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Abstract

We present some numerical results obtained with a code
developed in order to better take into account the coupling
between the magnetic field and the velocity in
magnetohydrodynamic phenomena. We compare our simulations
with some results obtained on linearized equations. We show that
the nonlinear approach may usefully complement the linear one
and even correct its conclusions in some situations.

1 - Introduction

The magnetohydrodynamic (MHD) phenomena which dominate
the motions of fluids (cryolite and aluminium) in Hall-Héroult
cells are extremely complicated. Indeed, the hydrodynamic and
magnetic equations are deeply coupled, through the Lorentz force

BJF ��                                  (1)
and induced currents

� �BuEJ ����                        (2)

This coupling is responsible for instabilities in the cells, which
result from interaction between the velocity profile, the magnetic
field and the shape of the metal/bath interface.

To avoid these instabilities is one of the most important aims of
some current research. Indeed, important displacements of the
interface reduce the efficiency of the cell.

One of the phenomena which is observed in industrial cells and
which has been investigated a lot over the past few years is the
metal pad rolling. It is an oscillation of the bath / metal interface
with period ranging from five seconds up to more than one
minute. The aim of most of the theoretical and applied studies of
MHD cells has been to understand, forecast and avoid this
phenomenon. See [1] and the references therein for a survey on
the main approaches until l992.

This phenomenon has been explored through analytical studies on
simplified systems or through numerical experiments on
linearized systems. The originality of our approach is to solve the
original physical equations in a real 3d geometry, without any
simplifying assumptions. In particular, we take into account the
background motion, the viscosity, the deformation of the
interface, the induced currents, the induced magnetic fields and
the surface tension. Using the whole system, we have obtained a
result on the instability of circular cells, that we can compare to
some previous analytical studies [2].
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2 - The physical phenomenon

One of the explanation of the metal pad rolling is the presence of
a vertical field. The famous Sele's criterion is part of this theory
[3]. T. Sele has been the first one to provide a physical reason of
the rotation by the interaction of the vertical magnetic field with
horizontal perturbed currents. More recently, Davidson and
Lindsay [2] have derived a more general linearized system. Their
analysis leads to quantitative results for the instability of standing
and travelling waves in rectangular and circular cells. They also
suggest a mechanical analogue which provides a good physical
insight into the phenomenon.

The physical phenomenon is explained on Figure 1. An initial
tilting (or a long-wavelength disturbance) creates a perturbed
current flow

0JJj ��                                      (3)

(Jo is the unperturbed -or background- current and J the total
current in the cell) which is largely vertical in the cryolite and
horizontal in the aluminium. The interaction of this current with
the vertical magnetic field results in a horizontal Lorentz force

zBjF ��                                  (4)

in the direction perpendicular to j. It finally induces a rotating
motion of the interface.

In some cases, this phenomenon can lead to an instability : when
the vertical field is too large, the amplitude of the oscillation may
grow with time. It has been reported on that some metal may even
escape from the cell in some cases !

Figure 1 : Rolling phenomenon

3 - Numerical choices of our code

In this section, we want to briefly present the principal features of
the code we have developed to simulate aluminium electrolysis
cells, and the metal pad rolling in particular. We refer to [4-5] for
more details.

3.1 - The equations of MHD

The equations we solve are deduced from three physical
equations: the Navier-Stokes equations, the Maxwell equations
and the Ohm's law.
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� � 0�udiv                                                   (6)

and
� � 0�Bdiv                                                  (7)

The unknowns are (u, B,p) (5 scalar unknowns in 2d, 7 scalar
unknowns in 3d). Our code also gives the possibility to add a
surface tension term. For a stationary computation, we just set

0��t and 0�g  in the above equations. In practice, these
equations are separately written in the two liquids : cryolite and
aluminium. The adimensional numbers are :

the Reynolds number : 
�

�ULRe �      (8)

the magnetic Reynolds number : LU m ���R      (9)

the coupling parameter : 
2

2

U
BS
�

�     (10)

the Froude number : 
gL

UFr
2

�     (11)

The numbers U, L and B are respectively the characteristic
velocity, the length and the magnetic field. The density of the
fluid is denoted by �, the dynamic viscosity is denoted by �, and
the conductivity is denoted by �. The parameter �  is an

adimensional density ( 1��  in the aluminium and 
alu

cryo

�

�
� �

in the cryolite). The values of the parameter � , of the Reynolds
number Re and of the magnetic Reynolds number Rm depend on
the fluid.



Nicolas LIGONESCHE 3 of  5

The boundary conditions on the velocity u can be :

- either tangential velocity : 0. �nu

- or zero velocity (no-slip boundary condition) : 0�u

The boundary conditions on the magnetic flux B can be :

- either tangential1 :
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- or normal2 :

� ��
�
�

�

���

0
0

Bdiv
nBnB

                                (13)

The field Bo is a given magnetic field which can come from some
measures or from a previous magnetostatic computatation. In
practice, we have observed that tangential boundary conditions
give better results.

These equations are then discretized using quadrilateral finite
elements. The three unknowns are Ql fields, and we use some
stabilization methods (streamline upwinding) to bypass the inf-
sup condition problem and solve advection problems [6].

The position of the interface is updated at each time step, using an
Arbitrary Lagrangian Eulerian (ALE) technique. The mesh at the
interface is moved along the velocity at the interface. The rest of
the mesh is then moved arbitrarily. We have chosen this method
since the interface does not encounter big motions nor topological
changes.

3.2 - Numerical assets and drawbacks of our scheme

In this section, we present the main advantages of our choices of
discretization. These choices have also a few drawbacks. All the
assertions of this section are detailed in [5].

3.2.1 - Coupling of magnetic fields and velocity

Our discretization couples the degrees of freedom ( u, B, p) : the
linear system we solve directly give us the three unknowns. When
the problem becomes stiff, this is more robust than the segregated
schemes which decouple the unknowns.

The main drawback of this choice is that it leads to large systems

                                                          
1 Notice that � � �

�

�
�
�

�
�� Bucurl

Rm
B 1 is the electric field. In

practice, we use this type of boundary condition where a
no-slip boundary condition holds on u. The first condition
is therefore reduced to : � � � � ncurlnBcurl ��� 0B .
2  The condition � � 0�Bdiv derives in fact from the
variational formulation.

to be solved. However, these systems are sparse and well
conditioned (thanks to the stabilization technique we use). We
solve them using iterative methods (GMRES) and the incomplete
factorisation as preconditioner (ILU). In the time-dependent
problem, the initial guess is the result of the last time step and we
obtain the desired precision in about ten iterations. The principal
limitation is finally the construction of the matrix at each time
step, and the upper bound on this time step.

3.2.2 - Motion of the interface

The ALE scheme we have chosen has a lot of advantages. Apart
from good energetic properties (see below), it satisfies the
geometric conservation law (GCL). The GCL is a property which
ensures the conservation of the mass of each liquid from one
time-step to the next.

3.2.3 - Time discretization and stability

We use an Euler time discretization. The main advantage of this
scheme is that it ensures energetic conservation: the only
additional energetic term which stems from time discretization
(and which cannot be avoided) is a negative term of order �t. This
means that, at worst, we lose an energy of size �t in the system. In
particular, the energetic compensation between the Laplace force
in the momentum equation and the term of induced currents in the
equation on B is preserved in the discretized formulation.

This property of energetic conservation is definitely important in
computations dealing with stability results : the instability can
therefore not stem from a numerical artefact.

4 - Numerical simulations

We present in this section a result of computation on an unstable
system : a circular cell submitted to a uniform vertical field.

4.1 - Choice of the test case

In [2], it is shown that it is the interaction between the different
gravitational modes which causes unstable rolling waves. In
particular , the authors assert that a circular cell becomes unstable
whenever a vertical field Bz is applied.

We have chosen to reproduce this simple experiment of a circular
cell. The following assumptions are made in [2] in order to derive
this result (actually, these assumptions are made in order to obtain
an analytically solvable linear system) :

. No background motion, which implies a uniform vertical
magnetic field.

. No induced currents.

. No surface tension.

. The undisturbed surface is taken to be flat.

. The fluid is inviscid.

. Shallow water approximations ( which leads to vertical j in the
cryolite for instance).
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The advantage of a circular cell is also that the magnetic field at
the boundary is easily computed (by Biot and Savart law). The
idea is to numerically test the influence of some parameters which
are neglected in this linear approach. We also want to check
wether induced currents have a stabilizing effect, as it is often
reported on in the literature. The linearized approach may well
reproduce qualitatively the metal pad rolling, but some of the
assumptions may be questionable as far as quantitative results are
concerned.

The test case cell is a circular cell of radius equal to 1 and height
equal to 2. The interface aluminium / cryolite is situated at the
mean height. In order to create an initial disturbance, we have
chosen to slightly tilt the cell, and then put it straight again, next
apply the current J and the vertical field Bz.

4.2 - Some results

We have indeed observed the metal pad rolling on this test case.
We show an example in Figure 2. The physical explanation of the
phenomenon can be checked by computing the disturbed currents
in the cryolite. In Figure 3, we show the disturbance of the
currents created by the tilting of the interface. In order to compute
this disturbance, we have subtracted from curl(B) the initial
current curl(Bo), with Bo calculated with a flat horizontal
interface. In our simulation, we have also observed that small
disturbances of the initial state do not lead to instability (for
example in the case of Figure 2). In the same way, a small
positive Bz does not induce instability. This is in apparent
contradiction with the results of the linear approach which claim
the instability of the cell. At least our results show that if
instability occurs, it will occur only across a large time frame, and
therefore may not be relevant from a practical viewpoint. The
result of our computation indeed shows that the amplitude of the
rolling does not grow during 5 or 6 periods. Of course, definite
conclusions about this comparison between the two approaches
are yet to be determined.

    

 

Figure 2 : The phenomenon of metal pad rolling in a circular cell.
Visualization of the interface. This is a case with Bz > 0 and no
instabilities

Figure 3 : Loops of currents in cryolite while metal pad rolling.
We show here some streamlines of the field j (the perturbed
current). The perturbed current goes from the right-hand side
(where the elevation of the interface is the highest) to the left-
hand side.

5 - Conclusion

This test case demonstrates the ability of our code to simulate
complex MHD phenomena, which are usually numerically
reproduced after many simplifications of the original equations.
The impact of these simplifications on the result is certainly not
negligible. Taking all the real physical parameters and equations
into account, we hope to predict more quantitatively the
instability of industrial cells.

This case shows that it is possible to deal with the entire original
physical system and that this approach efficiently complements
the linear one and helps to understand qualitatively and
quantitatively the behavior of electrolysis cells.
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