Controllability of a bent 3-link magnetic microswimmer
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Abstract—In this paper, we focus on a variant of a 3-
link magnetic microswimmer which consists of three rigid
magnetized segments connected by two torsional springs. In
particular, we assume that one of the springs is twisted so
that the swimmer is not aligned at rest. By acting on it with
an external magnetic field, the swimmer twists and moves
through the surrounding fluid. By considering the external
magnetic field as a control function, we state a local partial
controllability result around the equilibrium states. Then, we
propose a constructive method to find the magnetic field that
allows the swimmer to move along a prescribed trajectory.
Finally, we show numerical simulations in which the swimmer
moves along a prescribed path.

I. INTRODUCTION

At a microscopic scale, swimming in water or another
similar fluid is a very different matter from the macroscopic
one. Indeed, micro-swimmers face a very small Reynolds
number (around 107%), which means that the intensity of
inertial forces is negligible towards those of viscous ones.
Due to promising perspectives of medical micro-robots per-
forming delicate tasks inside the human body, interest in the
study of micro-swimmers has been recently growing.

The shapes and propulsion techniques of these new robots
could be inspired by biology, since micro-organisms such as
sperm cells or bacterias developed efficient ways to move
through a surrounding fluid (see [14]). One direction of
research is to use chemical reactions inside the micro-robot
to drive it (see [13]). Another technique consists in using an
external magnetic field to drive a magnetized swimmer (see
(6], [4], [7]).

In this paper, we focus on this type of propulsion, applied
on a simple model of micro-swimmer consisting on three
magnetized segments linked by elastic joints. Since the
swimmer is supposed to be small, the hydrodynamic inter-
action between the swimmer and the fluid can be modeled
by the local drag approximation of Resistive Force Theory
introduced in [9]. Such models, with different numbers of
segments, have been studied for instance in [10] and [1], in
which the authors show that sinusoidal magnetic fields allow
the swimmer to move forward in a prescribed direction.

In [8], the authors show a local controllability result for the
2-segment model around its straight position. In this paper,
we focus on a 3-segment magnetized micro-swimmer, under
the assumption that it is not aligned at its equilibrium. By
considering the external magnetic field as a control function,
we study how to control the position of the swimmer without
prescribing any constraints on the orientation and shape of
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the swimmer, i.e., we state a local partial controllability
result. Then, we develop a constructive method to find a
magnetic field such that the robot can move along prescribed
paths.

The paper is organized as follows. In Section II, we detail
the dynamics of the model and state the main result of local
partial controllability for the bent swimmer. In Section III,
we describe a practical method that explicitly compute the
magnetic field to make the swimmer follow some prescribed
trajectory, as soon as the swimmer does not go through
its aligned position. Using the latter procedure, we give in
Section IV some numerical simulations with leads to control
the swimmer along some prescribed trajectories. Finally,
Section V is dedicated to some perspectives of this work.

II. MICROSWIMMER MODEL AND
CONTROLLABILITY ISSUES

A. Formulation of the Problem

We follow the notations, assumption and modelisation
introduced in [2] and [8]. In the present paper, we focus on
a micro-swimmer consisting on 3 rigid magnetized segments
connected by two torsional springs with stiffness «, subject
to an external uniform in space magnetic field H. The 3
segments, called 51,52 and S3, have same length ¢, same
hydrodynamic drag coefficients ¢ and 7, and respective
magnetic moments M;, Ms and Ms. The choice of the
numerical values for the parameters will be detailed later
in Section IV (see Table I). The swimmer can move in the
2d-plane defined by the vectors e, and e,. Let us define
e, = e, X e,. Let x = (x,y) be the coordinates of the end
of S, we call  the angle between (Ox) and S7, and «; and
ao the angles between S7 and S and between So and Ss.
The swimmer is then completely described by 5 variables
(z,y,0, a1, as) where the pair (z,y) represents the position
of the swimmer, 6 its orientation and the pair (a1, as) its
shape. Let us also define the moving frames associated to .S;
fori=1,2,3 as (e; |, e; ). All the geometrical parameters
are gathered in Figure 1).

Let us describe briefly the forces applied to the robot.

1) Elasticity: The torsional springs which connect the
swimmer segments exert a torque T proportional to the
shape angles o and ay. Thus, the torque T exerted on S,
is given by T = ke, and the torque T exerted on S3
is given by TS = k(az — ap)e,, where with ag € (—, 7).

Here, the specificity of the swimmer we study is that the
spring that relies So and Sj is at rest when as = «q. Hence,
if a # 0, the springs tend to get the swimmer back to a bent
shape, in which Sy, S5 are aligned and the angle between
So and S5 is equal to g (see Figure 2).



Fig. 1. Model used for the 3-link microswimmer.
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Fig. 2. The bent swimmer at its equilibrium.

2) Hydrodynamics: Since the swimmer is assumed to
be immersed in a fluid, hydrodynamic forces and torques
derive from their interaction. According to the Resistive
Force Theory (see [9]), we assume that the drag force per
unit length intensity is proportional to the velocity and to
the hydrodynamics coefficients ¢ and 7). Let x; be a point
on one of the segments S;. Its velocity u,(s) is given in the
moving frame (e; |, e; 1) by u;(xs) = u; je;, + ui, 1€ 1.
The drag force exerted on this point is then given by

fi(xs) = —&ug €, — nii, 1€ 1.

Let us integrate to obtain the total force F? exerted on S; :

Ff:/ fi(xs)dxs.
Si
Moreover, given a point X, the drag torque for S; with
respect to x takes the form

TZXO :/ (xs — x0) X f;(x5)dxs.
Hydrodynamic drag effects are resistant : they oppose to the
swimmer’s movement. Then, without a magnetic field, the
swimmer tends to its equilibrium bent shape.

3) Magnetism: We assume that we apply a uniform time-
varying external magnetic field H(¢) in the fluid around the
swimmer. Here, this magnetic field is assumed to be the
control function and in the following, we express H(t) such
that the robot can move along a prescribed trajectory. We
choose to decompose H in the moving frame associated to
Sy : H(t) = Hje, | + H_ei . The magnetic field exerts a
torque T7" on S; which is proportional to its magnetization
coefficient M; : T7" = M;e; | x H.

4) Dynamics equations: The swimmer is considered suf-
ficiently small to be at low Reynolds number regime, so that
inertia may be neglected (see [15] for further considerations
on low Reynolds number swimming). We apply Newton’s
second law to the system {S; + Sz + S35} : the total force
applied to the system is zero, and so is the total torque with
respect to x. Same holds for the subsystems {S2 + S5} and
{53}, with torques computed respectively with respect to Sa
end and S3 end. It gives the following system of equations :

Fi+Fh4+Fh = 0
T! , +Th  +TE, +TP+TP+TY = 0
TS ., +Th ., +T5 4Ty + T = 0
T . + Ty + T = 0
hydrodynamic terms magnetic terms elastic terms

(D

This system gives five scalar equations by projecting the first
line on (Oz) and (Oy) and the last three on (Oz). After
computing the different contributions, the system takes the
form

M(Oq, OéQ)R,gZ' = K (2)

sin 0
cos 9> 0

with Z=(z y 0 o 042)T,

< cos
r_g =

Ry = —sinf
0 ‘ I3
and
0
0
H)| (M3 sin a3 +M3 sin (a1 +az))
Y = —H | (M1+M> cos a1 +Ms cos (a1 +az))

—ra1+H) (M2 sin a1 +Ms sin (a1 +a2))
—H | (M3 cos a1 +Ms cos (a1 4az2))
—r(az—ao)+H)| M3 sin (a1 +az)—H 1 Mz cos (a1 +az)

M is a matrix that depends only on «; and .

Remark 1: Up to a rotation matrix that can be eliminated
by a changing of basis, the dynamics only depends on the
shape state variables a1 and v : the problem is invariant by
any translation or rotation.

Remark 2: If the magnetic field is supposed to be zero,
one can see that the equilibrium points are of the form
(x,9,0,0,0a9) with (z,7,0) € R3.

Straightforward computations show that the determinant
of M remains negative for all («p,s), so M is invertible
and we can rewrite the system (2) as a nonlinear control
system given by

R_gZ =Fo+ H(t)F1 + H, ()F2, (3)

where Fy,F; and F5 are combinations of the third, fourth
and fifth columns of M~!, denoted respectively in what
follows by X3,X, and X5 :

Fo= —k(a1Xy+ (a2 —)X5);

F1 = (MQ SiIlOél —|—M3 sin (051 +052))(X3+X4)
+Mssin (o 4+ a2)Xs;

Fo= —MX3

— (M cos ag + M3 cos (g + a2))(X3 + Xy)
—Ms cos (a1 + a2)Xs.



B. Partial Controllability and Small-Time Local Controlla-
bility

Let us remind that our aim is not to control either only the
position of the swimmer or both its position and its orienta-
tion, without taking care of its shape. This type of problem
is a partial controllability problem, or II,-controllability
problem (see [5]). Let us define II,, as the projection operator
given by
— RP
= Y

II,: RPxR"?
(ylvyZ)

where n is the state space dimension for the considered
control system and 1 < p < n. Let us define the II,-
controllability and state the classical Kalman condition for
linear systems.

Definition 1: Let (S) be the linear system of ordinary
differential equations

y= Ay + Bu
S):

(%) { y(0) = yo,
with yo € R", A € M,(R), B € M, »(R), and u €
L?([0,T],R™) the control. (S) is II,-controllable at time 7’
if for all yg € R™ and yr € RP, there exists u such that the
solution of (S) verifies

in [0, 7]

Iy (T yo, u) = yr-
Theorem 1: The system (S) is II,-controllable at time T°
if and only if
Ker(KTH;;F) = {0},

where K is the Kalman matrix given by K =
(B AB A’B A""1B).

In other terms, (.5) is II,-controllable if and only if the
submatrix of K consisting of the p first rows of K is of
maximal rank p.

For nonlinear systems, global controllability results such
as above are often hard to obtain. Hence, we aim for
local results, such as small-time local partial controllability
(abbreviated as STLPC). Let (NL) be the linear system of
ordinary differential equations

(NL) : (yl,yQ) = f(ylay27u)7

where y; € L%*([0,7],RP), v € L*([0,T],R"P), u €
L?([0,T],R™) and f : RP x R"P x R™ verifies the
condition of the global Cauchy-Lipschitz Theorem.

Definition 2: Let (y§,y5,u®) € R? x R"P x R™ be
an equilibrium of a control system (NL). The control sys-
tem (NL) is small-time locally partially controllable at
(y§, y§, u®) with respect to y; if for every € > 0, there exists
a real number 7 > 0 such that, for every (y?,99,y7) €
B, (y$) x By (y5) x By, (%), there exists u € L([0,¢] — R™)
such that (y1,ys2) verifies system (NL),

(i) Vte|0,¢,|ult) —ut| <e¢

) (e = .
An immediate application of the inverse mapping theorem
enables us to obtain the following usual sufficient condition

for the STLPC around an equilibrium for a nonlinear system.

Theorem 2: The nonlinear control system (NL) is STLPC
at an equilibrium if its linearized control system around this
equilibrium is IL,-controllable for some time 7" > 0.

This last theorem justifies that we study the linearized
system of (3) to get partial controllability around the equi-
librium.

C. Local partial controllability result

In the following, we prove that the position of the 3-
link magnetic swimmer can be partially controlled by the
external magnetic fields when the bent swimmer is close to
its equilibrium. The main result states as follows.

Theorem 3: If ay # 0, then system (3) is STPLC with
respect to (x,y) around any equilibrium point.

Proof. We only need to prove the result for the particular
equilibrium point O = (0,0, 0,0, ap). Indeed, according to
Remark 1, solutions of (3) are invariant under the transfor-
mations

<(;> 79,0{1,&2,H|,HJ_>

T+ &
— | Rg _),0+0,aq,00,H,H, |,
<e(y+y) pem l)

so if the result holds for O, it may be carried to an arbitrary
equilibrium point. Following Theorem 2, we look at the
linearized system around the equilibrium point O, which is
given by

Z =AZ + BH, 4)

where A is the Jacobian of Z — Fy(Z) at O and the two
columns of B are F1(O) and F»(O). Since we are interested
in controlling on the position (x,y), we are looking for the
I, partial controllability of the swimmer, hence, according
to Theorem 1, we have to check that the first two rows of
the Kalman matrix

K=(B AB A’B A®B A*B)

give a matrix of rank 2. If we look at the 2 x 2 submatrix
given by ! the first two entries of the first columns of B and
AB, a tedious but straightforward computation enables us to
get the determinant of this matrix :

108 M2 k(—91€(19n+54€) cos ag—2E(n+2€)) sin® (o) 5
L™n?(n?+34n€+28¢% —(n° —11n§+2862) cos(2a0))? )

where
E= (0?4 19n& + 762 — (n? — 8né + T€2) cos(2ayp)).
Along with the hypothesis ag # 0, the straightforward
inequalities
n? + 19 + 762 > (n* — 8né + T€?) cos(2an)
and

n* + 34nE + 286% > (n? — 11n¢ + 28¢2) cos(2ayp)

Tt would be more natural to chose the two columns of B. Indeed, for
almost all values of the parameters, the two first lines of B compose an
invertible 2 X 2 matrix (its determinant is called D(0, cg) in Section III).
For a precise set of parameters, however, this matrix has rank 1 only and
one has to choose the first columns of B and AB instead; since this choice
works in general, it is the one we make in the proof.



show that the numerator and denominator of (5) are re-
spectively the opposite sign of «( and positive. Therefore,
the determinant is nonzero and its associated submatrix has
rank 2. According to Theorem 1, the system (4) is partially
controllable. We conclude by applying Theorem 2.

Remark 3: None of the above applies for a non-bent 3-
link swimmer; i.e. if oy = 0. Indeed, the proof does not work
in this case because the numerator of the determinant (5) is
zero. Furthermore, a straightforward computation yields

00 0 0 O 0 0
0 0 0 x =« 0 =
A=|0 0 0 % = and B=|0 x|,
0 0 0 % = 0 =
0 0 0 x =x 0 =

where stars stand for possibly nonzero entries, hence the
first row of the Kalman matrix is zero, the linearized control
system is not controllable, and Theorem 2 does not apply.

We do not know whether (3) is STPLC around its equi-
librium if oy = 0, but non controllability of the linearized
system in this case indicates that the non-bent 3-link swim-
mer is harder to control. It is why we focus here on the case
of bend swimmer.

ITII. EXPLICIT PARTIAL CONTROL

In this Section, we describe a method to make the swim-
mer’s position (x,y) follow an arbitrary trajectory, while its
orientation and its shape are not prescribed, and we explain
the theoretical difficulties that arise.

Let us focus on the two first lines of the system (3):

r_o T — FOI+H|\F1:E+HLF2£ (6)
—0\y Foy+ HyFiy+ HiFyy )

We denote by D(ay, a2) the determinant of the 2 x 2 matrix
(Fu; Fo ; it depends only on the state variables o, as.
Fy, Py,
It is clear that D vanishes at straight positions (D(0,0) = 0).
Restricting D to the open square K = (—m,7) X (—m,7)
(values of (a1, as) outside K are not physical: the segments
would then overlap), and using the values of the parameters
used for our numerical simulations (see Table I), the plot in
Figure 3 shows that it vanishes only at (0, 0).
Let T > 0. Let f and g be two functions of class C*
on [0,7]. We require that the swimmer follows exactly the

trajectory parameterized by f and g, i.e.

vt € 10,7, (;Eg) - <§((:))> . )

The problem is to find the control functions H| ||,H | that
achieve this goal. Differentiating (7) and using (6), we get

Foo + HFip + HiFop | _ - f(t)
Foy + HHFly + HLFQy g/(t) ’

Hence, at each time ¢, H; and H | must solve the 2 x 2
linear system of equations

(B B) ()2 (ZBe) oy (F0)

Determninant

alphaz

|

o
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&
a0 ”-%m &,
1} 2.5 @ o S
i 2\ % &
o1
NN AN (T
[] Al 2

alpha 1

Fig. 3. Aspect of D(a1,a2) with numerical values from Table I. It
vanishes only at (0, 0).

It has a unique solution if the determinant D(q(t), aa(t))
does not vanish.

The functions H) and H solving the system (8) depend
on f/, ¢’ and the state variables 6, ai, as, = and y.
Following [11, Chapter 7], this can be re-formulated in terms
of “relative degree” and non-interactive control. Considering
the control system (3) with two outputs f = x and g = y,
and inputs [, H 1, it has vector relative degree {1, 1} when
D # 0 and the above mentioned expression of H, H, as
functions of f’, ¢’, 0, a1, as, =, y is a feedback trans-
formation that solves the “Noninteracting Control Problem”
[11, Section 7.3], i.e. it produces a control system with new
controls f’ and ¢’ where the control f’ acts on the output
z only and the control ¢’ acts on the output y only, as can
be seen by computing & = f’ and © = ¢'. Clearly, for any
functions f(t), g(t), if such a feedback transformation exists
and if f/(¢),q'(t) are taken to be the time derivatives of
f(t),g(t) and if 2(0) = f(0) and y(0) = ¢(0), then (6)
holds. Note that, because of the intermediary state feedback,
the expression of H|, H, as a function of time is obtained
implicitly after solving the closed-loop ODE.

This method fails if the swimmer has to go through the
straight configuration, where one cannot invert (8). Since we
cannot guarantee in general that the straight confuguration
will not be encountered, all we can do is try numerically, see
next section where we see that both may happen: either the
method works until the end of the trajectory or the alignment
occurs and the controls blow up. This does not contradict
Theorem 3 that is local and only concerned with short
trajectories; Theorem 3 is however stronger since it applies
even if D vanishes at the equilibrium (see the footnote on
the thuird page).

IV. NUMERICAL SIMULATIONS

In this part, we show numerical result obtained by using
the approach given in the previous Section, in the case where
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Fig. 4. Snapshots of the swimmer (in black) following a straight line (in
blue). The blue plain line indicates the path already done, and the blue
dotted line indicates the remaining path. The scale is in micrometers.

D vanishes only at a; = a = 0. Table I gives the actual
values for the parameters used in this Section (the values
have been chosen according to [1]). We have used Matlab
and more particularly the function ode23t to integrate the
system (3).

The routine takes functions f and g as an input, and returns
the trajectory of the robot, including its orientation and shape,
and the required controls H|| and H | . Figure 4 shows how it
can follow a straight line. When the swimmer is closed to the
aligned position, according to the system (8), the magnetic
field goes to infinity, then the simulation stops and we cannot
follow the entire prescribed trajectory. It is the case in Figure
5 and Figure 6.

Figure 7 shows a small circle trajectory that the swimmer
is able to follow. Figure 8 presents its orientation, its shape
and the external magnetic fields along this experiment.
Finally, Figure 9 shows a more complex trajectory that leads
to follow a path while remaining close to a global direction.
Figure 10 shows the associated controls and angular variables
during it.

V. CONCLUSION AND PERSECTIVES

Here, we proved local partial controllability of the “bent”
swimmer. The same result for the non bent 3-link swimmer
is still an open question, the present work indeed stemmed
out from trying to prove STPLC via the return method of
Coron [3, Chapter 6], rather than Theorem 2 (linear test).

Trying to go beyond local for the bent swimmer, we
described a method to drive the position of the swimmer

Trajectory

Fig. 5. An example of a bad case in which the swimmer is aligning.
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Fig. 6. State variables and controls along the straight line. At the end of

the time, we can see that a1 and avp are going to zero and that H goes
to infinity.
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Fig. 7. Snapshots of the swimmer (in black) following a circle (in blue)
and going back to its initial position. The blue plain line indicates the path
already done, and the blue dotted line indicates the remaining path.

-




theta,

T T T T T —lpha
L dpha,

theta.

alpha
i dlpha,

- L L L L L
H i 15 El Ed 3

Controls (t236a)
T T

Fig. 10. Angles and controls with respect the time (in sec.) during the
trajectory described in Fig. 9. The middle plot shows the components H
and H | of the control, whereas the bottom plot shows the Hy and Hy
components, in the reference basis.

Fig. 8. State variables and controls along the circle trajectory.
Parameter | Value
¢ 10 pm
n 12.4%x1073 N.s.m—2
13 6.2x1073 N.s.m—2
My 1.6 A.um?
M, 2.4 A.um?
M3 3.2 A.um?
K 83x10~7 N.um
TABLE I

NUMERICAL VALUES USED FOR THE PARAMETERS

along a given trajectory. It fails if the swimmer passes
through the straight shape, and we cannot ensure that this will
not occur. In our numerical experiments, we observe that the
method applies to some trajectories but that in other cases
one has to go through the straight shape and the controls
blow up, evidencing that this straight shape still represents a
serious barrier to maneuverability, even though bending the
swimmer provides linear controllability at the equilibrium.

Another perspective, under our investigation, is to conduct
further numerical study, and add energetic aspects, in order
to find a magnetic field which allows the swimmer to move
close to a prescribed path by minimizing the kinetic energy
of fluid-swimmer system (see [12]).
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Fig. 9. Snapshots of the swimmer (in black) following a complex trajectory
(in blue). The blue plain line indicates the path already done, and the blue
dotted line indicates the remaining path. The red line indicates the global
direction that we want to follow.
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