3 o
//< o IVE|? VeV (V§|>>e p(—=08V)dos_ ¢(z) dz.




2.1 Thermodynamic integration

) It Is possible to sample the conditioned probability
easure uy, = Zy, ' exp(—(V)doy,, by considering the
ollowing constrained dynamics:

dX; = —VV (X)) dt + /2871 dW; + VE(X ) dA,,

(RCD) { dA, such that £(X;) =

Moreover, we have dA; = dA™ + dAL, with
AN = — /2371 |VV§|2 ) - dW, and
AN =t (vv s 1H) (X;)dt = f(X;)dt SO that

T T
A'(z) = lim L aa = im = [ aal
- T /), T T/, Tt

T—o0 T—o0
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2.1 Thermodynamic integration

e free energy profile is then obtained by
hermodynamic integration:

Z K
A(z) — A0) = / A2y dz =S wid!(2).
1=0

0
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2.1 Thermodynamic integration

e rigidly constrained dynamics can also be written:

iX, = P(X;) (—VV(Xt) dt + \/25—1th) +BYH(X) dt,

here P(x) Is the orthogonal projection operator:
P(x)=1d — n(x) ® n(x),

_VE

= ve

(RCD) can also be written using the Stratonovitch
product: dX; = —P(X;)VV(X;)dt++/28"1P(X;) o dWy.

It IS easy to check that {(X;) = {(X ) = = for X
solution to (RCD).

with n the unit normal vector: n(x)
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us., IS the unigue invariant measure with support in X
or (RCD).

roposition 1 Let X, be the solution to (RCD) such
hat the law of X IS ux,. Then, for all smooth

unction ¢ and for all time ¢ > 0,

E($(X 1)) — / 8(@)dyis, ().

Proof: Introduce the infinitesimal generator and apply
the divergence theorem on submanifolds :

Ve € CH(R3N R3N),

/div s, (@) doy, = —/H-qbdazo,
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2.1 Thermodynamic integration

Iscretization: These two schemes are consistent with
CD):

Xpi1 =X, — VV(X )AL+ /28 1AW, + A\ VE(X 41),
with \,, € R such that £(X,, 1) =0,

32) Xn+1 =Xy, — VV(XH)At T v Qﬁ_lAWn T Anv£(Xn)a
with \,, € R such that £(X,,1) =0,

where AW,, = W,11)ar — Whae. The constraint is
exactly satisfied (important for longtime computations).

The discretization of A’(0) = limy o & [; dA; is:

| T/

I§ I§ — A\ —A’
Jim lim o Z "
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2.1 Thermodynamic integration

practice, the following variance reduction scheme
ay be used:

ntl = Xn — VV (X)) At+/28" 1AW, + \VE(X p11),
Ith A € R such that £(X,,.1) =0,

X, =X, - VV(X,)At—/26-1AW, + \.VE(X ),
with A\, € R such that {(X,) =0,

|

and A\, = (A + \.)/2.

The martingale part dA}" (i.e. the most fluctuating part)
of the Lagrange multiplier is removed.
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2.1 Thermodynamic integration

over-simplified illustration: in dimension 2,

—1 2 2
ﬂ 2 I T
() = 5-]x|” and &(x) = 23 + 22 — 1.
2 a b
0.35 T T :
mes_int
mes_non_int -———---
dyn_int_proj 1+
‘ dyn_int_proj_2 X
03 | ;3@%% dyn_non_int_proj_ 1  x
: dyn_non_int_proj 2 O
0.25 | 2 ¥ f é;%
!
0.2
0.15
01+
0 1

Measures samples theoretically and numerically @sa
function of the angle 0), with 3 =1,a = 2, b =1, At = 0.01, and 50 000 000 timesteps.
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2.1 Thermodynamic integration

omputation of the mean force: 3 =1,a=2,b=1. The
xact value 1s: 0.9868348150. The numerical result
with At = 0.001, M = 50000) is: [0.940613 ; 1.03204].

he variance reduction method reduces the variance
by a factor 100. The result (with A¢ = 0.001, M = 50000)
IS: [0.984019; 0.993421].
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2.1 Thermodynamic integration

. mean force as a function of At and M = T/ At:

0.98
0.96
094
092

09
0.88 -
0.86 -

+07

le-

A balance needs to be find between the discretization
error (At — 0) and the convergence in the ergodic limit
(T — 00).
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sing classical technics (Talay-Tubaro like proof), one
an check that the ergodic measure /@g sampled by

he Markov chain (X ,,) Is an approximation of order
ne of uy,: for all smooth functions ¢ : ¥y — R,

/ gdus! — / gdps,
>0 >0

< CAt.
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emarks:

There are many ways to constrain the dynamics
GD). We chose one which is simple to discretize. We
ay also have used, for example (for z = 0)

1
dX] = -VV(X])dt — %V(?)(X?) dt + /26~ 1dWy,
where the constraint is penalized. One can show that
limn_>() X? = X (inL>=, . (L2)-norm) where X, satisfies

te[0,T]

(RCD). Notice that we used V and not V' in the
penalized dynamics.
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e statistics associated with the ©
onstraints are rigidly imposed anc

2.1 Thermodynamic integration

ynamics where the
the dynamics

here the constraints are softly im

(van Kampen, Hinch,...).

posed through

enalization are different: “a stiff spring # a rigid rod”
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2.1 Thermodynamic integration
| yields a way to compute [ ¢(x)du(x):
[o@dn(a) =271 [ ola)e o

= Zl// ¢€_ﬂV‘V€|_1d(Izz dz, (co-area formula)
zJX,

fzz ¢€—ﬂV|v€|—1d022
2 fzz e~ PV |VE|~tdos,

1
= (/ e PAG) dz) /(/ gbd,ugz) e P4 gz,
z z 2z

th o, = {x, £(z) = 2}, A(z) = -5 'In (fzze_ﬁv|V§\_1dagz) and
ps, = e V|VE T dos, [ [ye P VIVE T dos,.
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2.2 Constrained SDEs

or a general SDE (with a non isotropic diffusion),
he following diagram does not commute:

A
F%;o/{ Projected continuous process } t

[ Continuous process } ?

{Discreti zed projected continuous proceﬁs}

At { Discretized process J [ Projected discretized process }

Riisc
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2.2 Constrained SDEs
e are interested in simulating a SDE:
dX; = b(X;)dt + (X)) dW,
ubject to the constraint

q(Xt) = 0.

X; eR", b:R* - R"and o : R — R™™ (with oo’ > 0),
W Is a m-dimensional standard Brownian process
with filtration ;. The functions b, 0 and ¢ are supposed
to be smooth.

In this section, ¢ : R — R and we suppose that

va € S = (@, q(@) = 0}, |[Vq|(@) #0.

(In the MD framework, ¢ may be the reaction
- coordinate or some molecular constraints.)
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2.2 Constrained SDEs: continuous level

As such, the problem is ill-posed. We want to find a
»-adapted process Y, such that:

dXt = b(Xt) dt -+ O'(Xt)th + dYt,
Q(Xt) — 07

where dY; = dA; + S; dW . Additional assumption:
dA; and S; dW; are colinear to D(X;)Vq(X}) dt,
where D(x) IS a n x n Symmetric positive matrix.

D(x)Vq(x) Is the normal to ¥ at point  and can be
given by some additional assumptions on the
constraining term Y; (D’alembert’s principle for

- example).
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2.2 Constrained SDEs: continuous level

It0’s calculus on the constraint ¢(X;) = 0, one then
tains:

dX = P(Xy)(b(X¢)dt +o(X¢)dWy)
38 {

1 DVq )(Xt) it

( ( 2 T pT
—— | V*q: (Poo” P")
1Vall3,

2

where the projection operator P(x) IS:

and, for any Y € R™ and any SDP matrix S,

Y]] = (Y- 5Y).
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2.2 Constrained SDEs: discrete level

o0 “natural” schemes:

S~

Xn+1=Xn +0(Xp)At + 0(X,) AW,
X ,+1 = arg min {H/)\(/er ~Y|[5 .Y eR", q(Y) = O} :

|

where At is the time step, AW,, = W, 1ya: — Wiay

and S,, Is a SDP matrix, F,,A;,-measurable. For
sufficiently small time step, this is well posed and
equivalent to:

(S1) Xoi1 =X, +b(X )AL+ 0(X)AW , + X\, S V(X ,11),
where )\, € R is such that ¢(X,,+1) = 0.
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2.2 Constrained SDEs: discrete level

“more explicit” scheme Is then:

X1 =Xpn+b(Xp)At+0(X ) AW, + M S V(X ),
where )\, € R is such that ¢(X,,+1) = 0.

Question: Are (S1) and (S2) consistent with (SDE) for
any gand b ?

: . At
y Projected continuous process

[ Continuous process } ?

\ {

{Discreti zed projected continuous proc&s}

Discretized process J [ Projected discretized process }

Riisc
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2.2 Constrained SDEs: consistency

eoreme 1

* In the ODE case (o = 0), (S1) and (S2) are
consistent with (SDE) for any ¢ and b iff D oc S~1.

* In the SDE case (oo’ > 0),
* (S2) Is consistent with (SDE) for any ¢ and b iff
Do S,
* (S1) is consistent with (SDE) for any ¢ and b iff
Do S o ool

Proof. Expansions w.r.t. At and AW,,.
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2.3 Non-equilibrium dynamics

t us consider a stochastic process such that
0~ Ky, and

dX;= —P(X)VV(Xy)dt++/2671P(X;) o dW,
—I—V€( )dAext7
ext __ ()
AN = e At

where 2z : [0,T] — [0, 1] IS a fixed deterministic evolution
of the reaction coordinate ¢, such that z(0) = 0 and
z(T) = 1. The idea Is to associate to each trajectory X;
a weight W(t) and to compute free energy differences
by a Feynman-Kac formula:

A(1) — A(0) = =37 1 (E (exp(~SW(T)))).
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2.3 Non-equilibrium dynamics

e dynamics can also be written using a Lagrange
ultiplier:

dX; = —VV (X)) dt + /28 1dW; + VE(X ) dAy,
E(Xt) = 2(1).

And we have

dAy = AN 4 dAL+dAS,

where dA™ = —/23- 1|VV§|2 ) - dWy , dA = f(Xy) dt
ext __ < ( )
and dAP = e dt-
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2.3 Non-equilibrium dynamics

t us introduce the weight

W(t) = /0 F(X )2 (s) ds = /0 2 (5)dAL

One can show that:
Théoreme 2

A(2(1)) = A(2(0)) = =47 In (E (exp(=6W(1)))).

The proof consists in introducing the semi-group associated with the dynamics

u(s, ) =K (exp (—B /: F(X5%)2' (r) dr))

and to show that % [u(s,.) exp(—ﬁff)dogz(s) = 0 using the divergence theorem on

submanifolds.
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2.3 Non-equilibrium dynamics

e discretization is (as before):

X1 = Xn — VV(X0)AL + /207 1AW, + M VE(X 1),
with A\, such that (X, 11) = 2(tna1),

X1 =X, — VV(X)At+ /20 1AW, + M\, VE(X ),
W|th )\n SUCh that g(Xf,H_l) == Z(tn_|_1).

52 {

To extract Al from )\, one can e.g. compute:

n o n V
o G
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2.3 Non-equilibrium dynamics

other method to compute ! consists in:

N =X, - VV(X,)At — /287 1AW, + \Eve(X T ),
ith A% such that 1 (g(Xﬁ,?H) + §(Xn+1)) — £(X,).

We then have M, = 3 (), + \E).
The weight Is then approximated by

Wo = 0,
Wn—l—l — Wn + 2tntr) =2 (i) )‘fw

tn—l—l_tn

and a (biased) estimator of the free energy difference
AGAT)) = A((0)) is =67 In (7 S0 exo (=0, ) )
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2.3 Non-equilibrium dynamics

practice, the efficieny of this numerical method is
ot clearly demonstrated. If the transition is too fast,
he variance of the estimator is very large. If the
ransition iIs slow, we are back to thermodynamic
ntegration...
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3 Adaptive methods

amples of methods to compute free energy
Ifferences A(zy) — A(z1):

* Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

* Perturbation methods (zwanzig) (importance
sampling),

* Qut of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

* Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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3 Adaptive methods

The principle of adaptive methods is to modify the
potential seen by the particles in function of there
Istory in order to:

« efficiently explore the free energy surface,
* compute free energy profiles.
The time dependent potential is of the form

Vi(x) = V(x) — Ar(&(x))

where A; Is an approximation of A computed by using
the history of the configurations of the systems
conditioned at a given value of the reaction coordinate.

References: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello,
Wang, Landau,...
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3.1 Adaptive methods: algorithms

ow to update A; ? Assume for the moment that the
process Is instantaneously at equilibrium

= °1 o exp(—OVy)(x) dx = exp(—F(V — Ay 0 &))(x) de.
ecall the definition of free energy:

A(z) = —F""In (/ eﬁV|V§\1dagz> =~ 'InZs_,

and assoclated mean force:

/(VV.Z€ — 3~ 'div ( V§2>) e PVIVE oy,
A(z) = V¢ V¢ Z/fduzz
/ e~ V| do,

For adaptive dynamics, we replace V by V; in these
- formulas, to get observed free energy or mean force.
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3.1 Adaptive methods: algorithms

0 basic methods : estimate the free energy or the

ean force at time t.
Observed free energy :

—3" " In </z 65Vt|V€|1d022) = (A= Ay),

Observed mean force :

VVi-V . V _ _
/ ( T (Ivfﬁ?))e Vel dos,

/ eV Ve dos,.

= (A" — A).

ldea: use these expressions to update A; (resp. A;) in
- such a way that lim; .., A} = A'.
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3.1 Adaptive methods: algorithms

0 basic methods : estimate the free energy or the

ean force at time t.
Observed free energy :

Ta— = — 5_1 In (/ 65Vt|vf|1d02z) — (A — At)v
Ez

Observed mean force :

VVt-Vﬁ_ —1 3: V€ — BV —1
aA;:/ R ) R

4 /€5Vt|vf|1d02z

T

— (A - A7

ldea: use these expressions to update A; (resp. A;) in
- such a way that lim; .., A} = A'.
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3.1 Adaptive methods: algorithms

ow, X IS not instantaneously at equilibrium... We
se the previous argument as a guideline to build
pdating methods (¢ Is replaced by v):

OA 1 _
ABP) i) =257 [ u|ve[dos,

DA 1 I ,
(ABF) att (Z) — ; (fffwﬁggflldo.zzz - At(z)) )

(where ' denotes a derivative with respect to z).

Remark: Since ¢ # ¢ (no equilibrium), ABP # ABFE.

. T Lelievre. ECODOOUIL. November 2008 — p.



onsistency of the method : the stationary state yields
e mean force. Indeed, If the system reaches a
tationary state

then

VYoo = Z~1 exp(—B(V — A 0§))
and we have:

o for (ABP), 0 = =387 11In [ 9| VE| Ldoy,,

oo |V _1d0'z3z
* for (ABF), 0 = fffwzi||vgf£1dagz — AL (2),

and thUS, INn both CAaSes, (up to an additive constant),

. A = A.
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3.1 Adaptive methods: algorithms

ore generally, one can consider for F; and G; (such
hat G;(0) = 0) two increasing functions :

0A
ABP) a—tt(z) = I (—ﬁlln/¢t|V§\ld022> :
The biasing potential is increased (resp. decreased)
where the observed free energy is high (resp. low).

0A;} | [ VeI dos, /
(ABF) ) = G (LLECEL i)
The biasing force is increased (resp. decreased)
where the observed mean force is positive (resp.
negative).
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3.1 Adaptive methods: algorithms

typical adaptive dynamics is thus (ABF):

{ dX;=—-V(V — A; 0 &)(X4)dt + /28 1dW,

() = L B = 2) - 4(2).

In terms of the pdf ¢, we have:
O = div (V(V — Ao &) + 571V,

04, 1 ([ fUIVEtdos,
T ( JUIVe oy, At(z)) |




principle of metadynamics is to extend the
figuration space to (z, z) € R"™! and to consider
e meta-potential

VR, 2) = Vi(x) + k(z — &(x))%

en, one chooses (x, z) — z as a reaction coordinate.

In this case, A*(z) = -5~ '1n ( f£ }‘jﬁf}@{fﬁ%iﬁz).

3.1 Adaptive methods: algorithms

Notice that -
fexp(—ﬂvk(:c, z)) dx B feXp (w))eXp W/(ké) dx
[exp(—BVk(x, 2))dedz fexp( (x)) dx

[ exp(— )|Vf\ Ldos,
o [ exp(—=5V (x)) d

and thus Ak —— A (up to an additive constant).

)

k— 00
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3.1 Adaptive methods: algorithms

ur possible combinations:

adp  dA

dt dt

V| ABF ABP
Vk | M-ABF M-ABP

In practice, to compute [ ;|V¢|"tdoy,, or

—1 -
/ {"f(zill@;_fjdai@a one can use empirical means or

longtime averaging, and various regularizations:

o 1N T - A/ _ “T*ff¢-|v§|_1d02z
In time, for example (ABF): A} (z) = ] O VE o,
where k,; = 1;>9 exp(—t/7).

* in space: replace |V¢|~ldos. by 6.(¢(x) — 2).
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3.2 Adaptive methods: convergence

ecall: the gradient dynamics

(GD)  dX;=—VV(X,)dt +/26-1dW,

s metastable, and thus the ergodic limit is difficult to
each.
Is the adaptive method (ABF and = = 0)

{ dX; = —-V(V — A 0 &)(Xy) dt + /26~ 1dW7,
Ai(z) = E(f(X)|E(Xy) = 2).

better ?



ow to quantify the bad behaviour of (GD) ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. “Decorrelation time”.

4. Rate of convergence of the law of X, to ..

In the following we use the fourth criterium.
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3.2 Adaptive methods: convergence

e PDE point of view: convergence of the pdf ¢ (¢, )
X, 10 Yoo (x) = Z71e BV (®) ¢ satisfies the
okker-Planck equation

O = div (VV + 71V,

which can be rewritten as 9,1 = div (zpoov (w%))
Let us introduce the entropy

B() = HO( o) = [ (w%) .

We have (Csiszar-Kullback inequality):

(¢, ) = ool 1 < V2E(D).



3.2 Adaptive methods: convergence

-/ \vm ( %O) = 1( ).

If V' Is such that the following Logarithmic Sobolev
iInequality (LSI(R)) holds: Vi pdf,
1
H (W) < 551 (0l10)

then E(t) < Cexp(—2Rt) and thus ¢ converges to
exponentially fast with rate R.

Metastability <— small R



3.2 Adaptive methods: convergence

e use the same technics on the adaptive dynamics:

AX, = —v(v — Ao g) (X,)dt + /28~ Ldw,,
Ai(z) =E (f(Xt)‘f(Xt) = Z) :

Or, in terms of the pdf (¢, ) of X:

[ Op =div (V(V — Aro &)+ 71V,
o fve T dos,
At(z)

/"

\ [V dos,
_ VV-VE a1 Ve
Recall f = e B~ div (IV{:‘P)'



3.2 Adaptive methods: convergence

eorem:. Suppose

H1) ergodicity of the microscopic variables: the
onditioned probability measures uy._ satisfy a
ogarithmic Sobolev inequality LSI(p),

H2) bounded coupling: ||V, f
then

| oo < 00,
|4} — A||p» < Cexp(—F~  min(p, ).

The rate of convergence is limited by:

* the rate r of convergence of ¢ = [|V¢| ™l doy, tO
o, at the macroscopic level,

* the constant p of LSI at the microscopic level.
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3.2 Adaptive methods: convergence

simplify the problem, let us consider the case n = 2,
e configuration space is T x R, and &(x,y) = «.
n this case, the dynamics writes:

AX; = —V(V — Ao )(X,) di + /251 dW,,
Al(z) = L = (&CV ‘f (X)) = :E) .

Or, in terms of the pdf (¢, x) of X:

[ Opp =div (VVy + 871VY) — 0,(A),
A () = [0V (z,y)0(t, x,y) dy
\ f@b t L y) dy |

/"




3.2 Adaptive methods: convergence

ur aims are:

* to show that the metastable features of X} have
been eliminated,

. _ SOV (zy)y(tay) dy
to show that A} (z) = Totaydy — CONVerges to

10 J OV (zy) exp(=BV)(z,y) dy
A = T ez dy
Ingredient 1: It is easy to check that
U(t,z) = [(t, z,y) dy satisfies a closed PDE

at@ — ﬁ_lax,xa on T,

and thus, ¢ converges towards ¢, = 1, with
exponential speed C exp(—4n25~1t).
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r the proof of convergence, we use relative
entropies H(ulv) = [In (j—‘j) du to measure the
Istance to equilibrium vy, = Z L exp(—8(V — A0 ).

the total entropy E(t) = H(1(t,.)|tso),

the macroscopic entropy Ey;(t) = H(¥(t, )|Yso),
and the microscopic entropy
Ealt) = [ 1 (S ) T

Ingredient 2: Notice that & = £, + E,,. We know that
E\)s goes to zero: it remains to consider £,,.
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3.2 Adaptive methods: convergence

edient 3: We have (algebraic miracle)

m:atE_atEM
2 —_—
w v /
v /a (wm)w( +=4)

o ff ()

Using
(H1) the conditioned probability measures ‘i;i(—‘&?;) dy
satisfy a logarithmic Sobolev inequality LSI(p), then

o ff ()

2
¢ < _2pﬁ_1Em-




3.2 Adaptive methods: convergence

(H also imp
— A'(z)

les a Talagrand inequality (Ingredient 4):

W(t, z,y) } N Voo (2, )
‘/8ny [ a(t :vy)dydy /&UV( ’y)fwoo(:vay)dydy ’

< ||3x,yV||Loo/\y—y’\m,x(dyydy’),

<ot ()

where 7, IS any coupling measure:

[0+ sttt = [ 12Dy [ Sy

This requires (H2) 0, ,V € L™

| |
. 7
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3.2 Adaptive methods: convergence

. we have

8ln

¢ Y
In P(A, — A" A — A
(woo \// A A (=)
< HaxyVHLOO\/;E nC exp(—4m? 3 11).

_ /2 _
O Em < —2p3 ' Ep + |00y V| 1o ;EmC' exp(—4m257 1),

We have proved that

and this yields /E,,(t) < Cexp(—4~'min(p, 472)t).
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3.2 Adaptive methods: convergence

en, the mean force A} observed at time ¢ converges
0 the mean force A’ in the following sense:

/ AL — A'R(2)0(1, 2) dz < C exp(—28~" min(p, 4r2)),

and thus, 3t*, C* > 0, V¢ > t*,

|4; — 4|12 < C* exp(—B~" min(p, 472)).
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These arguments can be generalized to prove the
heorem in the following frameworks:

* £:R"™ — T (with a slight modification of the
dynamics),

* £:R™ — R (with a slight modification of the
dynamics and a constraining potential on &(x)),

o £:R" — T™or ¢ : R* — R™ under an additional
orthogonality assumption: V¢; - VE; = 0 for i # 7,

o £:R™ = T™or ¢ : R" — R™ with the original ABF
dynamics, without orthogonality condition, if the
coupling is small enough.

. T Lelievre. ECODOOUIL. November 2008 —

3.2 Adaptive methods: convergence

n. 75



3.2 Adaptive methods: convergence

The case ¢ : R™ — R: the convergence result holds for
 following adaptive dynamics:

;= —V(V—ﬁ‘l In(|VE|~2)—A; 0 €110 5) (X)|VE|"2(X,) dt
+ /2671 Ve TN (X)) dwg,
A() = E ((V&‘Z Sl (ijz)) (X0)[e(x0) = ) |

The blue terms are naturally required to obtain a
closed parabolic PDE on ¢(t,z) = [5, [V&|[71(t,.)dox,

O = 0,11 + 5710,4).
The green term is required for ¢ to converge to a
- stationary state.



3.2 Adaptive methods: convergence

ide result: The techniques of proof can be used to
rove the following result (generalization of a result by
. Otto and M. Reznikoff):

or a measure ; and a function £, assume
» LSI for the conditioned measures u(-|¢(x) = 2),
* LSI for the marginal z(dz),

* bounded coupling (|| Vs, f

|Loo < OO),
then the measure ;. satisfies a LSI.
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3.3 Multiple replicas implementations

n these adaptive methods, an implementation using
any replicas (a system of interacting particles) is
atural to compute the conditional expectations by
mpirical means.

The numerical method is thus very easy to parallelize,
with a small amount of information to pass from one
node to the other.

One additional interest: A selection mechanism may
be added to duplicate “innovative particles” and Kkill
“redundant particles”.

. T Lelievre. ECODOOUIL. November 2008 —p. 78



umerical analysis of the particle system

heorem: We suppose that the configuration space Is

4V is smooth, and £(x) = «'. We consider the
ollowing particle approximation:

N
2 m=1 9¢ (th,n,N - th,m,N)alv(Xt,m,N)
N
Zm:l P (Xg,n,N o th,m,N)

Xin, N = <—VV(Xt,n,N) + e1> dt—l—\/idW?

where ¢¢ = o+ e 1¢(e71.). Then we have

/T 2%21 P& (- — th,m,N)alv(Xt,m,N) B
0 Z%Zl (bg( o erﬁl,m,N)

-0 <\/&+el/4+exp<a§2) : ) .

a?ed VN

. T Lelievre. ECODOOUIL. November 2008 —
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3.3 Multiple replicas implementations

e selection mechanism

n the ABF dynamics, a selection mechanism can
nhance the diffusion at the “macroscopic” level.

( Opp = div (|V§|_2 (V(V — Ao + ﬁ—lw)) +W505¢’
, N o S ( : )) B
A — — div do

Y ( E |V§\_1¢(ta-)d02z>_

_/\

\

Then, we have: 9y = 710, o+ W 4.
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3.3 Multiple replicas implementations

ow to choose W? A typical choice :

e - Caz,iw

O that

at@ — (ﬂ_l ‘|'C) az,z@

The rate of convergence of ¥ to ¥, at the
“macroscopic” level, is thus enhanced.

Numerically, it amounts to associate a weight

wp,N(t) = exp (/Ot W5 (E(Xsn,N)) dS)

to the n-th replica trajectory, and to make weighted
- means to compute A..
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3.3 Multiple replicas implementations

e use an histogram to discretize ¢ and thus

e (o) (2182~ 20() + Gz = 69

(2)022

. 3c (¢(2—|—52) —I—Qbéz) +(z —02) —@(2)>

P(2)022

Welights of particles in locally under-explored regions
are increased.

An adequate selection process can then be
Implemented, using these weights (like in genetic
algorithm).

This should help to efficiently detect and take
advantage of rare events.



3.3 Multiple replicas implementations

sts on the numerical example (Dellago, Geissler):
nfluence of the solvation on a dimer conformation.

= - & - %%
& = & S
& = &
%§ N
%% & e e
s & € = e s

Left: compact state (¢ = 0). Right: stretched state (¢ = 1).
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ee energy profile with parallel ABF obtained att =
1, with 2000 replicas.

Mean force

T T T
1.2 1.4 1.6 1.8 2.0 2.2 2.4
Bond length

Red: with selection (¢ = 10); Blue: without selection
- Dashed lines: 95 % confidence interval. .

ievre. ECODOOUI. November 2008 —
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3.3 Multiple replicas implementations

oportion of replicas which have crossed the free
ergy barrier.

0.5

0.4+

0.3

Escape rate

0.2+

0.1+

00 T | T | T | T
0.0 0.1 0.2 0.3 0.4
Time

Black: without selection: Blue: c=2; Green: ¢=5;
. Red: ¢=10.
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3.3 Multiple replicas implementations

nother numerical experiment: ergodic averaging or
mpirical means ?

ompare:

* one replica and ergodic averaging with exponential
memory kernel:

Ai(2) = Jo exp(=(t = )/7) f(Xs)dg(x.) - ds
t f(;5 exp(—(t — 5)/7)0¢(x,)—» dS

* with many (10 000) replicas and empirical means
to compute Ai(z).
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3.3 Multiple replicas implementations

umerical experiments on a toy example (2d): the
-channel case (hopefully representative of the case
hen a “bad” reaction coordinate has been chosen).

Reaction coodinate: &(z,y) = x.
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3.3 Multiple replicas implementations

1 1 I 1
o B L] ) L ) —
TR S O B A A IO S I A A A 1

O 00 200 300 400 SO0 GO0 7O 8O0 900 000

M 00,000 timesteps

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
011

0.0 . . : : : : :
0 00 200 300 400 S00 B0 700 800 400 1000

Left: many replicas. Right: one replica. Top: error (log
scale). Bottom: (mean) position of the particles.
Works in progress:

* the case of ergodic averaging with 7 = oo,
* Rate of convergence for many particles.
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3.4 Application to Bayesian statistics

* Hidalgo stamp problem: the thickness of
Nyata = 485 stamps are measured, and the
corresponding histogram is approximated by a
mixture of N Gaussians:

N ' v;
fly|x) = ;qi\gexp (—E(y - Mi)2) ,

* parameters describing the mixture

N—1 .
(av =1=221 @):
L= (QL"'7QN—17M17"'7MN7U17"'7UN) S
SN—l X [/Lminaﬂmax]N X [Umina —|—OO) C RBN_I, where

N_
SN_1 = {(QL---aQN—l) 0<gq; <1, Zi:ll% < 1}-
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3.4 Application to Bayesian statistics

* the likelihood of observing the data
{yi,1 < i < Ngaga} IS

Ndata
M(y|z) = || Flal).
d=1

* potential V' = Vyior + Viikelinood SUCh that the
probability of a given configuration is proportional

with « = 0.9 and b = 10~°, while the likelihood part is

N data
(%)

- N
Vikelinood () = > In | )~ gi\/vj exp ( 5 (Y — Mz')Q)
=1 Li=1
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C

3.4 Application to Bayesian statistics

bjective: sample the posterior distribution

distribution of the parameters given the observations).

NiS IS a metastable measure.
ea:. use ABF together with a Metropolis Hasting

a

gorithm, using &(x) = ¢; as a reaction coordinate. We

use fixed gaussian proposals T'(x, x').
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3.4 Application to Bayesian statistics

gorithm: Metropolis Hasting-ABF.

rate onn > 0

. Update the biasing potential by computing and then integrating
(An—}—l)/.

. Propose a move from z™ to y"*! according to T'(z™, y™*1);
. Acceptance rate

" n+1 T n+1 ,.n
an — mln ﬂ-A +1(y ) (y 733 )’ 1 :
T an+1(x™) T (xm, y™t1)

where the biased probability is 7 4n+1(z) o< 7(x) exp(A™ T (&(x)));
. Draw a random variable U™ uniformly distributed in |0, 1]

(U™ ~ U0, 1]);

(@) if U™ < o™, accept the move and set 2! = y"T1;

(b) if U™ > a”, reject the move and set 2" ! = 2™,
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3.4 Application to Bayesian statistics

me results for N = 3.

1.0

16+

0.8

14+

> 4

12+

10

Mode averages

0l
8 T } AL
]

L -

A b

i MWH WW h M WMM IM M m

T T T T T T T T T T T T T T T T T T T
10000 20000 30000 5000 10000 15000 20000 25000 30000
Steps (x 20 000) Time step (x 20 000)

Left: Evolution of the weights ¢; (reaction coordinate,
blue) and ¢-.

Right: Evolution of the averages .1, 1> and us.



3.4 Application to Bayesian statistics

onvergence for the bias.

140
12
0 19.01
100
80 -19.5
« 60 %)
© ©
o] 3 —20.01
40
20 -20.51
0,
| 21.01
-20
_40 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 0.20 0.25 0.30 0.35 0.40
Reaction coordinate Reaction coordinate

Bias after N = 5 x 10° steps (black) and after
N = 2.5 x 10°% steps (red).
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hergies.

s11
£10 —
o
8: O ———
7: PR e
0.0 0.1 0.2 q 0.3 0.4

3.4 Application to Bayesian statistics

omparison of the mixture with the datas, after
iInimization of the configurations with lowest

Thickness

Left: Distribution of couples (g;, 1;) (N = 3). Right:
Mixture densities obtained for N = 3,...,7.
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Conclusion

Es with constraints:

* The discretization of the projected dynamics may
be different from the projection of the discretized
dynamics,

» Constraining the dynamics with “rigid bonds” is
different from constraining the dynamics with
“springs”,

* The mean force can be computed by averaging the
Lagrange multipliers associated with the
constraints,

* The free energy differences can be obtained by
non-equilibrium stochastic dynamics.
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e proposed a unified formulation of adaptive
-~ methods using conditional distributions.

heoretically, this allows a proof of convergence in the
ongtime limit for a certain class of algorithm (ABF-like
algorithms). The rate of convergence is related to the
logarithmic Sobolev inequality constant of the
conditioned Boltzmann-Gibbs probability measures at
fixed values of the reaction coordinate.

Numerically, the conditional distributions are naturally
approximated by empirical means on many replicas.
We have shown how a selection mechanism on the
replicas can speed up the computation.
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Conclusion

These techniques can be seen as adaptive
mportance sampling methods. They may be applied
ore generally to the sampling of metastable
otentials, as soon as some knowledge of the
directions of metastability is assumed.

Work in progress: Metropolis Hasting for measures on
submanifolds, constrained Langevin equations,
generalized adaptive importance sampling methods,
effective dynamics and free energy...
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