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Abstract

We consider a semi-linear heat equation with Dirichlet boundary conditions and glob-
ally Lipschitz nonlinearity, posed on a bounded domain of RN (N ∈ N∗), assumed to be
an unknown perturbation of a reference domain. We are interested in an insensitizing
control problem, which consists in finding a distributed control such that some functional
of the state is insensitive at the first order to the perturbations of the domain. Our first
result consists of an approximate insensitization property on the semi-linear heat equa-
tion. It rests upon a linearization procedure together with the use of an appropriate fixed
point theorem. For the linear case, an appropriate duality theory is developed, so that the
problem can be seen as a consequence of well-known unique continuation theorems. Our
second result is specific to the linear case. We show a property of exact insensitization for
some families of deformation given by one or two parameters. Due to the nonlinearity of
the intrinsic control problem, no duality theory is available, so that our proof relies on a
geometrical approach and direct computations.
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1 Introduction

1.1 State of the art

This article is devoted to proving some results concerning the insensitizing control for the
norm of the linear and semi-linear heat equation when the domain is partially unknown (in
the sense that it is a small perturbation of a reference domain). The problem of insensitizing
control was originally addressed by J-L.Lions in [16], leading to numerous papers on this topic.
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Concerning the semi-linear heat equation, the first result was obtained in [2] for a dis-
tributed control, where the authors introduced and studied the notion of approximate insen-
sitizing controls, the partially unknown data being the initial condition and the boundary
condition, the sentinel being the square of the L2−norm of the solution on some subset of
Ω, called observation domain. The method used in this article (that has widely inspired the
present article) is to study first a linear heat equation with potential and then apply the
Schauder’s fixed point theorem to extend the conclusions to the semi-linear heat equation.
This result was improved in [8], where the existence of exact insensitizing controls for per-
turbations of the null initial datum is proved by means of Carleman estimates (see [11]) for
a linear forward-backward coupled heat system and the use of a fixed-point argument. Let
us also mention that in [8], it is proved that when the initial datum is not null, one cannot
always expect to find an insensitizing control (for a precise study of the class of initial data
that can be insensitized for the linear heat equation, see [10]). Later on, the insensitizing con-
trol problem for the heat equation with nonlinear boundary conditions was studied notably
in [3]. In [12], an exact insensitizing control result for a linear heat equation with potential
is proved when the sentinel is the square of the L2-norm of the gradient of the solution on
some observation subset. In [23], the authors studied the insensitizing control problem with
constraints on the control for a nonlinear heat equation by means of the Kakutani’s fixed point
theorem combined with an adapted Carleman inequality. This result was extended in [24] for
more general cost functionals. Some quasi-linear parabolic problems have also been studied in
[18].

Let us mention that in all the articles mentioned above, a crucial hypothesis is that the
observation domain intersects the control domain. Removing this hypothesis leads to many
difficulties (notably because Carleman estimates cannot be used anymore), this case being
notably studied in [20] and [9].

To conclude, let us mention that other linear or nonlinear parabolic systems coming from
fluid mechanics have also been intensively studied, see for instance [13], [14], [5], [4] or [6].

The common point of all the previous articles is that the partially known datum considered
is always the initial condition, with sometimes the addition of the boundary condition. Up
to our knowledge, the question of insensitizing controls for a deformation of the domain has
never been studied. Let us mention that a close problem was studied in [1], but the goal
of the authors was different since they intended to estimate the shape of an unknown part
of a domain for a diffusion problem. In the framework of control theory, we also mention
[21, 19] where genericity of controllability properties with respect to domain variations are
investigated.

The general problem of trying to insensitizing an observation done on a domain that is
partially unknown is meaningful from the applicative point of view. One can for example
think of an oil drilling: we observe the drilling on a known domain, the initial shape of the oil
field is known, but the extraction may perturbe the shape of this field. The goal may be then
to optimize the observation by acting on some other place of the field.

The rest of this paper is organized as follows: in Section 1.2 we present the problem and
our main results. In Section 1.3, we use standard arguments to reduce the problem to a control
problem on a forward-backward system of semi-linear heat equations. Section 2 is devoted to
the proof of Theorem 1.1 whereas Section 3 is devoted to the proof of Theorem 1.2. To finish,
we give some perspectives in the concluding Section 4.
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1.2 Statement of the problem and main result

Let Ω0 be a connected and bounded subset of RN , N ∈ N∗, assumed to be of class C2. Let
T > 0 and let ω and Θ be two nonempty open subsets of Ω0, assumed to be compactly included
in Ω0. We set Q0 = (0, T )× Ω0 and Σ0 = (0, T )× ∂Ω0.

Since we are interested in dealing with perturbations of Ω0 preserving some topological
properties such as its connectedness, boundedness and regularity, we will adopt the classical
point of view in shape optimization used to define the derivative in the sense of Hadamard (see
e.g. [7, 15]). This means that perturbations of Ω0 will be defined with the help of well-chosen
diffeomorphisms.

In this view, let us introduce for any integer j ≥ 1 the admissible class of perturbations
fields

Vj,∞ = {V ∈W j,∞(RN ,RN ) | ‖V‖j,∞ 6 1}.

It is notable that, for each element V of V3,∞ and each τ ∈ [0, 1), the mapping Tτ := Id +τV
defines a diffeomorphism in Rd, i.e. the mapping Tτ is invertible and Tτ

−1 ∈W 3,∞(RN ,RN ).
Furthermore, as a consequence of the construction of Tτ as a “perturbation of the identity”,
the set Tτ (Ω0) is a connected, bounded domain whose boundary is of class C2.

In the sequel, we will consider a family of domains {Ωτ}τ∈[0,1) of Ω0 defined, for some
V ∈ V3,∞, by

Ωτ = (Id +τV)(Ω0).

As a consequence, each domain Ωτ inherits the aforementioned properties, moreover the sets
ω and Θ are compactly included in Ωτ provided that the parameter τ is chosen small enough,
which is assumed from now on.

Let us set Qτ = (0, T ) × Ωτ and Σ = (0, T ) × ∂Ωτ . Let χω and χΘ respectively be the
characteristic function of ω and Θ.
This article is concerned with the family of systems

∂y

∂t
−∆y + f(y) = ξ + hχω in Qτ ,

y = 0 on Στ ,
y (0, ·) = 0 in Ωτ ,

(1)

where f ∈ C1(R) is assumed to be globally Lipschitz and ξ ∈ L2(RN ). The control term h
belongs to L2((0, T )× ω). The data of the state equation (1) are incomplete in the sense that
both V and τ are partially unknown.

Remark 1.1. Let us comment on the initial condition. For the sake of simplicity, we chose
to consider an identically null initial condition. However, all the results of this article are
easily generalizable to any initial condition y(0, ·) = y0 where y0 ∈ H1

0 (Ω0) is such that
dist(supp(y0), ∂Ω0) > 0. Indeed, the H1 regularity of y0 is needed to use the insensitizing
conditions (see Remark 1.2) whereas the distance condition on the support of y0 guarantees
that the initial boundary condition will not be sensitive to the variations of Ω0.

Let us now provide a precise definition of insensitizing a functional with respect to a
deformation of the domain.

Definition 1.1. Let Φ : L2(RN ) 3 y 7→ Φ(y) ∈ R be a differentiable functional and let Ω be
a connected bounded domain having a C2 boundary. Let us introduce the shape functional J
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defined by J (Ω) = Φ(yΩ) where yΩ denotes the unique solution of (1) (where Ωτ is replaced
by Ω).

For some V ∈ V3,∞, we introduce as above the domains Ωτ = (Id +τV)(Ω0) (where the
parameter τ lies in [0, τ0) for some small enough τ0 < 1). Let ξ ∈ L2(RN ) be given. We say
that the control h insensitizes Φ (at the first order) whenever

for all V ∈ V3,∞, there holds
d

dτ
(J (Ωτ ))

∣∣∣∣
τ=0

= 0. (2)

Let E be a linear subspace of V3,∞. One says that the control h insensitizes Φ (at the first
order) for the family E whenever

for all V ∈ E , there holds
d

dτ
(J (Ωτ ))

∣∣∣∣
τ=0

= 0. (3)

Given ε > 0, the control h is said to ε-insensitize Φ whenever

for all V ∈ V3,∞, there holds
∣∣∣∣ ddτ (J (Ωτ ))

∣∣∣∣
τ=0

∣∣∣∣ ≤ ε. (4)

Notice that this definition uses a particular notion of derivative, well adapted when dealing
with shape variations. In this setting, we consider variations of a domain that are parametrized
by families of diffeomorphisms, as highlighted previously.

In what follows, we will concentrate on a particular choice of shape functional J that
appears natural in the framework of control: we aim at insensitizing the L2-norm of the
solution yΩ of (1) with respect to the domain, which leads to consider the functional

J (Ω) = Φ(yΩ) =
1

2

T∫
0

∫
Θ
yΩ(t, x)2 dxdt. (5)

In other words, J stands for the square of the L2 norm of the observation variable χΘyΩ.
Let us now describe the main results of this article.

Theorem 1.1. Assume that ω ∩ Θ 6= ∅. Then, for every ε > 0, there exists a control
h ∈ L2((0, T )× ω) which ε-insensitizes Φ.

Theorem 1.2. Let M ∈ {1, 2}. Assume that ω ∩ Θ 6= ∅ and let {Vi}1≤i≤M be a family of
linearly independent elements of V3,∞. Then, there exists a control h which insensitizes the
functional Φ for the family E = span({Vi}1≤i≤M ).

Several geometrical examples of framework and families E for which Theorem 1.2 applies
are provided in Section 3.1.

Remark 1.2 (Comments on the regularity of Ω). Notice that the notion of shape derivative
does not impose to deal with regular shapes. Indeed, considering a bounded connected domain
Ω0 with a Lipschitz boundary is enough to define the quantities (2) and (4) involved in Def-
inition 1.1. In particular, in that setting, the mapping V1,∞ 3 V 7→ J ((Id +V)(Ω0)) ∈ R is
differentiable and there holds in particular

〈dJ (Ω),V〉 = lim
τ↘0

J (Ωτ )− J (Ω0)

τ
.
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Nevertheless, although well-defined, the differential of J at Ω cannot be recast without addi-
tional regularity assumptions in a simple form and is difficult to handle. This is why we chose
to deal with domains having a C2 boundary (and then to consider perturbations in V3,∞).

1.3 Reduction of the insensitizing control to a control problem on a coupled
system

Let us consider a domain Ω0 enjoying the same properties as in Section 1.2. This section is
devoted to deriving insensitizing conditions on the domain Ω0, in other words to recast the
conditions (4) and (2) in a simpler way. We will emphasize that the problem of exact (resp.
approximate) insensitizing control can be reduced to a non-standard null (resp. approximate)
controllability problem on a backward-forward coupled system of semi-linear heat equations.
We first claim that the mapping

V3,∞ 3 V 7→ y(Id +V)(Ω0) ∈ L2(RN )

is differentiable at V = 0, and therefore, so is the mapping R 3 τ 7→ yΩτ ∈ L2(RN ) at τ = 0.
The reasoning to obtain this result is standard and rests upon the implicit function theorem
(see e.g. [15, Theorem 5.3.2]). We denote by ẏΩ0 the differential of this mapping (also called
the Eulerian derivative of yΩ0) in a given direction V.

It is well-known (see e.g. [15, Theorem 5.3.1] or also [25]) that the function ẏΩ0 solves the
partial differential equation

∂ẏΩ0

∂t
−∆ẏΩ0 + f ′(yΩ0)ẏΩ0 = 0 in Q0,

ẏΩ0 = −∂nyΩ0(V · n) on Σ0,
ẏΩ0 (0, ·) = 0 in Ω0,

(6)

where n stands for the unit outward normal of ∂Ω0. According to (2)-(4)-(5), the exact
insensitization control problem comes to

∀V ∈ V3,∞,

∫ T

0

∫
Θ
yΩ0(t, x)ẏΩ0 dxdt = 0, (7)

whereas the ε-approximate insensitization control problem is equivalent to

∀V ∈ V3,∞,

∣∣∣∣∫ T

0

∫
Θ
yΩ0(t, x)ẏΩ0 dxdt

∣∣∣∣ 6 ε. (8)

We are going to provide a more workable characterization of (exact and approximate) insen-
sitizing conditions in terms of the solutions of a forward-backward coupled system.

Proposition 1.1. The exact insensitizing control problem (2) is equivalent to the following
one: for any ξ ∈ L2(Q0), find h ∈ L2(Q0) such that the solution (yΩ0 , qΩ0) to the following
forward-backward coupled system

∂y

∂t
−∆y + f(y) = ξ + hχω in Q0,

y = 0 on Σ0,
y (0, ·) = 0 in Ω0,

(9)
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
−∂q
∂t
−∆q + f ′(y)q = yχΘ in Q0,

q = 0 on Σ0,
q (T, ·) = 0 in Ω0,

(10)

satisfies ∫ T

0
∂nyΩ0∂nqΩ0 dt = 0, a.e. in ∂Ω0. (11)

The ε−approximate insensitizing problem (2) is equivalent to the following problem: for
any ξ ∈ L2(Q0), find h ∈ L2(Q0) such that the solution (yΩ0 , qΩ0) to (9)-(10) satisfies∫

∂Ω0

∣∣∣∣∫ T

0
∂nyΩ0∂nqΩ0 dt

∣∣∣∣ dσ 6 ε. (12)

Notice that the resulting control problems (11) and (12) on the solutions of (9)-(10) is quite
unusual since it writes as a bilinear problem with respect to the states yΩ0 and qΩ0 , which
makes its study more difficult than for standard problems of controllability. Notably, even
if we consider linear versions of the system (9)-(10), the control problems (11) and (12) are
bilinear, so that the standard duality theory (see [17] or [26] for instance) cannot be applied.

Proof of Proposition 1.1.
Let us first remark that since (ξ, hχω) ∈ L2(Q0)×L2(Q0) and y(0, ·) = 0, the solution yΩ0

of (9) satisfies

yΩ0 ∈ L2((0, T ), H1
0 (Ω0) ∩H2(Ω0)) ∩H1((0, T ), L2(Ω0)) ∩ C0([0, T ], H1

0 (Ω0)).

As a consequence, the function ∂nyΩ0 is well-defined on Σ0 and we claim moreover that ∂nyΩ0

belongs to C0([0, T ], L2(∂Ω0)). The same argument enables us to show that the solution qΩ0

of (10) satisfies

qΩ0 ∈ L2((0, T ), H1
0 (Ω0) ∩H2(Ω0)) ∩H1((0, T ), L2(Ω0)) ∩ C0([0, T ], H1

0 (Ω0)),

so that ∂nqΩ0 also makes sense on Σ0. Moreover, one has ∂nqΩ0 ∈ C0([0, T ], L2(∂Ω0)).
We infer notably that the mapping

∂Ω0 3 x 7→
∫ T

0
∂nyΩ0(t, x)∂nqΩ0(t, x) dt

belongs to L1(∂Ω0).
Multiplying the first equation of (10) by ẏΩ0 and integrating by parts yields

−
∫ T

0

∫
Ω0

∂qΩ0

∂t
ẏΩ0 dtdx+

∫ T

0

∫
Ω0

(∇qΩ0 · ∇ẏΩ0 + f ′(yΩ0)qΩ0 ẏΩ0) dxdt

+

∫ T

0

∫
∂Ω0

∂qΩ0

∂n

∂yΩ0

∂n
(V · n) dσdt =

∫ T

0

∫
Θ
ẏΩ0yΩ0 dxdt.

Similarly, multiplying the first equation of (6) by qΩ0 and integrating by parts yields∫ T

0

∫
Ω0

∂ẏΩ0

∂t
qΩ0 dtdx+

∫ T

0

∫
Ω0

(∇qΩ0 · ∇ẏΩ0 + f ′(yΩ0)qΩ0 ẏΩ0) dxdt = 0.
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The combination of the two last equalities leads to∫ T

0

∫
∂Ω0

∂nyΩ0∂nqΩ0(V · n) dσdt =

∫ T

0

∫
Θ
y(0)ẏΩ0 dxdt. (13)

As a consequence, it follows that (7) is equivalent to∫ T

0

∫
∂Ω0

∂nyΩ0∂nqΩ0(V · n) dσdt = 0, ∀V ∈ V3,∞,

which rewrites also∫
∂Ω0

(V · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ = 0, ∀V ∈ V3,∞.

This equality is equivalent by density and linearity to∫
∂Ω0

β(x)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ = 0, ∀β ∈ C2(∂Ω0).

Since the mapping ∂Ω0 3 x 7→
∫ T

0 ∂nyΩ0(t, x)∂nqΩ0(t, x) dt belongs to L1(∂Ω0), we conclude
by applying the fundamental lemma of calculus of variations that the previous equality is
equivalent to (11).

On the other hand, using (13), we know that (8) is equivalent to∣∣∣∣∫ T

0

∫
∂Ω0

∂nyΩ0∂nqΩ0(V · n) dσdt

∣∣∣∣ 6 ε, ∀V ∈ V3,∞,

i.e. ∣∣∣∣∫
∂Ω0

(V · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ

∣∣∣∣ 6 ε, ∀V ∈ V3,∞,

This inequality is equivalent by density and linearity to∣∣∣∣∫
∂Ω0

β(x)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ

∣∣∣∣ 6 ε||β||∞, ∀β ∈ C2(∂Ω0),

which is also equivalent by density to∣∣∣∣∫
∂Ω0

β(x)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ

∣∣∣∣ 6 ε||β||∞, ∀β ∈ L∞(∂Ω0),

By duality, this exactly means (12) and the proof is complete.

2 Approximated null controllability and approximated sentinel

2.1 An auxiliary linear problem

In a first time, let us investigate in details the following forward-backward coupled system of
linear equations: 

∂u

∂t
−∆u+ a(t, x)u = ξ + kχω in Q0,

u = 0 on Σ0,
u (0, .) = 0 in Ω0,

(14)
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
−∂v
∂t
−∆v + b(t, x)v = uχΘ in Q0,

v = 0 on Σ0,
v (T, .) = 0 in Ω0,

(15)

where a, b ∈ L∞(Q0) and ξ ∈ L2(Q0). Before giving the main result of this part, let us provide
several useful duality results. We introduce the operators

F : L2(Q0) 3 ξ 7−→ (∂nuξ, ∂nvξ) ∈ L2(Σ0)× L2(Σ0),
G : L2(Q0) 3 k 7−→ (∂nuk, ∂nvk) ∈ L2(Σ0)× L2(Σ0),

(16)

where the pair (uξ, vξ) denotes the unique solution of the coupled system (14)-(15) in the case
k = 0, and the pair (uξ, vξ) denotes the unique solution of the coupled system (14)-(15) in the
case ξ = 0.

Let us compute the adjoint operator of G. For that purpose, let us consider (δ1, δ2) ∈
(L2(Σ0))2 as well as (ϕ,ψ) solving the system

∂ϕ

∂t
−∆ϕ+ b(t, x)ϕ = 0 in Q0,

ϕ = δ2 on Σ0,
ϕ (0, .) = 0 in Ω0,

(17)


−∂ψ
∂t
−∆ψ + a(t, x)ψ = ϕχΘ in Q0,

ψ = δ1 on Σ0,
ψ (T, .) = 0 in Ω0,

(18)

Then, there holds

〈G(k), (δ1, δ2)〉L2(Σ0)×L2(Σ0) =

∫
Σ0

∂nuδ1 +

∫
Σ0

∂nvδ2

=

∫
Q0

(∆u)ψ −
∫
Q0

u(∆ψ) +

∫
Q0

(∆v)ϕ−
∫
Q0

v(∆ϕ)

=

∫
Q0

(∂tu+ a(t, x)u− kχω)ψ −
∫
Q0

u(−∂tψ + a(t, x)ψ − ϕχΘ)

+

∫
Q0

(−∂tv + b(t, x)v − uχΘ)ϕ−
∫
Q0

v(∂tϕ+ b(t, x)ϕ)

= −
∫
Q0

kχωψ.

We then infer that

G∗ : L2(Σ0)× L2(Σ0) 3 (δ1, δ2) 7−→ −ψχω ∈ L2(Q0), (19)

where ψ is the solution of (18).
The end of this section is devoted to introducing a constructive approach for building

ε-insensitizing controls in the linear case.
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Proposition 2.1. Assume that ω ∩ Θ 6= ∅. Let ε > 0, ξ ∈ L2(Ω), and (γ1, γ2) ∈ L2(Σ0) ×
L2(Σ0). There exists k ∈ L2 ((0, T )× ω) such that the solution (uΩ0 , vΩ0) of (14)-(15) satisfies

‖∂nuΩ0 − γ1‖2L2(Σ0) + ‖∂nvΩ0 − γ2‖2L2(Σ0) 6 ε2. (20)

Let us introduce

Uad(T, ε) := {k ∈ L2(Q0) s.t. the solution (uΩ0 , vΩ0) of (14)-(15) satisfies (20)},

as well as the cost functional Jε defined on (L2(Σ0))2 by

Jε(δ1, δ2) :=
1

2

∫
(0,T )×ω

ψ2 + ε
√
‖δ1‖2L2(Σ0)

+ ‖δ2‖2L2(Σ0)
−
∫

Σ0

γ1δ1 +

∫
Σ0

γ2δ2.

(i). There holds

min
k∈Uad(T,ε)

1

2

∫
(0,T )×ω

k2 = − min
(δ1,δ2)∈L2(Σ0)×L2(Σ0)

Jε(δ1, δ2).

(ii). The control kεopt of minimal L2-norm is given by kεopt = ψεoptχω, where ψεopt is the solution
of (18) associated to the minimum (δε1,opt, δ

ε
2,opt) of Jε.

(iii). If a and b describe bounded sets of L∞, if γ1 and γ2 describe compact sets of L2(Σ), then
the control obtained above describes a bounded (and even compact) set of L2(Q0).

Notice that, by applying the Cauchy-Schwarz inequality together with Young’s inequality,
Proposition 2.1 (with γ1 = γ2 = 0) implies that for any ε > 0, there exists hε ∈ L2 ((0, T )× ω)
such that the solution (uΩ0 , vΩ0) of (14)-(15) with h = hε satisfies∫

∂Ω0

∣∣∣∣∫ T

0
∂nuΩ0∂nvΩ0 dt

∣∣∣∣ dσ 6 ε,

in accordance with the inequality (12) in Section 1.3.

Proof of Proposition 2.1. Using (16), we observe that (20) is equivalent to asking that for
for any ε > 0, any ξ ∈ L2(Ω), and any (γ1, γ2) ∈ L2(Σ0)× L2(Σ0), one has

‖F(ξ) + G(k)− (γ1, γ2)‖L2(Σ0)×L2(Σ0) 6 ε.

Hence, the property “for any ε > 0, any ξ ∈ L2(Ω) and any (γ1, γ2) ∈ L2(Σ0)× L2(Σ0), there
exists h ∈ L2 ((0, T )× ω) such that the solution (u, v) of (14)-(15) satisfies (20)” will be true
as soon as we are able to prove that

Range (G) = L2(Σ0)× L2(Σ0).

By duality, this is also equivalent to the following unique continuation property:

G∗(δ1, δ2) = 0⇒ δ1 = δ2 = 0.

Using (19), this property also rewrites as

ψ = 0 in (0, T )× ω ⇒ δ1 = δ2 = 0 in L2(Σ0), (21)
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where ψ denotes the solution of (18).
Let us prove property (21). Assume that ψ = 0 on (0, T )× ω. Then, using (18), we infer

that ϕ = 0 on (0, T )× (Θ∩ω), where ϕ is the solution of (17). Recall that one has Θ∩ω 6= ∅
by assumption. Hence, applying [2, Proposition 2, Page 670] (which is a consequence of the
unique continuation results of [22]), we infer that ϕ = 0 on Q0 and δ2 = 0 on Σ0. Hence, ψ
satisfies the backward equation

−∂ψ
∂t
−∆ψ + a(t, x)ψ = 0 in Q0,

ψ = 0 on Σ0,
ψ (T, .) = δ1 in Ω0,

together with ψ = 0 in (0, T )×ω, so that we can one more time apply [2, Proposition 2, Page
670] and deduce that one has necessarily δ1 = 0 on Σ0.

Points (i) and (ii) are very classical duality results that can be interpreted as consequences
of the Fenchel-Rockafellar theory. They may be obtained by applying the so-called Hilbert
Uniqueness Method (HUM) and are left to the reader (see for example [2, Proof of Theorem
3]).

Finally, the last point (iii) is less classical but may be recovered by following the approach in
[2, Proof of Theorem 3]. Let us provide hereafter a complete proof for the sake of completeness.

Assume that a and b describe bounded sets of L∞, whereas γ1 and γ2 describe compact sets
of L2(Σ). Let us first prove that (δε1,opt, δ

ε
2,opt) lies in a bounded subset of L2(Σ0) × L2(Σ0).

We argue by contradiction. We assume that there exists four sequences (an)n∈N, (bn)n∈N,
(γ1,n)n∈N and (γ2,n)n∈N such that

• an *⇀a in L∞(Q0);

• bn *⇀b in L∞(Q0);

• γ1,n → γ1 in L2(Σ0);

• γ2,n → γ2 in L2(Σ0);

• ‖δε1,n‖2L2(Σ0) +‖δε2,n‖2L2(Σ0) →∞, where the pair (δε1,n, δ
ε
2,n) denotes the unique minimizer

of Jε (for the potentials an and bn instead of a and b, and boundary conditions γ1,n and
γ2,n instead of δ1 and δ2, in system (17)-(18)).

Let us show that this implies

Jε(δ
ε
1,n, δ

ε
2,n)→∞, as n→∞, (22)

which will lead to a contradiction, since according to the point (i), we should have J(δ1,n, δ2,n) 6
0 for every n ∈ N. We introduce

δ̃ε1,n :=
δε1,n√

‖δε1,n‖2L2(Σ0)
+ ‖δε2,n‖2L2(Σ0)

and

δ̃ε2,n :=
δε2,n√

‖δε1,n‖2L2(Σ0)
+ ‖δε2,n‖2L2(Σ0)

.
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One clearly has that (δ̃ε1,n) and (δ̃ε2,n) are bounded in L2(Σ0), so that we may assume with-
out loss of generality that they converge weakly respectively to δ̃ε1,opt ∈ L2(Σ0) and δ̃ε2,opt ∈
L2(Σ0). Hence, a compact embedding argument allows to prove that the corresponding solu-
tion (ϕ̃εn, ψ̃

ε
n) of (17)-(18) converges strongly in (L2(Q0))2 respectively to some (ϕ̃ε, ψ̃ε) which

is still a solution of (17)-(18) with, as boundary term, (δ̃ε1,opt, δ̃
ε
2,opt).

According to the point (i), we have

Jε(δ
ε
1,n, δ

ε
2,n) =

(
‖δε1,n‖2 + ‖δε2,n‖2

) 1

2

∫
(0,T )×ω

(ψ̃εn)2 + ε
√
‖δε1,n‖2L2(Σ0)

+ ‖δε2,n‖2L2(Σ0)

+

√(
‖δε1,n‖2L2(Σ0)

+ ‖δε2,n‖2L2(Σ0)

)(
−
∫

Σ0

γ1,nδ̃
ε
1,n +

∫
Σ0

γ2,nδ̃
ε
2,n

)
6 0.

Hence, dividing each side of this inequality by ‖δε1,n‖2L2(Σ0) + ‖δε2,n‖2L2(Σ0), we infer that∫
(0,T )×ω

|ψ̃εn|2 → 0 as n→∞, i.e. ψ̃ε = 0 on (0, T )× ω.

By using the same unique continuation argument as in the proof of Proposition 2.1, we infer
that δ̃ε1,opt = δ̃ε2,opt = 0. Now, since there holds

Jε(δ
ε
1,n, δ

ε
2,n)√

‖δε1,n‖2L2(Σ0)
+ ‖δε2,n‖2L2(Σ0)

> ε−
∫

Σ0

γ1,nδ̃
ε
1,n +

∫
Σ0

γ2,nδ̃
ε
2,n,

it follows that (22) holds true since the right-hand side converges to ε > 0 as n→∞.
As a consequence, the pair (δε1,opt, δ

ε
2,opt) lies in a bounded subset of L2(Σ0)×L2(Σ0), from

which we deduce with the help of a standard compact embedding argument that kεopt = ψεoptχω
lies in a compact subset of L2(Q0).

2.2 The semi-linear case (Proof of Theorem 1.1)

Let us go back to the Proof of Theorem 1.1. The proof below is very similar to [2, Proof of
Theorem 1], so that we will skip some details and recall only the main lines.

Let us introduce
F (s) :=

f(s)− f(0)

s
.

Then F is continuous and bounded on R since f ∈ C1(R)∩Lip(R), where Lip(R) denotes the
set of Lipschitz functions on R. Let z ∈ L2(Q). We consider the linear system

∂u

∂t
−∆u+ F (z)u = kχω in Q0,

u = 0 on Σ0,
u (0, .) = 0 in Ω0,

(23)


−∂v
∂t
−∆v + f ′(z)v = uχΘ in Q0,

v = 0 on Σ0,
v (T, .) = 0 in Ω0,

(24)
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
∂u0

∂t
−∆v0 + F (z)u0 = −f(0) + ξ in Q0,

u0 = 0 on Σ0,
u0 (0, .) = 0 in Ω0,

(25)


−∂v0

∂t
−∆v0 + F (z)v0 = u0ξΘ in Q0,

v0 = 0 on Σ0,
v0 (T, .) = 0 in Ω0,

(26)

Let ε > 0 and kεopt be the optimal control defined in Proposition 2.1 with a = F (z),
b = f ′(z), γ1 = ∂nu0 and γ2 = ∂nv0, and we still call by (u, v) the corresponding solution to
(23)-(24) for the sake of simplicity. We now introduce

y(t, x) = u(t, x) + u0(t, x) (27)

and
q(t, x) = v(t, x) + v0(t, x),

as well as the nonlinear operator

Λ : z ∈ L2(Q0) 7−→ y ∈ L2(Q0). (28)

It is standard that any fixed point of Λ will provide a solution (z, q) of (9)-(10) satisfying
moreover √∫

Σ0

|∂nz|2 +

∫
Σ0

|∂nq|2 6 ε,

so that (12) holds true, as a consequence of the Cauchy-Schwarz and Young inequalities.
We remark that F (L2(Q0)) and f ′(L2(Q0)) are bounded sets of L∞(Q0) and that the

solution (u, v) of (23)-(24) depends continuously on their data, so that Λ is continuous.
The expected result will be derived by applying the Schauder fixed point theorem. Accord-

ing to the considerations above, it remains to prove that the range of Λ is relatively compact
in L2(Q). This can be inferred from the point (iii) of Proposition (2.1). Indeed, one has the
following facts:

• F (L2(Q0)) and f ′(L2(Q0)) are bounded sets of L∞(Q0);

• when z spans L2(Q0), trace and compact embedding theorems enable to show that u0

spans a compact set of L2(Q0), ∂nu0 and ∂nv0 span compact sets of L2(Σ0), where
(u0, v0) is the solution of (25)-(26).

We infer that the control kεopt spans a bounded set of L2(Σ0), so that the corresponding solution
u of (23) lies in a compact subset of L2(Q0). Hence, y defined by (27) also spans a compact
subset of L2(Q0), so that there exists a fixed point to the operator Λ defined in (28) and the
proof of Theorem 1.1 is complete.
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3 Insensitizing control for a one or two-parameter family of
deformations in the linear case

The exact insensitizing problem (11), although interesting, appears intricate and we did not
manage to determine sufficient conditions on the parameters of the problem (1) allowing to
ensure it, even in the linear case. In this section, we consider a simplified problem, looking at
insensitizing the functional Φ for several subfamilies of deformations.

3.1 Setting of the problem and comments on the main result

To make the framework precise, consider some M ∈ N∗ and a family of deformation

E = span{V1, . . . ,VM},

where Vi ∈ V3,∞ for all i = 1, . . . ,M .
The condition (3) can be recast in a much simpler form. Indeed, following the computations

done in the proof of Proposition 1.1, this condition writes∫
∂Ω0

(V · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ = 0, ∀V ∈ E ,

where (yΩ0 , qΩ0) denotes the unique solution of the coupled system (9)-(10), or equivalently

U(h) = 0 where [U(h)]i =

∫
∂Ω0

(Vi · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ, i = 1, . . . ,M. (29)

The next section is devoted to proving Theorem 1.2. Let us provide hereafter some exam-
ples of applications for particular choices of families E .

Insensitizing with respect to translations/rotations in a plane. Assume that N > 2.
Insensitizing Φ with respect to all translations comes to consider the family E = span{ε1, ε2, . . . , εN},
with the N (constant) vector fields

ε1 =


1
0
0
...
0

 , ε2 =


0
1
0
...
0

 , . . . , εN =


0
0
...
0
1

 .

If we consider a plane P in RN , which is generated by two vectors E1 and E2, we can also
restrict to all translations that are in the direction of this plane, leading to solve∫

∂Ω0

(Ei · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ = 0, i = 1, 2.

Concerning now the rotations in a plane, assume for the sake of simplicity that we consider
the set of rotations in the plane P = span{ε1, ε2}. Notice first that any rotation Rx0,y0,θ in P
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(assumed to be extended by the identity on P⊥), parametrized by (x0, y0, θ) ∈ R2 × S1 where
(x0, y0) denote the coordinates of the rotation center and θ its angle, is given by

Rx0,y0,θ

(
x
y

)
=

(
x′ = x0 + cos θ(x− x0)− sin θ(y − y0)
y′ = y0 + sin θ(x− x0) + cos θ(y − y0)

)
.

Therefore, insensitizing with respect to all rotations of center (x0, y0) in the plane P leads to
consider the vector field Vx0,y0 given by

Vx0,y0

(
x
y

)
= lim

θ→0

1

θ

(
Rx0,y0,θ

(
x
y

)
−
(
x
y

))
=

(
−(y − y0)
x− x0

)
.

As a consequence, insensitizing with respect to all rotations in the plane leads to consider the
family E = span{V1,V2,V3} with

V1 =


1
0
0
...
0

 , V2 =


0
1
0
...
0

 and V3 =


−y
x
0
...
0

 .

Our results does not cover the case of families of deformation of dimension 3. In the case where
Ω0 is a cylinder of the form B2(0, R) ×

∏N
i=3(ai, bi) (where B2(0, R) is the two-dimensional

euclidean ball of radius R > 0 and ai < bi), one can notice that V3 · n = 0 on Σ0. Therefore,
these considerations lead to the following byproduct of Theorem 1.2.

Corollary 3.1. For any bounded connected domain Ω0 of class C2, there exists a control hT
insensitizing Φ at the first order with respect to all translations in a plane. Furthermore, if
Ω0 is a cylinder of the form B2(0, R) ×

∏N
i=3(ai, bi) (where B2(0, R) is the two-dimensional

euclidean ball of radius R > 0 and ai < bi), the control hT also insensistizes Φ at the first
order with respect to all rotations of the plane span{ε1, ε2}.

3.2 Proof of Theorem 1.2 (case of one/two dimensional families of pertur-
bations)

The proof uses at the same time the density results stated in Proposition 2.1 as well as
geometrical properties of second order curves.

Proof of the case M = 1. Let us consider that E = span(V). Recall that, according to
(29), the problem comes to determine a control function h such that∫

∂Ω0

(V · n)

(∫ T

0
∂nyΩ0∂nqΩ0 dt

)
dσ = 0. (30)

First of all, one remarks that if V · n = 0 on ∂Ω (which is possible since we only assumed
that V is non-zero as a function defined on the whole space RN ), then (30) is automatically
verified. Hence, from now on we assume that V · n 6≡ 0 on ∂Ω.
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Let us recast this question. For that purpose, we introduce the pairs (yξ, qξ) and (yh, qh)
as the solution of the linear systems

∂yξ
∂t
−∆yξ = ξ in Q0,

yξ = 0 on Σ0,
yξ (0, ·) = 0 in Ω0,

(31)


−
∂qξ
∂t
−∆qξ = yξχΘ in Q0,

qξ = 0 on Σ0,
qξ (T, ·) = 0 in Ω0,

(32)

and 
∂yh
∂t
−∆yh = hχω in Q0,

yh = 0 on Σ0,
yh (0, ·) = 0 in Ω0,

(33)


−∂qh
∂t
−∆qh = yhχΘ in Q0,

qh = 0 on Σ0,
qh (T, ·) = 0 in Ω0,

(34)

in such a way that yΩ0 = yξ + yh and qΩ0 = qξ + qh.
Then, the quantity U(h) ∈ R defined in (29) can be decomposed as

U(h) = Q(h) + L(h) + C,

where

Q(h) =

∫
Σ0

(V · n)∂nyh∂nqh dtdσ,

L(h) =

∫
Σ0

(V · n)(∂nyξ∂nqh + ∂nyh∂nqξ) dtdσ,

C =

∫
Σ0

(V · n)∂nyξ∂nqξ dtdσ.

Using this decomposition together with the facts that Q is quadratic in h and L is linear in h,
we claim that the problem comes to find a control function h such that the algebraic equation
U(λh) = 0 with unknown the real number λ, also writing

λ2Q(h) + λL(h) + C = 0,

has a real solution. Hence, the control function λh, where λ denotes a solution of the poly-
nomial equation above, will solve (30). We then infer that it is enough to choose h such that
the discriminant of this equation is positive, namely L(h)2−4Q(h)C > 0. Let us consider two
functions γ1 and γ2 in L2(Σ0) satisfying D(γ1, γ2) > 0, where

D(γ1, γ2) =

(∫
Σ0

(V · n)(∂nyξγ2 + γ1∂nqξ) dtdσ

)2

− 4C

(∫
Σ0

(V · n)γ1γ2 dtdσ

)
.
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We claim that the existence of two such functions is straightforward as soon as V · n 6= 0
almost everywhere on ∂Ω. Now, for a given positive number ε, according to Proposition
2.1, there exists h ∈ L2((0, T ) × ω) such that ∂nyh = γ1 + ε1 and ∂nqh = γ2 + ε2 with
‖ε1‖2L2(Σ0) + ‖ε2‖2L2(Σ0) 6 ε2. Moreover, using several times the triangle and the Cauchy-
Schwarz inequalities leads to the estimate

|L(h)2 − 4Q(h)C −D(γ1, γ2)| ≤ c(γ1, γ2, ‖∂nyξ‖L2(Σ0), ‖∂nqξ‖L2(Σ0)) max
i=1,2

‖V · n‖iL∞(Σ0)ε
i,

where c(γ1, γ2, ‖∂nyξ‖L2(Σ0), ‖∂nqξ‖L2(Σ0)) ∈ R∗+ does not depend on h. Hence, we infer that
it is possible to choose ε > 0 small enough so that L(h)2 − 4Q(h)C > 0 and the desired
conclusion follows.

Proof of the case M = 2. We generalize the approach used in the caseM = 1, by recasting
the main issue to determining whenever two curves of degree 2 in the plane intersect. Let us
first assume that V1.n and V2.n are linearly dependent as functions defined on ∂Ω0 (this is
possible since {V1.n,V2.n} is assumed to be linearly independent as functions defined on the
whole space RN ). Then, there exists some ν ∈ R such that Vi.n = νVj .n for (i, j) = (1, 2)
or (i, j) = (2, 1), so that wehave returned to the previous situation (i.e. M = 1), which
has already been treated. Hence, we assume from now on that V1.n and V2.n are linearly
independent as functions defined on ∂Ω0.

Let us consider two functions h1 and h2 (that we will choose adequately in the sequel) and
let us write h = λh1 + µh2 where (λ, µ) ∈ R2 will also be chosen in the sequel. Hence, the
vector U(h) ∈ R2 can be decomposed as

U(h) =

(
λ2A1(h1) + 2λµB1(h1, h2) + µ2C1(h2) + λD1(h1) + µE1(h2) + F1

λ2A2(h1) + 2λµB2(h1, h2) + µ2C2(h2) + λD2(h1) + µE2(h2) + F2

)
,

where, for i = 1, 2, one has

Ai(h1) =

∫
Σ0

(Vi · n)∂nyh1∂nqh1 dtdσ,

Bi(h1, h2) =
1

2

∫
Σ0

(Vi · n)(∂nyh1∂nqh2 + ∂nyh2∂nqh1) dtdσ,

Ci(h2) =

∫
Σ0

(Vi · n)∂nyh2∂nqh2 dtdσ,

Di(h1) =

∫
Σ0

(Vi · n)(∂nyh1∂nqξ + ∂nyξ∂nqh1) dtdσ,

Ei(h2) =

∫
Σ0

(Vi · n)(∂nyh2∂nqξ + ∂nyξ∂nqh2) dtdσ,

Fi =

∫
Σ0

(Vi · n)∂nyξ∂nqξ dtdσ,

with (yhi , qhi) the pair solving the coupled system (33)-(34) where h has been replaced by hi,
and (yξ, qξ), the pair solving the coupled system (31)-(32).

First of all, let us exclude several trivial cases: If Fi = 0 for i = 1 and/or i = 2, one chooses
hi = 0 and use the previous result for M = 1. Hence, we assume from now on that Fi 6= 0
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(i = 1, 2), meaning in particular that the function (Vi · n)
partialnyξ∂nqξ does not vanish identically on ∂Ω0 for i = 1, 2.

Our strategy in the case M = 2 is to determine first a favorable choice of Neumann traces
(∂nyhi , ∂nqhi) on ∂Ω for the solutions of System (33)-(34) allowing to insensitizing exactly Φ
for the family E . Hence, we will use a perturbative argument to prove that such a favorable
choice is reachable with the help of two control functions h1 and h2. For this last step, we will
strongly exploit Theorem 1.1 (and in particular the density result stated in Proposition 2.1).

To be more precise, our reasoning can be split into two steps:

(i) we assume that there exists two control functions h1 and h2 in L2(Q0) such that ∂nqh1 =
∂nyh2 = 0, ∂nyh1 = f and ∂nqh2 = g for some functions f and g in L2(Σ0). We will
then show that f and g can be chosen adequately to guarantee the existence of a pair
(λ, µ) ∈ R2 so that U(h) = 0;

(ii) according to Proposition 2.1, we consider ε > 0 and two control functions hε,i, i = 1, 2,
such that

‖∂nqh1‖
2
L2(Σ0) + ‖∂nyh2‖

2
L2(Σ0) + ‖∂nyh1 − f‖

2
L2(Σ0) + ‖∂nqh2 − g‖

2
L2(Σ0) 6 ε2. (35)

We will prove the existence of a pair (λ, µ) ∈ R2 such that U(hε) = 0, with hε =
λhε,1 + µhε,2, whenever ε > 0 is chosen small enough.

Step (i). A favorable situation. Assume that there exists two control functions h1 and
h2 in L2(Q0) such that ∂nqh1 = ∂nyh2 = 0, ∂nyh1 = f and ∂nqh2 = g where f and g denote
two elements in L2(Σ0) that will be chosen in the sequel. In that case, one has

U(h) =

(
2λµB̂1 + λD̂1 + µÊ1 + F1

2λµB̂2 + λD̂2 + µÊ2 + F2

)
,

where, for i = 1, 2, one has by definition

B̂i =
1

2

∫
Σ0

(Vi ·n)fg dtdσ, D̂i =

∫
Σ0

(Vi ·n)f∂nqξ dtdσ, Êi =

∫
Σ0

(Vi ·n)∂nyξg dtdσ. (36)

We introduce the following (possibly degenerated) hyperbolae

(H1) = {(λ, µ)|2λµB̂1 + λD̂1 + µÊ1 + F1 = 0}

and
(H2) = {(λ, µ)|2λµB̂2 + λD̂2 + µÊ2 + F2 = 0}.

Moreover, we introduce, for i = 1, 2,

(Hi)+ = {(λ, µ)|2λµB̂i + λD̂i + µÊi + Fi > 0}

and
(Hi)− = {(λ, µ)|2λµB̂i + λD̂i + µÊi + Fi < 0}.

The following result is the main ingredient to understand how to choose f and g.
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Lemma 3.1. Assume that for i = 1, 2, there holds

B̂i 6= 0, ÊiD̂i 6= 2B̂iFi and
D̂2

B̂2

6= D̂1

B̂1

. (37)

Then, the two hyperbolae (H1) and (H2) are non-degenerate and they intersect in the (λ, µ)-
plane if and only if

∆(B̂1, B̂2, D̂1, D̂2, Ê1, Ê2) ≤ 0, (38)

where

∆(B̂1, B̂2, D̂1, D̂2, Ê1, Ê2) =

(
Ê2

2B̂2

− Ê1

2B̂1

)(
D̂2

2B̂2

− D̂1

2B̂1

)

−1

4

(
F1

2B̂1

− F2

2B̂2

+
Ê1F1

4B̂2
1

− Ê2F2

4B̂2
2

−

(
Ê2

2B̂2

− Ê1

2B̂1

)(
D̂2

2B̂2

− D̂1

2B̂1

))2

.

Moreover, if
∆(B̂1, B̂2, D̂1, D̂2, Ê1, Ê2) < 0, (39)

there are exactly two intersecting points and

(H1) ∩ (H2)+ 6= ∅ and (H1) ∩ (H2)− 6= ∅, (40)

meaning that the two hyperbolae intersect non-tangentially.

Proof of Lemma 3.1. Noting that Ω1(−Ê1/(2B̂1),−D̂1/(2B̂1)) is the center of (H1), we
introduce the change of coordinates U = λ + Ê1/(2B̂1) and V = µ + D̂1/(2B̂1) and we will
recast the equations of the hyperbolae in terms of the new coordinates (U, V ). This way, (H1)
becomes centered and its cartesian equation in the (U, V )-plane is

UV = k1 with k1 =
Ê1D̂1

4B̂2
1

− F1

2B̂1

. (41)

Similarly, the equation of (H2) in the (U, V )-plane is

(U −u2)(V − v2) = k2 with u2 =
Ê2

2B̂2

− Ê1

2B̂1

, v2 =
D̂2

2B̂2

− D̂1

2B̂1

, k2 =
Ê2D̂2

4B̂2
2

− F2

2B̂2

. (42)

Since k1 6= 0 and k2 6= 0 by assumption, we infer that the two hyperbolas (H1) and (H2) are
non-degenerate. Moreover, they intersect if and only if the system

UV = k1 and (U − u2)(V − v2) = k2

has a solution. Plugging the relation V = k1/U into the relation (U − u2)(V − v2) = k2

yields that the previous system has a solution if and only if the second order polynomial
v2X

2 + (k2 − k1 − u2v2)X + k1u2 has a nonzero real root. Note that the assumption (37)
yields in particular that v2 6= 0. This is equivalent to claiming that the discriminant of this
polynomial is nonnegative. It rewrites
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u2v2k1 ≤
1

4
(k2 − k1 − u2v2)2,

which is equivalent to condition (38). Assume now that (40) holds, which is equivalent to
assume that the polynomial v2X

2 + (k2 − k1 − u2v2)X + k1u2 has two distinct roots denoted
by r1 < r2. It means that (H1) and (H2) have exactly two intersecting points. Consider some
V1 ∈ R verifying (V1 − r1)(V1 − r2) < 0. Then (k1/V1, V1) ∈ (H1) by (41). Moreover, by (42)
we have that V1 ∈ (H2)±. Now, consider some V2 ∈ R verifying (V2 − r1)(V2 − r2) > 0. Then
(k1/V2, V2) ∈ (H1) by (41). Moreover, by (42) we have that V2 ∈ (H2)∓. The desired result
follows.

We can now state the main result of this step.

Lemma 3.2. With the previous notations and under the assumptions of Theorem 1.2, there
exists (f, g) ∈ (L2(Σ0))2 such that the two hyperbolae having for respective equations

2λµB̂1 + λD̂1 + µÊ1 + F1 = 0, and 2λµB̂2 + λD̂2 + µÊ2 + F2 = 0,

in the (λ, µ)-plane, verifies (37) and (39).

Proof of Lemma 3.2. To simplify these conditions, we will use a homogeneity argument.
Indeed, let f and g be fixed. Changing f into ηf and g into ηg with η ∈ R and making η tend
to +∞ changes condition (37) into

B̂i 6= 0, ÊiD̂i 6= 0, i = 1, 2, and D̂2B̂1 − D̂1B̂2 6= 0, (43)

and condition (39) into
F̂2B̂1 − F̂1B̂2 6= 0. (44)

According to the expression given in (36), and since the product Vi · n∂nyξ∂nqξ (i = 1, 2)
does not vanish identically by assumption, it is an easy task to construct two functions f and
g such that (43) and (44) are verified. For instance, consider any f ∈ L2(Σ0) such that, for
i = 1, 2, ∫

Σ0

(Vi · n)fdtdσ 6= 0,∫
Σ0

(Vi · n)∂nqξf dtdσ 6= 0,∫
Σ0

(Vi · n)∂nyξf dtdσ 6= 0,∫
Σ0

(Vi · n)∂nqξf
2dtdσ 6= 0,

and consider g(ν) = 1 + νf . According to conditions (43) and (44), it is enough to find some
ν ∈ R such that all the following conditions are verified, for i = 1, 2:
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∫
Σ0

(Vi · n)dtdσ + ν

∫
Σ0

(Vi · n)fdtdσ 6= 0,

ν

(∫
Σ0

(V1 · n)∂nqξf dtdσ

∫
Σ0

(V2 · n)∂nqξf
2 dtdσ

−
∫

Σ0

(V2 · n)∂nqξf dtdσ

∫
Σ0

(V1 · n)∂nqξf
2 dtdσ

)
6= 0,(∫

Σ0

(V2 · n)∂nyξ∂nqξ dtdσ

)(∫
Σ0

(V1 · n)∂nqξf + ν

∫
Σ0

(V1 · n)∂nqξf
2 dtdσ

)
−
(∫

Σ0

(V1 · n)∂nyξ∂nqξ dtdσ

)(∫
Σ0

(V2 · n)∂nqξf + ν

∫
Σ0

(V2 · n)∂nqξf
2 dtdσ

)
6= 0.

It is obvious that all real parameter µ apart from a finite number of values verifies the above
relations and the result follows.

Step (ii). Use of the density result. Let ε > 0 and (f, g) be chosen as in the statement
of Lemma 3.2. According to Proposition 2.1, we consider ε > 0 and two control functions hε,i,
i = 1, 2 such that the condition (35) holds true. Let hε = uhε,1 + vhε,2 for some (λ, µ) ∈ R2.
Then, one shows easily by using several times the Cauchy-Schwarz inequality that

U(hε) =

(
u2A1(hε,1) + 2uvB1(hε,1, hε,2) + v2C1(hε,2) + uD1(hε,1) + vE1(hε,2) + F1

u2A2(hε,1) + 2uvB2(hε,1, hε,2) + v2C2(hε,2) + uD2(hε,1) + vE2(hε,2) + F2

)
,

with Ai(hε,1) = o(ε), Bi(hε,1, hε,2) = B̂i + o(ε), Ci(hε,2) = o(ε), Di(hε,1) = D̂i + o(ε),
Ei(hε,2) = Êi + o(ε) for i = 1, 2. Moreover, we claim that, by construction, the coefficients
Ai(hε,1), Bi(hε,1, hε,2), Ci(hε,2), Di(hε,1), Ei(hε,2) for i = 1, 2 can be chosen as continuous
functions of ε in a neighborhood of 0.

As a consequence, whenever ε > 0 is chosen small enough, each line of the system U(hε) = 0
defines a non-degenerated hyperbolic curve since Ai(hε,1)Ci(hε,2) − Bi(hε,1, hε,2)2 = ÂiĈi −
B̂2
i + o(ε) for i = 1, 2. Moreover, the eigenelements associated to the matrices of the quadratic

form defining these hyperbolae converge to the eigenelements of the limit hyperbolae.
Finally, it also follows that for ε > 0 small enough, the two hyperbolae (Hε1) and (Hε2)

having for cartesian equation [U(hε)]1 = 0 and [U(hε)]2 = 0 in the (λ, µ)-plane, converge
uniformly to the respective hyperbolae (H1) and (H2) defined in Lemma 3.1 on each compact
of R2. Since (H1) and (H2) meet non-tangentially, it follows that (Hε1) and (Hε2) do not meet
tangentially as soon as ε is small enough.

4 Conclusion

Considering a semi-linear heat equation with Dirichlet boundary conditions and globally Lip-
schitz nonlinearity, we investigated the issue of insensitizing a quadratic functional of the
state with respect to domain variations. We have first proved an approximated insensitization
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property and second an exact insensitizing property for some finite dimensional families of
deformations, for this functional.

Some open issues and generalizations remain to be investigated. They are in order:

• exact insensitizing property. We did not conclude about the characterization of all
domains Ω0 for which there exists a control h insensitizing exactly the functional Φ. We
have no conjecture to formulate about this issue.

• ebout the generalization of Theorem 1.2. It is plausible that the statement of The-
orem 1.2 can be generalized (at least generically with respect to families of deformations
in V3,∞) to an arbitrary finite number M > 2 of perturbations. We nevertheless did
not manage to prove it. Indeed, our arguments for the low dimensional case rest upon
the fact that, by using geometrical considerations, we were able to recast the issue to
the one of determining a control h satisfying an “open” condition, that is a condition of
the kind G(h) > 0 where G is a functional enjoying some nice continuity properties. In
higher dimensional cases, such a trick seems more intricate to apply.

• extension of our results to other functionals. We foresee to investigate generaliza-
tions of our two main results to more general nonlinear functionals. In such a case, the
insensitizing condition (11) will involve the use of an adjoint term depending nonlinearly
of the state yΩ0 , making the underlying mathematical analysis more intricate.

• extension of our results to other equations. One may wonder if the same kind of
results can be proved for larger classes of equations, notably of hyperbolic type (like the
wave or Euler equations) or of dispersive type (like the Schrödinger equation). However,
the situation is likely to be much more intricate because of some geometric conditions
that may appear on the control domain ω, that are not necessarily stable under pertur-
bations of Ω, and are likely to be not separated from ∂Ω.

References
[1] O. Bodart, P. Demeestere. Sentinels for the Identification of an Unknown Boundary, Math. Models Meth-

ods Appl. Sci. 07, 871 (1997).

[2] O.Bodart and C. Fabre. Controls Insensitizing the Norm of the Solution of a semi-linear Heat Equation,
J. Math. Anal. Appl. 195 (1995), pp. 658-683.

[3] O. Bodart, M. Gonzalez-Burgos and R. Pérez-Garcia. A local result on insensitizing control for a semi-
linear heat equation with nonlinear boundary Fourier conditions, SIAM J. Control Optim. 43 no. 3 (2004),
pp. 955-969.

[4] N. Carreño, S. Guerrero and M. Gueye. Insensitizing controls with two vanishing components for the
three-dimensional Boussinesq system, ESAIM: Control Optim. Calc. Var. 21 (2015), pp. 73-100.

[5] N. Carreño and M. Gueye. Insensitizing controls with one vanishing component for the Navier-Stokes
system, J. Math. Pures Appl. 101 no. 1 (2014), pp. 27-53.

[6] N. Carreño. Insensitizing controls for the Boussinesq system with no control on the temperature equation,
Adv. Differential Equations 22, no. 3/4 (2017), pp. 235-258.

[7] M. Delfour, J.P. Zolésio. Shapes and geometries. Analysis, differential calculus, and optimization, Advances
in Design and Control SIAM, Philadelphia, PA, 2001.

[8] L.de Teresa. Insensitizing Controls for a semi-linear heat equation, Comm. Partial Differential Equations
25 no. 1/2 (2000), pp. 39-72.

21



[9] L. de Teresa and O. Kavian. Unique continuation principle for systems of parabolic equations, ESAIM
Control Optim. Calc. Var. 16 no. (2010) pp. 247-274.

[10] L. de Teresa and E. Zuazua. Identification of the class of initial data for the insensitizing control of the
heat equation, Communication on pure and applied analysis, 8 no. (2009), pp. 457-471.

[11] A. Fursikov and O. Y. Imanuvilov. Controllability of evolution equations,Lecture Notes, Research Institute
of Mathematics, Seoul National University, Korea, 1996.

[12] S. Guerrero. Null controllability of some systems of two parabolic equations with one control force, SIAM
J. Control Optim. 46 no. 2, (2007) pp. 379-394.

[13] S. Guerrero. Controllability of systems of Stokes equations with one control force: existence of insensitizing
controls, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 no. 6 (2007), pp. 1029-1054.

[14] M. Gueye. Insensitizing controls for the Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 30 no. 5 (2013), pp. 825-844.

[15] A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48. Springer-Verlag Berlin Heidel-
berg, 2005.

[16] J.-L. Lions. Remarques préliminaires sur le Contrôle des systèmes a données incomplètes, in Actas del
Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Malaga, 1989, pp. 43-54.

[17] J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation des systèmes distribues. Tome 1, Contro-
labilite exacte, Collection R.M.A 8 (Paris: Masson, 1988).

[18] X. Liu. Insensitizing controls for a class of quasilinear parabolic equations, J. Differential Equations 253
no. 5 (2012), pp. 1287-1316.

[19] F. Méhats, Y. Privat, and M. Sigalotti. On the controllability of quantum transport in an electronic
nanostructure. SIAM J. Appl. Math., 74(6):1870–1894, 2014.

[20] S. Micu, J.H. Ortega and L. de Teresa. An example of ε-insensitizing controls for the heat equation with
no intersecting observation and control regions, Appl. Math. Lett. 17 8 (2004), pp. 927-932.

[21] Y. Privat and M. Sigalotti. The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly
independent, ESAIM Control Optim. Calc. Var. 16 (2010), no. 3, 794–805.

[22] J.-C. Saut and B. Scheurer. Unique continuation for some evolution equations, J. Differential Equations
66 no. 1 (1987), pp.118-139.

[23] Y. Simporé, O. Traoré and O. Nakoulima. Insensitizing control with constraints on the control for the
semi-linear heat equation, Nonlinear studies 20 no. 2 (2013), pp.203-216.

[24] Y. Simporé and O. Traoré. Insensitizing control with constraints on the control of the semi-linear Heat
equation, J. Nonl. Evol. Equ. Appl. 2017 1 (2017), pp. 1-12.

[25] J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization, vol. 16 of Springer Series in Compu-
tational Mathematics, Springer-Verlag, Berlin, 1992.Shape sensitivity analysis.

[26] M. Tucsnak and G. Weiss. Observation and control for operator semigroups, Basel: Birkhauser, 2009.

22


	Introduction
	State of the art
	Statement of the problem and main result
	Reduction of the insensitizing control to a control problem on a coupled system

	Approximated null controllability and approximated sentinel
	An auxiliary linear problem
	The semi-linear case (Proof of Theorem 1.1)

	Insensitizing control for a one or two-parameter family of deformations in the linear case
	Setting of the problem and comments on the main result
	Proof of Theorem 1.2 (case of one/two dimensional families of perturbations)

	Conclusion

