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DESENSITIZING CONTROL FOR THE HEAT EQUATION

WITH RESPECT TO DOMAIN VARIATIONS

by Sylvain Ervedoza, Pierre Lissy & Yannick Privat

Abstract. — This article is dedicated to desensitizing issues for a quadratic functional involving
the solution of the linear heat equation with respect to domain variations. This work can be
seen as a continuation of [28], insofar as we generalize several of the results it contains and
investigate new related properties. In our framework, we consider variations of the spatial
domain on which the solution of the PDE is defined at each time, and investigate three main
issues: (i) approximate desensitizing, (ii) approximate desensitizing combined with an exact
desensitizing for a finite-dimensional subspace, and (iii) exact desensitizing. We provide positive
answers to questions (i) and (ii) and partial results to question (iii).

Résumé (Contrôle désensibilisant pour l’équation de la chaleur par rapport à des variations du
domaine)

Cet article est dédié à l’étude de problèmes de désensibilisation par rapport à des variations
du domaine, pour des fonctionnelles quadratiques dépendant de la solution de l’équation de
la chaleur linéaire. Ce travail peut être vu comme la suite du travail [28], dans la mesure où
nous généralisons un certain nombre de résultats qu’il contient, et où nous nous intéressons
à de nouvelles propriétés en lien avec ce travail. Nous considérons des variations du domaine
spatial sur lequel la solution de l’EDP est définie, et nous nous intéressons à trois questions :
(i) désensibilisation approchée, (ii) désensibilisation approchée couplée avec une propriété de
désensibilisation exacte sur un sous-espace vectoriel de dimension finie, (iii) désensibilisation
exacte. Nous donnons des réponses positives aux points (i) et (ii), et des résultats partiels au
point (iii).
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1398 S. Ervedoza, P. Lissy & Y. Privat

1. Introduction

1.1. Desensitizing controls with respect to domain variations, framework

The goal of this article is to discuss a desensitizing control problem for the heat
equation with respect to variations of the domains (note that this notion has been
popularized by J.-L. Lions [23] under the wording “insensitizing” and can be found
in the literature under both names “insentizing” or “desensitizing”). First results in
this direction have already been obtained in [28]. Introducing this problem precisely
requires some notations, which we choose similar to the ones in [28].

Let T > 0 denote a horizon of time, ω and Θ be two open subsets of Rd, d ∈ N∗,
and ξ ∈ L2(0, T ;L2(Rd)).

For a bounded, connected and open set Ω of Rd of class C 2, we consider the shape
functional Jh, indexed by h ∈ L2(0, T ;L2(ω)), defined by

(1.1) Jh(Ω) =
1

2

∫ T

0

∫
Θ

yΩ,h(t, x)2 dx dt,

where yΩ,h ∈ L2((0, T )× Rd) is defined on (0, T )× Ω as the unique weak solution of

(1.2)


∂y

∂t
−∆y = ξ + h1ω in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y (0, ·) = 0 in Ω,

(1ω denotes the characteristic function of the set ω) extended by 0 outside (0, T )×Ω.
Originally, the desensitizing problem consists in finding a control function such that

some functional depending on the solution of a partial differential equation is locally
insensitive to perturbations of the initial condition. This issue was first raised by
J.-L. Lions in [23]. We refer to Section 1.3 for bibliographical comments. Nevertheless,
up to our knowledge, desensitizing properties with respect to shape variation issues
have been first investigated in [28]. Let us recall here what we are talking about:
given a bounded, connected and open set Ω0 of Rd with C 2 boundary, our goal is
to determine, whenever it exists, a control function h ∈ L2(0, T ;L2(ω)) such that Jh
does not depend on small variations of Ω in a neighbourhood of Ω0 (which will be
made precise in what follows) at first order. In other words, we want to choose the
control function h in such a way that the functional Jh is desensitized with respect
to small variations of the domain.

To give a precise meaning to this, we first remark that this problem is interesting
only if the intersection of these two last sets with Ω0 is nonempty, in which case the
functional Jh only depends on Ω ∩ ω and Ω ∩ Θ. Hence, in the following, we will
assume that Ω0 is a bounded, connected and open set of Rd with a C 2 boundary and
that ω and Θ are open subsets of Ω0.

It is convenient to endow the set of domains with some differential structure.
In what follows, we will use the notion of differentiation in the sense of Hadamard
[13, 20], which is classically used in the framework of shape optimization. This means
that perturbations of Ω0 will be defined by means of well-chosen diffeomorphisms,
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Desensitizing control for the heat equation with respect to domain variations 1399

which have the advantage of preserving some topological features such as connected-
ness, boundedness and regularity.

Accordingly, we introduce the classW 3,∞(Rd,Rd) of admissible vector fields. Then,
for each element V of W 3,∞(Rd,Rd), there exists τV > 0 such that for all τ ∈ [0, τV ),
the mapping T τ := Id +τV defines a diffeomorphism(1) in Rd, i.e., the mapping T τ is
invertible and T−1

τ ∈ W 3,∞(Rd,Rd). Furthermore, since T τ writes as a perturbation
of the identity operator, one easily infers that T τ (Ω0) is a connected, bounded domain
whose boundary T τ (∂Ω0) is of class C 2. It is notable that, in this framework, one has
∂T τ (Ω0) = T τ (∂Ω0). To sum up, the assumption that V belongs to W 3,∞(Rd,Rd)
is essentially technical and preserves the C 2 regularity of the domain boundary once
the domain deformation is applied [13, Chap. 7].

In the sequel, given V ∈W 3,∞(Rd,Rd), we introduce the family {ΩτV }τ∈[0,τV ) of
domains defined by

ΩτV = (Id +τV )(Ω0).

As a consequence of the above discussion, for τ ∈ [0, τV ), each domain ΩτV inherits
the aforementioned properties.

It is then classical (see e.g. [20, Chap. 5]) that the map τ 7→ Jh(ΩτV ) is differen-
tiable in a neighbourhood of τ = 0. In the following result, we provide a workable
expression of the shape derivative dJh(ΩτV )/dτ |τ=0.

Proposition 1.1 ([28, Proof of Prop. 1.1]). — Let ξ ∈ L2(0, T ;L2(Rd)) and h ∈
L2(0, T ;L2(ω)). For all V ∈ W 3,∞(Rd,Rd), the mapping τ 7→ Jh(ΩτV ) is differ-
entiable at τ = 0 and

(1.3) d

dτ
(Jh (ΩτV ))

∣∣∣
τ=0

=

∫
∂Ω0

V · n
(∫ T

0

∂ny0∂nz0 dt

)
dσ,

where the pair (y0, z0) solves the coupled forward-backward system

(1.4)



∂y0

∂t
−∆y0 = ξ + h1ω in (0, T )× Ω0,

y0 = 0 on (0, T )× ∂Ω0,

y0 (0, ·) = 0 in Ω0,

−∂z0

∂t
−∆z0 = 1Θy0 in (0, T )× Ω0,

z0 = 0 on (0, T )× ∂Ω0,

z0 (T, ·) = 0 in Ω0.

(1Θ denotes the characteristic function of the set Θ.)

We now recall the precise definitions of desensitizing controls that will be used
next, introduced in [28, Def. 1.1](2) and much inspired of notions introduced in [25, 5].

(1)To be more precise, it is easy to see that the choice τV = 1/‖V ‖W3,∞ works, by applying the
Banach fixed-point theorem.

(2)The authors restricted the properties below to diffeomorphisms V ∈W 3,∞(Rd,Rd) of norm less
than 1 in this reference, but an easy homogeneity argument enables to give an equivalent definition
for any V ∈W 3,∞(Rd,Rd).

J.É.P. — M., 2022, tome 9



1400 S. Ervedoza, P. Lissy & Y. Privat

Definition 1.2. — Let ξ ∈ L2(0, T ;L2(Rd)). We say that the control function h ∈
L2(0, T ;L2(ω)) desensitizes Jh exactly at Ω0 at the first order with respect to domain
variations if

(1.5) ∀V ∈W 3,∞(Rd,Rd),
d

dτ
(Jh (ΩτV ))

∣∣∣
τ=0

= 0.

Let E be a linear subspace of W 3,∞(Rd,Rd). We say that the control function
h ∈ L2(0, T ;L2(ω)) exactly desensitizes Jh for E at Ω0 at the first order with respect
to domain variations if

(1.6) ∀V ∈ E,
d

dτ
(Jh (ΩτV ))

∣∣∣
τ=0

= 0.

Given ε > 0, we say that the control function h ∈ L2(0, T ;L2(ω)) ε-approximately
desensitizes Jh at Ω0 at the first order with respect to domain variations if

(1.7) ∀V ∈W 3,∞(Rd,Rd),
∣∣∣∣ ddτ (Jh (ΩτV ))

∣∣∣
τ=0

∣∣∣∣ 6 ε‖V ‖W 3,∞(Rd;Rd).

Let us conclude this section by introducing interesting issues related to desensitizing
of the solution of the heat equation with respect to domain variations, that will be
tackled in what follows:

Q.1. (ε-approximate desensitizing). — Let ξ ∈ L2(0, T ;L2(Rd)) and ε > 0. Does there
exist a control function h ∈ L2(0, T ;L2(ω)) that ε-approximately desensitizes Jh at Ω0

in the sense of (1.7)?

Q.1′. (ε-approximate desensitizing and null/approximate controllability). — If the an-
swer to Q.1 is yes, is it possible to choose h ∈ L2(0, T ;L2(ω)) in such a way that it is
also a null control(3) or an ε-approximate control(4) for y0 at time T?

Q.2. (ε-approximate desensitizing and exact desensitizing for a finite-dimensional sub-
space E). — Let ξ ∈ L2(0, T ;L2(Rd)) and ε > 0. Does there exist a control h ∈
L2(0, T ;L2(ω)) that desensitizes Jh exactly for E in the sense of (1.6), and at the
same time that ε-approximately desensitizes Jh in the sense of (1.7)?

Q.2′. (ε-approximate desensitizing, exact desensitizing for a finite-dimensional sub-
space E, and null/approximate controllability). — If the answer to Q.2 is yes, is it
possible to choose h ∈ L2(0, T ;L2(ω)) in such a way that it is also a null control or
an ε-approximate control for y0 at time T , in the sense given in Q.1′?

(3)The wording “null control” refers to a function h such that the solution (y0, z0) of (1.4) satisfies
y0(T ) = 0 in Ω0.

(4)Given yT ∈ L2(Ω0) and ε > 0, the wording “ε-approximate control” refers to a control function
h ∈ L2(0, T ;L2(ω)) such that the solution (y0, z0) of (1.4) satisfies ‖y0(T )− yT ‖L2(Ω0) 6 ε.

J.É.P. — M., 2022, tome 9



Desensitizing control for the heat equation with respect to domain variations 1401

Q.3. (exact desensitizing). — Let ξ ∈ L2(0, T ;L2(Rd)). Is it possible to exactly desen-
sitize the functional Jh in the sense of (1.5)?

If ω and Θ are strongly included in Ω0 and ω∩Θ 6= ∅, Q.1 has been solved in [28],
whereas Q.2 has also been solved in [28] when E is of dimension 1 or 2. The goal of
the present article is to extend the results of [28] to more general geometric settings
and to the more general questions above-mentioned. To be more precise, in the next
section, we will distinguish between the cases where ω and Θ intersect or not (see
Figure 1 below), since approaches to deal with them and the results obtained are
fairly different. In the case ω ∩ Θ = ∅, Q.1 will be tackled in Theorem 1.6 and Q.2
will be tackled in Theorems 1.7. In the case ω∩Θ 6= ∅, Q.1′ will be tackled in Theorem
1.10 and Q.2′ will be tackled in Theorem and 1.11. Finally, we will provide two partial
answers to Q.3 in Theorems 1.14 and 1.15.

Remark 1.3. — According to Proposition 1.1, although all the above questions a
priori depend on ξ ∈ L2(0, T ;L2(Rd)), in reality, they only depend on the restriction
on ξ to Ω0. Thus, in the following, we shall simply take ξ ∈ L2(0, T ;L2(Ω0)) (extended
by 0 on Rd) without loss of generality.

Ω0

Θ

ω

Ω0

Θω

Figure 1. The two main situations investigated: (left) the intersection
set of ω and Θ is empty; (right) the intersection set of ω and Θ is
nonempty.

1.2. Main results. — As we said, the aforementioned desensitizing problems will be
strongly dependent on the relative geometry of the various sets ω, Θ and Ω0, and in
particular depending if the set ω ∩ Θ is empty or not, but we will always make the
following minimal assumption on both sets ω and Θ:

(Hω,Θ) ω and Θ are two nonempty open subsets of Ω0.

Case ω ∩ Θ = ∅ and Θ b Ω0. — To be more precise, the first geometric setting we
consider is the following:

(1.8) ω and Θ satisfy (Hω,Θ), ω ∩Θ = ∅, Θ b Ω0, and Ω0 r Θ is connected.

In this setting, our first result is dedicated to an approximate controllability prop-
erty, whose relation to desensitizing issue will become clear later on. We will then use
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1402 S. Ervedoza, P. Lissy & Y. Privat

it in a crucial way to derive one of the main results of this paper, allowing to partially
answer the question Q.1.

Proposition 1.4. — Assume the geometric setting (1.8). Then, given any (f1, f2) ∈
L2(0, T ;L2(∂Ω0))2, for any ε > 0 and ξ ∈ L2(0, T ;L2(Ω0)), there exists a control
function h ∈ L2(0, T ;L2(ω)) such that the solution (y, z) of

(1.9)



∂y

∂t
−∆y = ξ + h1ω in (0, T )× Ω0,

y = 0 on (0, T )× ∂Ω0,

y (0, ·) = 0 in Ω0,

−∂z
∂t
−∆z = 1Θy in (0, T )× Ω0,

z = 0 on (0, T )× ∂Ω0,

z (T, ·) = 0 in Ω0,

satisfies

(1.10) ‖∂ny − f1‖L2(0,T ;L2(∂Ω0)) + ‖∂nz − f2‖L2(0,T ;L2(∂Ω0)) 6 ε.

Remark 1.5
– Looking carefully at the proof of Proposition 1.4, given in Section 2.2, it is easy

to figure out that the last condition in (1.8) can be relaxed into the following one: ω
intersects every connected component O of Ω0 r Θ verifying that O ∩ ∂Ω 6= ∅.

– As it is classical for approximate controllability results (see [35, 16, 14]),
one can reinforce the above results as follows: if F is a finite-dimensional sub-
space of

(
L2(0, T ;L2(∂Ω0))

)2 and PF denotes the orthogonal projection on F in(
L2(0, T ;L2(∂Ω0))

)2, then, for any (f1, f2) ∈ L2(0, T ;L2(∂Ω0))2, for any ε > 0 and
ξ ∈ L2(0, T ;L2(Ω0)), there exists a control function h ∈ L2(0, T ;L2(ω)) such that
the solution (y, z) of (1.9) satisfies (1.10) and

PF (∂ny, ∂nz) = PF (f1, f2).

As we will see, the proof of Proposition 1.4 given in Section 2.2 mainly relies on
a unique continuation property for the adjoint operator, which consists of coupled
parabolic equations where the coupling coefficients are disjoint from the observation
set. This kind of issues is known to be particularly difficult in the case of coupled
parabolic systems (see e.g. [2] for partial results in one space dimension), and comes
naturally when dealing with desensitizing problems. However, to our knowledge, the
only works dealing with control and observation sets which do not intersect in this
context are [29] in a 1d case and [22]. Though, our result is different, since the unique
continuation property we need to prove Proposition 1.4 is not the one in [29, 22].

A straightforward application of Proposition 1.4, proved in Section 2.1, is the fol-
lowing one:

Theorem 1.6. — Assume the geometric setting (1.8). Then, for all ξ∈L2(0, T ;L2(Ω0))

and ε > 0, there exists a control function h ∈ L2(0, T ;L2(ω)) such that the solution

J.É.P. — M., 2022, tome 9
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(y0, z0) of (1.4) satisfies

(1.11)
∥∥∥∥∫ T

0

∂ny0∂nz0 dt

∥∥∥∥
L1(∂Ω0)

6 ε.

In other words, according to (1.3), the functional Jh is ε-approximately desensitized
by h ∈ L2(0, T ;L2(ω)) at Ω0 in the sense of (1.7).

One can actually prove that the functional Jh can be made exactly desensitized to
any finite-dimensional vector space of W 3,∞(Rd,Rd):

Theorem 1.7. — Assume the geometric setting (1.8). Let E be a finite-dimensional
linear subspace of W 3,∞(Rd,Rd). Then, for all ξ ∈ L2(0, T ;L2(Ω0)) and for all ε > 0,
there exists a control h ∈ L2(0, T ;L2(ω)) that desensitizes Jh exactly for E in the sense
of (1.6) and that ε-approximately desensitizes Jh in the sense of (1.7).

In fact, the main difficulty in Theorem 1.7 is the construction of h such that Jh is
exactly desensitized for E in the sense of (1.6), since the map

(1.12) h ∈ L2(0, T ;L2(ω)) 7−→
(∫ T

0

∂ny0∂nz0 dt

)
∈ L1(∂Ω0),

where the pair (y0, z0) solves (1.4), is not linear in h even in the case ξ = 0, but
quadratic. Therefore, we use techniques specifically designed to deal with such kind
of non-linearities, which consists in choosing the control functions in a vector space
of much larger dimension than the number of constraints. Similarly to what has
been done in another context for the stabilizability of the Navier-Stokes equation,
see [11], if there are N constraints imposed by the exact desensitizing for E, we look
for control functions in a vector space of size (at most) 2N which is suitably designed.
In particular, even if there is one constraint (i.e., if E is a vector space of dimen-
sion 1), we look for the control function in a vector space of dimension (at most) 2,
thus preventing possible obstructions that may appear due to the quadratic nature
of the map in (1.12) (see e.g. [3]). Details of the proof are given in Section 2.3.

Case ω ∩Θ 6= ∅. — The second geometric setting we consider is the case

(1.13) ω and Θ satisfy (Hω,Θ), ω ∩Θ 6= ∅.

This case is more favorable since the control set ω meets the observation set Θ, and
as we shall see afterward, not only do all previously established results remain true,
but this also allows to prove the existence of even better desensitizing controls.

On the ε-approximate desensitizing problem. — To start with, we first claim that
Proposition 1.4 can be reinforced under the geometric setting (1.13).

Proposition 1.8. — Assume the geometric setting (1.13). Then, given any (f1, f2) ∈
(L2(0, T ;L2(∂Ω0)))2, yT ∈ L2(Ω), any ε > 0 and ξ ∈ L2(0, T ;L2(Ω0)), there exists a
control function h ∈ L2(0, T ;L2(ω)) such that the solution (y, z) of (1.9) satisfies

(1.14) ‖∂ny− f1‖L2(0,T ;L2(∂Ω0)) + ‖∂nz− f2‖L2(0,T ;L2(∂Ω0)) + ‖y(T )− yT ‖L2(Ω0) 6 ε.

J.É.P. — M., 2022, tome 9



1404 S. Ervedoza, P. Lissy & Y. Privat

Besides, if the source term ξ ∈ L2(0, T ;L2(Ω0)) is null-controllable in the sense
that there exists hnc ∈ L2(0, T ;L2(ω)) such that the solution ync of

(1.15)


∂ync

∂t
−∆ync = ξ + hnc1ω in (0, T )× Ω0,

ync = 0 on (0, T )× ∂Ω0,

ync (0, ·) = 0 in Ω0,

satisfies

(1.16) ync(T ) = 0 in Ω0,

then, given any (f1, f2) ∈ L2(0, T ;L2(∂Ω0))2, for any ε > 0, there exists a control
function h ∈ L2(0, T ;L2(ω)) such that the solution (y, z) of (1.9) satisfies

(1.17) ‖∂ny − f1‖L2(0,T ;L2(∂Ω0)) + ‖∂nz − f2‖L2(0,T ;L2(∂Ω0)) 6 ε.

and

(1.18) y(T ) = 0 in Ω0.

Remark 1.9. — Determining a control function h such that the solution ync of (1.15)
satisfies (1.16) is the well-known null-controllability problem with source term for the
heat equation. This issue has been much investigated. By using duality arguments, this
issue can be recast in terms of a so-called “observability inequality”. More precisely,
one can deduce from [17, Lem. 2.1] that there exists C > 0 such that

(1.19)
∥∥∥exp

(
− C

T − t

)
ϕ(t)

∥∥∥
L2(0,T ;L2(Ω0))

6 C‖ϕ‖L2(0,T ;L2(ω)),

where ϕ denotes the solution of the backward adjoint system
−∂ϕ
∂t
−∆ϕ = 0 in (0, T )× Ω0,

ϕ = 0 on (0, T )× ∂Ω0,

ϕ (T, ·) = ϕT in Ω0.

From the observability inequality (1.19), we can deduce that for any ξ ∈
L2(0, T ;L2(Ω0)) with eC/(T−t)ξ ∈ L2(0, T ;L2(Ω0)), one can find a null control hnc

to (1.15), i.e., a function hnc ∈ L2(0, T ;L2(ω)) such that the solution ync of (1.15)
satisfies (1.16), as explained in [17, Proof of Th. 2.1].

Again, Proposition 1.8 is based on suitable unique continuation properties for the
adjoint equation. However, here, since ω ∩Θ 6= ∅, the arguments are more standard
for the proof of (1.14) than for the proof of Proposition 1.4. The possibility of further
imposing (1.18) when ξ is a source term that can be null-controlled is much more
subtle, and amounts to a suitable use of duality arguments, inspired by [24], and of
observability estimates for the heat equation given in [17]. Details of the proof are
given in Section 3.1.

As before, a straightforward application of Proposition 1.8 is the following result,
whose proof is postponed to Section 3.2.

J.É.P. — M., 2022, tome 9



Desensitizing control for the heat equation with respect to domain variations 1405

Theorem 1.10. — Assume the geometric setting (1.13). Then, for all

ξ ∈ L2(0, T ;L2(Ω0)), yT ∈ L2(Ω0), ε > 0,

there exists a control function h∈L2(0, T ;L2(ω)) such that the solution (y0, z0) of (1.4)
satisfies (1.11) and

(1.20) ‖y0(T )− yT ‖L2(Ω0) 6 ε.

In other words, according to (1.3), the functional Jh is ε-approximately desensitized by
a control h ∈ L2(0, T ;L2(ω)) at Ω0 in the sense of (1.7). Furthermore, the function h
also ε-approximately controls the state y0 of (1.4) at time T , in the sense that (1.20)
is verified.

Similarly, if the source term ξ ∈ L2(0, T ;L2(Ω0)) is null-controllable in the sense
that there exists hnc ∈ L2(0, T ;L2(ω)) such that the solution ync of (1.15) satisfies
(1.16), then, there exists a control function h such that solution (y0, z0) of (1.4) sat-
isfies (1.11) and

(1.21) y0(T ) = 0 in Ω0.

In other words, if the source term ξ is null-controllable at time T > 0, the func-
tional Jh is ε-approximately desensitized by a control h ∈ L2(0, T ;L2(ω)) at Ω0 in the
sense of (1.7), which also steers the state y0 of (1.4) exactly to 0 at time T .

One can also improve Theorem 1.7 in the case of the geometric setting (1.13):

Theorem 1.11. — Assume the geometric setting (1.13), and let E be a finite-
dimensional subspace of W 3,∞(Rd,Rd).

Then, for all ξ ∈ L2(0, T ;L2(Ω0)) and yT ∈ L2(Ω0), for all ε > 0, there exists a
control h ∈ L2(0, T ;L2(ω)) that desensitizes Jh exactly for E in the sense of (1.6),
ε-approximately desensitizes Jh in the sense of (1.7), and which approximately con-
trols y0 at time T in the sense of (1.20).

Besides, if the source term ξ ∈ L2(0, T ;L2(Ω0)) is null-controllable, then, there
exists a control h ∈ L2(0, T ;L2(ω)) that desensitizes Jh exactly for E in the sense
of (1.6), ε-approximately desensitizes Jh in the sense of (1.7), and which steers y0

to 0 at time T in the sense of (1.21).

Here again, the proof of Theorem 1.11 is a rather simple adaptation of the one of
Theorem 1.7, based on the stronger results given by Proposition 1.8.

Remark 1.12. — Remark that Theorems 1.10 and 1.11 can be reinterpreted in terms
of robustness of null and approximate controllability properties: they notably enable
us to find a null or approximate control h for the heat equation

∂y

∂t
−∆y = ξ + h1ω in (0, T )× Ω0,

y = 0 on (0, T )× ∂Ω0,

y (0, ·) = 0 in Ω0,
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so that the functional Jh is robust to small variations of the domain, in the sense
that this control makes Jh insensitive at the first order to small perturbations of the
domain.

On the exact desensitizing problem. — Note that in both geometric settings dis-
cussed so far, the question of exact desensitizing control has not been addressed.
We now propose to study some cases in which we can solve the desensitizing problem.
Let us start with the rather straightforward case Θ b ω.

Proposition 1.13. — Let ω and Θ be non-empty open subsets of Ω0 such that

(1.22) Θ b ω.

Then, for all ξ∈L2(0, T ;L2(Ω0)), there exists h∈L2(0, T ;L2(ω)) such that the func-
tional Jh in (1.1) is exactly desensitized in the sense of (1.5).

Proposition 1.13, proved in Section 4.1, in fact considers an easy case, in which we
can ensure that with a suitable choice of a control function, the solution y0 of (1.4)
vanishes in (0, T )×Θ, so that the associated function z0 satisfying (1.4) vanishes in
(0, T )× Ω0 and the result easily follows from (1.3).

Let us now consider a more subtle case, in which the outer boundary of Θ is
included in ω.

Theorem 1.14. — Let ω and Θ be smooth non-empty open subsets of Ω0 such that

(1.23) ∂Θ has only one connected component, Θ b Ω0, and ∂Θ ⊂ ω.

Then, for all ξ ∈ L2(0, T ;L2(Ω0)), there exists h ∈ L2(0, T ;L2(ω)) such that the
functional Jh in (1.1) is exactly desensitized in the sense of (1.5).

The strategy to prove this theorem is to choose the control function h such that the
solution z0 of (1.4) vanishes close to the boundary ∂Ω0. Thus, using (1.3), the exact
desensitizing of Jh will immediately follow. In order to do that, we will interpret the
function y0 in (1.4) as a control function for z0 whose goal is to impose the condition
z0 = 0 outside (0, T ) × Θ, and we then define h in terms of y by (1.4). We refer to
Section 4.2 for the proof of Theorem 1.14.

These two positive results should very likely not be considered as the usual case.
In fact, we can discuss the case Θ = Ω0 with more details:

Theorem 1.15. — Assume that Ω0 is smooth (of class C∞), that Θ = Ω0 and that ω
is a non-empty open subset of Ω0 such that ω b Ω0. Then, there exists a function
ξ ∈ L2(0, T ;L2(Ω0)) such that there exists no h ∈ L2(0, T ;L2(ω)) such that Jh sat-
isfies (1.5). In other words, there are some ξ ∈ L2(0, T ;L2(Ω0)) such that the exact
desensitizing problem cannot be solved.

The proof of this result is given in Section 4.3, and in fact only involves regularity
issues.
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1.3. Bibliographical comments. — We comment briefly on the bibliography, empha-
sizing particularly the works related to the heat equation (linear or non-linear) and
dedicated approaches to solving problems related to functional desensitizing.

The question of functional desensitizing has been first introduced in [25, 5]. How-
ever, in [25, 5], the functionals under consideration were desensitized with respect to
perturbation of the initial datum or of the source term, while we are discussing a new
kind of desensitizing, with respect to perturbation of the domain.

Still, our approach is of course strongly inspired by the one developed in [25, 5],
in which it was shown how unique continuation properties can be used to solve approx-
imate desensitizing problems. It was then further developed to many settings, in par-
ticular when the control set and the observation set intersect.

Regarding the standard issue of desensitizing a given functional (often the L2 norm
of the state in some observation subset) involving the solution of the heat equation
with respect to initial data, the general approach consists in recasting the (exact or
approximated) desensitizing property in terms of an adjoint state, leading to consider a
coupled system of forward-backward heat equations. Hence, exact desensitizing comes
to investigate a null-controllability property which can in general be recast through an
observability inequality (see [32, 4, 6] where Carleman based approaches are consid-
ered and [33], in which a Fourier approach is used). The question of ε-approximated
desensitizing comes in general to solve an approximate controllability problem, lead-
ing to derive a unique continuation property (see [29, 22], in which spectral methods
are employed). We also mention [18, 19, 10, 9, 8] where a functional involving the
solution of another equations arising in Fluid Mechanics is considered.

1.4. Further comments and open problems. — In this article, we investigate and
discuss three desensitizing properties with respect to domain variations. To conclude
this introduction, we outline three open issues and hints that complement the study
presented in this article and that we plan to address in the future.

Open problem #1. — Note that we were not able to answer questions Q.1′ and Q.2′
when ω ∩ Θ = ∅. The main difference with the case ω ∩ Θ 6= ∅ is that the approx-
imate controllability results we are able to prove in the case ω ∩ Θ = ∅ is weaker
than in the case ω ∩ Θ 6= ∅, compare Proposition 1.4 and Proposition 1.8. As one
can check from the proofs, the stronger statement in Proposition 1.8 comes by dual-
ity from unique continuation properties for a coupled parabolic system, namely the
unique continuation property (3.2) for the solutions of (3.1). Whether this unique
continuation property holds when ω ∩Θ = ∅ is an open problem.

Open problem #2. — Can we answer the three questions Q.1 – Q.2 – Q.3 posed in
this article, analyzing desensitizing issues with respect to domain variations, when
the statement of problem is modified as follows:

– the heat equation (1.2) is replaced by more general controlled parabolic equa-
tions, e.g. semi-linear problems, Stokes or Navier-Stokes systems or a controlled wave
equation (the analysis of desensitizing issues with respect to initial data in these two
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cases have been notably investigated in [18] for Stokes equations, and in [31, 30, 1]
for waves). Note that this is very likely difficult to handle with the arguments deve-
loped here, since they are based on approximate controllability statements (recall
Propositions 1.4 and 1.8);

– the shape functional with respect to which desensitizing is performed is replaced
by a more general one of the kind∫ T

0

∫
Θ

j(y(t, x),∇y(t, x)) dx dt,

where j : R1+d → R is a given function, and y denotes the solution of the considered
controlled system.

Open problem #3. — Can the answers provided in this article related to exact desensi-
tizing be completed? In particular, what can be expected in the case where Θ ( Ω0?
Is it possible to answer positively or negatively to questions Q.1′ and Q.2′ when
ω ∩Θ = ∅? Can one identify the set of functions ξ in L2(0, T ;L2(Rd)) for which Q.3
holds true?

1.5. Outline. — This article is organized as follows. Section 2 studies the case (1.8),
i.e., ω∩Θ = ∅ and Θ b Ω0, and gives the proofs of Proposition 1.4, Theorem 1.6, and
Theorem 1.7. Section 3 then focuses on the case (1.13), i.e., ω∩Θ 6= ∅, and provides the
proofs of Proposition 1.8, Theorem 1.10 and Theorem 1.11. Then, Section 4 presents
the proofs of the results on exact desensitizing control, namely Proposition 1.13,
Theorem 1.14 and Theorem 1.15.

2. The case ω ∩Θ = ∅ and Θ b Ω0

In this whole section, we assume the geometric setting described in (1.8).

2.1. Proof of Proposition 1.4. — Proposition 1.4 can be recast in an abstract form
into the problem: show that

RanL = (L2(0, T ;L2(∂Ω0)))2,

where L is the operator defined for h ∈ L2(0, T ;L2(ω)) by

Lh = (∂nyh, ∂nzh) ∈ L2((0, T )× ∂Ω0)2,

where (yh, zh) solves

(2.1)



∂yh
∂t
−∆yh = h1ω in (0, T )× Ω0,

yh = 0 on (0, T )× ∂Ω0,

yh (0, ·) = 0 in Ω0,

−∂zh
∂t
−∆zh = 1Θyh in (0, T )× Ω0,

zh = 0 on (0, T )× ∂Ω0,

zh (T, ·) = 0 in Ω0.
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Notice that L is bounded, thanks to [15, Th. 5, p. 382] and the continuity of the op-
erator f ∈ H2(Ω0) 7→ ∂nf ∈ L2((0, T ) × ∂Ω0). Therefore, by standard arguments
from functional analysis, Proposition 1.4 is equivalent to showing the dual property
KerL∗ = {0} (we refer for instance to [7, Cor. 2.18]). Using the arguments developed in
[28, Prop. 2.1], one can compute explicitly L∗ and deduce that KerL∗ = {0} is equiv-
alent to the following unique continuation problem: If (g1, g2) ∈ (L2(0, T ;L2(∂Ω0)))2,
and (ψ,ϕ) solves

(2.2)



−∂ψ
∂t
−∆ψ = 1Θϕ in (0, T )× Ω0,

ψ = g1 on (0, T )× ∂Ω0,

ψ (T, ·) = 0 in Ω0,
∂ϕ

∂t
−∆ϕ = 0 in (0, T )× Ω0,

ϕ = g2 on (0, T )× ∂Ω0,

ϕ (0, ·) = 0 in Ω0,

then, we have the following unique continuation property:

(2.3) ψ = 0 in (0, T )× ω =⇒ g1 = g2 = 0.

We now prove this unique continuation property. Let (g1, g2) ∈ (L2(0, T ;L2(∂Ω0)))2

be such that the solution (ψ,ϕ) of (2.2) satisfies ψ = 0 in (0, T ) × ω. From [27,
(15.17–18), p. 86], we notably infer that (ψ,ϕ) ∈ L2((0, T )× Ω0).

We first work in the set (0, T ) × (Ω0 r Θ). There, ψ satisfies the usual backward
heat equation

−∂ψ
∂t
−∆ψ = 0 in (0, T )× (Ω0 r Θ),

where we do not specify any initial or boundary conditions. Therefore, since ω ⊂
Ω0 r Θ and Ω0 r Θ is connected thanks to Assumption (1.8), using the Holmgren
theorem for the heat equation (see e.g. [21, §8.6 & Th. 8.6.5]), we thus infer that ψ = 0

in (0, T ) × (Ω0 r Θ). In particular, using [34, Prop. 7.1.3], since ψ the unique weak
solution of (2.2) in the sense of [34, Def. 7.1.2, p. 342], for any ζ ∈ H2(Ω0) ∩H1

0 (Ω0)

such that ∆ζ ∈ H1
0 (Ω0), for any t ∈ [0, T ], we have∫ t

0

∫
(0,T )×∂Ω0

g1∂nζdσdt = 0.

Differentiating this inequality with respect to t (which is possible because

g1(·, x)∂nζ(x) ∈ L2(0, T ) for almost all x ∈ (0, T )× ∂Ω0,

since the Neumann trace operator f ∈ H2(Ω0) 7→ ∂nf ∈ L2(∂Ω0) is well-defined),
we obtain that for any t ∈ [0, T ], we have∫

∂Ω0

g1(t, ·)∂nζdσ = 0.
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Since {ζ ∈ H2(Ω0) ∩ H1
0 (Ω0) | ∆ζ ∈ H1

0 (Ω0)} is dense in H2(Ω0) ∩ H1
0 (Ω0) for the

H2-norm, using the continuity of the Neumann trace operator

f ∈ H2(Ω0) 7−→ ∂nf ∈ L2((0, T )× ∂Ω0),

we deduce that for any ζ ∈ H2(Ω0) ∩H1
0 (Ω0), we have, for any t ∈ [0, T ],∫

∂Ω0

g1(t, ·)∂nζdσ = 0.

Since the extended trace operator

f ∈ H2(Ω) 7−→ (f|∂Ω0
, ∂nf|∂Ω0

) ∈ H3/2(∂Ω0)×H1/2(∂Ω0)

is surjective, taking into account that 0 ∈ H3/2(∂Ω0), we deduce that for any h ∈
H1/2(∂Ω0), we have, for any t ∈ [0, T ],∫

∂Ω0

g1(t, ·)hdσ = 0.

Since H1/2(∂Ω0) is dense in L2(∂Ω0) for the L2(∂Ω0)-norm, we deduce that g1 = 0

on (0, T )× ∂Ω0, so that ψ ≡ 0 on Ω0 r Θ in the classical sense. Notably, ∂nψ = 0 on
the whole boundary ∂Ω0 since Θ b Ω0.

We next remark that, by standard local regularity results for solutions of the heat
equation, the function ϕ is smooth away from the boundary {0, T} × ∂Ω0 (of class
C∞((0, T ) × Ω0)). Accordingly, 1Θϕ belongs to L2(0, T ;L2(Ω)), and by standard
maximal regularity results, the solution ψ belongs to

L2(0, T ;H2
loc(Ω0)) ∩H1(0, T ;L2

loc(Ω0)).

In view of this regularity, and due to the fact that ψ = 0 in a neighbourhood of
(0, T )× ∂Ω0, we can multiply equation (2.2)(1) by ϕ and perform several integration
by parts, using g1 = ∂nψ = 0 on ∂Ω0, and ψ = 0 in (0, T )× (Ω0 r Θ):∫ T

0

∫
Θ

|ϕ|2 dx dt =

∫ T

0

∫
Ω0

ϕ
(
−∂ψ
∂t
−∆ψ

)
dx dt

= −
∫

Ω0

ϕ(·, x)ψ(·, x) dx
∣∣∣T
0
−
∫ T

0

∫
∂Ω0

ϕ∂nψdσdt

+

∫ T

0

∫
∂Ω0

∂nϕψdσdt+

∫ T

0

∫
Ω0

(∂ϕ
∂t
−∆ϕ

)
ψ dx dt

= 0.

Therefore, ϕ = 0 in (0, T ) × Θ, and by the classical unique continuation properties
for the heat equation, ϕ = 0 in (0, T )× Ω0, and in particular g2 = 0. This concludes
the proof of (2.3) for the solutions of (2.2), which proves that KerL∗ = {0}. Hence,
Proposition 1.4 follows.
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2.2. Proof of Theorem 1.6. — The proof of Theorem 1.6 mainly reduces to Propo-
sition 1.4. Indeed, from Proposition 1.4 with f1 = f2 = 0, for any ε > 0, there exists
a control function h ∈ L2(0, T ;L2(ω)) such that the solution (y0, z0) of (1.4) satisfies

(2.4) ‖∂ny0‖L2(0,T ;L2(∂Ω0)) + ‖∂nz0‖L2(0,T ;L2(∂Ω0)) 6
√
ε.

Accordingly, using (1.3), we infer (1.11) and

∀V ∈ E,

∣∣∣∣ ddτ (J (ΩτV ))
∣∣∣
τ=0

∣∣∣∣ 6 ε‖V · n‖L∞(∂Ω0),

which concludes the proof of Theorem 1.6, by using the fact that W 3,∞(Rd,Rd) is
included into the space of continuous vector fields, so that

‖V ‖L∞(∂Ω0) 6 ‖V ‖C 0(Ω0) 6 ‖V ‖W 3,∞(Ω0).

2.3. Proof of Theorem 1.7. — Before proving Theorem 1.7, let us give an insight of
the strategy of our proof. It will be divided into three steps.

– First step: we will treat the case of the exact desensitizing for Jh with respect to
a finite dimensional space E of dimension 1, in the sense of (1.6), in order to explain
the main idea behind our proof. This case was already studied and analyzed with
different techniques in [28].

– Second step: we will explain how to modify our first step to the case of the exact
desensitizing for Jh with respect to any finite dimensional space E, in the sense of
(1.6), by using the Brouwer fixed point Theorem.

– Last step: we will explain how the construction made in the previous step together
with the use of Proposition 1.4 ensures that one can simultaneously solve the ε-
approximate desensitizing of Jh and its exact desensitizing with respect to a finite
dimensional space E.
Recall that we assume the geometric setting (1.8).

First step: exact desensitizing in the case E = Span{V }. — Let us fix some V ∈
W 3,∞(Rd;Rd) supposed to be non-zero, and let us consider the case E = Span{V },
i.e., the case of a one-dimensional vector space E, and only focus on the proof of exact
desensitizing of Jh with respect to E = Span{V }.

Recall that, according to (1.3), the exact desensitizing problem for E is equivalent
to determining a control function h ∈ L2(0, T ;L2(ω0)) such that

(2.5)
∫
∂Ω0

(V · n)

(∫ T

0

∂ny0∂nz0 dt

)
dσ = 0,

where (y0, z0) solves (1.4).
Of course, if V · n = 0 on ∂Ω0 (which may happen since we only assumed that V

is non-zero as a function defined in Rd), then (2.5) is automatically verified and
the problem is trivial. Hence, from now on, we assume that V · n does not vanish
identically on ∂Ω0.
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To study condition (2.5), we introduce the pairs (yξ, zξ) and (yh, zh) as the solutions
of the linear systems

∂yξ
∂t
−∆yξ = ξ in (0, T )× Ω0,

yξ = 0 on (0, T )× ∂Ω0,

yξ (0, ·) = 0 in Ω0,

(2.6)


−∂zξ
∂t
−∆zξ = yξχΘ in (0, T )× Ω0,

zξ = 0 on (0, T )× ∂Ω0,

zξ (T, ·) = 0 in Ω0,

(2.7)


∂yh
∂t
−∆yh = h1ω in (0, T )× Ω0,

yh = 0 on (0, T )× ∂Ω0,

yh (0, ·) = 0 in Ω0,

(2.8)


−∂zh
∂t
−∆zh = yhχΘ in (0, T )× Ω0,

zh = 0 on (0, T )× ∂Ω0,

zh (T, ·) = 0 in Ω0.

(2.9)

This allows to decompose the solution (y0, z0) of (1.4) as

y0 = yξ + yh, and z0 = zξ + zh.

Now, we introduce the function

U : L2(0, T ;L2(ω)) −→ R

defined for h ∈ L2(0, T ;L2(ω)) by

U(h) =

∫
∂Ω0

(V · n)

(∫ T

0

(∂nyξ + ∂nyh)(∂nzξ + ∂nzh) dt

)
dσ,

so that condition (2.5) can be simply reformulated as U(h) = 0.
Our goal is to find h ∈ L2(0, T ;L2(ω)) such that U(h) = 0. To construct such a

function h, we will look for a two-dimensional vector space spanned by two elements h1

and h2 in L2(0, T ;L2(ω)) such that the function U vanishes for at least one element
of Span{h1, h2}, i.e., we want to show that

(2.10) ∃ (h1, h2) ∈ L2(0, T ;L2(ω))2, ∃ (λ1, λ2) ∈ R2 such that U(λ1h1 + λ2h2) = 0.

To show that this can be done, we observe that the map

h ∈ L2(0, T ;L2(ω)) −→
(
∂nyh, ∂nzh) ∈ (L2(0, T ;L2(∂Ω0))

)2
is linear, hence it is obvious that the function U can be decomposed as follows

U(h) = Q(h) + L(h) + C,
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where Q is quadratic in h, L is linear in h and C does not depend on h:

Q(h) =

∫
∂Ω0

(V · n)

(∫ T

0

∂nyh∂nzh dt

)
dσ,(2.11)

L(h) =

∫
∂Ω0

(V · n)

(∫ T

0

(∂nyξ∂nzh + ∂nyh∂nzξ) dt

)
dσ,

C =

∫
∂Ω0

(V · n)

(∫ T

0

∂nyξ∂nzξ dt

)
dσ.

Accordingly, problem (2.10) amounts to finding h1, h2 in L2(0, T ;L2(ω)) and λ1, λ2

in R such that

(2.12) λ2
1Q11(h1) + λ1λ2Q12(h1, h2) + λ2

2Q22(h2) + λ1L1(h1) + λ2L2(h2) + C = 0,

where

Q11(h1) =

∫
∂Ω0

(V · n)

(∫ T

0

∂nyh1
∂nzh1

dt

)
dσ,

Q12(h1, h2) =

∫
∂Ω0

(V · n)

(∫ T

0

(∂nyh1∂nzh2 + ∂nyh2∂nzh1) dt

)
dσ,

Q22(h2) =

∫
∂Ω0

(V · n)

(∫ T

0

∂nyh2
∂nzh2

dt

)
dσ,

L1(h1) =

∫
∂Ω0

(V · n)

(∫ T

0

(∂nyh1
∂nzξ + ∂nyξ∂nzh1

) dt

)
dσ,

L2(h2) =

∫
∂Ω0

(V · n)

(∫ T

0

(∂nyh2∂nzξ + ∂nyξ∂nzh2) dt

)
dσ.

Our strategy then reduces to choose h1 and h2 such that the Neumann traces
(∂nyhi , ∂nzhi), i = 1, 2 in L2(0, T ;L2(∂Ω0)) for the solutions of (2.8)–(2.9) with hi,
allows to guarantee the existence of a solution (λ1, λ2) ∈ R2 to (2.12).

Let us choose (γi,y, γi,z) in (L2(0, T ;L2(∂Ω0)))2 for i = 1, 2 as follows:

γ1,y =
(V · n)

‖V · n‖2L2(∂Ω0)

1(0,T/2)

T
, γ1,z = 1(T/2,T ),

γ2,y =
(V · n)

‖V · n‖2L2(∂Ω0)

1(T/2,T )

T
, γ2,z = 1(0,T/2).

We easily have that∫ T

0

γ1,y(t, x)γ1,z(t, x) dt = 0, for all x ∈ ∂Ω0,∫ T

0

γ2,y(t, x)γ2,z(t, x) dt = 0, for all x ∈ ∂Ω0,∫ T

0

(γ1,y(t, x)γ2,z(t, x) + γ2,y(t, x)γ1,z(t, x)) dt =
(V · n)(x)

‖V · n‖2L2(∂Ω0)

, for all x ∈ ∂Ω0.
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If it were possible to find some h1 ∈ L2(0, T ;L2(ω)) and h2 ∈ L2(0, T ;L2(ω)) such
that

(2.13) (∂nyh1 , ∂nzh1 , ∂nyh2 , ∂nzh2) = (γ1,y, γ1,z, γ2,y, γ2,z),

then, we would have Q11 = Q22 = 0 and Q12 = 1, so that equation (2.12) with
λ2 = |λ1| would become

λ1|λ1|+ λ1L1(h1) + |λ1|L2(h2) + C = 0,

which can obviously be solved for some λ1 ∈ R according to the intermediate value
theorem, since the left hand-side goes to −∞ when λ1 → −∞ and to +∞ when
λ1 → +∞ while being continuous on R.

Unfortunately, we cannot a priori find h1∈L2(0, T ;L2(ω)) and h2∈L2(0, T ;L2(ω))

such that (2.13) exactly holds, but Proposition 1.4 ensures that (2.13) approximately
holds, in the following sense: for any α > 0, there exists hα1 ∈ L2(0, T ;L2(ω)) and
hα2 ∈ L2(0, T ;L2(ω)) such that

‖∂nyhα1 − γ1,y‖L2(0,T ;L2(∂Ω0)) 6 α,

‖∂nqhα1 − γ1,q‖L2(0,T ;L2(∂Ω0)) 6 α,

‖∂nyhα2 − γ2,y‖L2(0,T ;L2(∂Ω0)) 6 α,

‖∂nqhα2 − γ2,q‖L2(0,T ;L2(∂Ω0)) 6 α.

Accordingly, with this choice of hα1 and hα2 , the quadratic part Q that is given in
(2.11) is only slightly perturbed in the sense that

|Q11(hα1 )|+ |Q12(hα1 , h
α
2 )− 1|+ |Q22(hα2 )| 6 Cα,

where C only depends on the norm of (γi,y, γi,z)i∈{1,2} in L2(0, T ;L2(∂Ω0)). Therefore,
taking α > 0 such that Cα 6 1/2, and choosing (h1, h2) = (hα1 , h

α
2 ), we get that

|Q(λ1h1 + |λ1|h2)− λ1|λ1|| 6
|λ1|2

2
.

Accordingly, the continuous function λ1 ∈ R 7→ Q(λ1h1 + |λ1|h2) goes to −∞ as
λ1 → −∞ and to +∞ as λ1 →∞, and hence, the function

λ1 ∈ R 7−→ U(λ1h1 + |λ1|h2)

inherits the same property. Hence, it vanishes for some λ1 ∈ R.
This concludes the proof of exact desensitizing of Jh for a vector space E is of

dimension 1.

Second step: exact desensitizing for a finite-dimensional vector space E. — Now, we assu-
me that E is of finite dimension N > 2. Our goal is to mimic the method developed
when E was a one-dimensional vector space, replacing the intermediate value theorem
by a Brouwer fixed point argument.

Let E = {V · n, V ∈ E}, which is itself a finite dimensional subspace of L2(∂Ω0)

of dimension M 6 N , and choose an orthonormal basis (V k · n)k∈[[1,M ]] of E for the
canonical inner product on L2(∂Ω0).
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Following the previous case, for all k ∈ [[1,M ]], we introduce

(2.14) Uk(h) :=

∫
∂Ω0

(V k · n)

(∫ T

0

(∂nyξ + ∂nyh)(∂nzξ + ∂nzh) dt

)
dσ,

where yh, zh, yξ and zξ are defined in (2.6), (2.7), (2.8) and (2.9).
According to (1.6), the desensitizing problem for Jh for the family E amounts to

finding a function h ∈ L2(0, T ;L2(ω)) such that for all k ∈ [[1,M ]], Uk(h) = 0.
As in the first step, for all k ∈ [[1,M ]], the function Uk can be decomposed as

(2.15) Uk(h) = Qk(h) + Lk(h) + Ck,

where Qk is quadratic in h, Lk is linear in h and Ck does not depend on h:

Qk(h) =

∫
∂Ω0

(V k · n)

(∫ T

0

∂nyh∂nzh dt

)
dσ,(2.16)

Lk(h) =

∫
∂Ω0

(V k · n)

(∫ T

0

(∂nyξ∂nzh + ∂nyh∂nzξ) dt

)
dσ,(2.17)

Ck =

∫
∂Ω0

(V k · n)

(∫ T

0

∂nyξ∂nzξ dt

)
dσ.(2.18)

For each k ∈ [[1,M ]], we introduce the following elements of L2(0;T ;L2(∂Ω0)):

γk,1,y =
(V k · n)

‖V k · n‖2L2(∂Ω0)

M

T
1((k−1)T/M,(2k−1)T/(2M)),

γk,1,z = 1((2k−1)T/(2M),kT/M),

γk,2,y =
(V k · n)

‖V k · n‖2L2(∂Ω0)

M

T
1((2k−1)T/(2M),kT/M),

γk,2,z = 1((k−1)T/M,(2k−1)T/(2M)).

It is then easy to check that

(2.19) ∀ (i, j, k) ∈ [[1,M ]]3, (a, b) ∈ {1, 2}2,∫
∂Ω0

V k · n
(∫ T

0

(γi,a,yγj,b,z + γj,b,yγi,a,z) dt

)
dσ = δi,j,k1a 6=b,

where δi,j,k denotes the Kronecker symbol (δi,j,k = 1 if and only if i = j = k, and = 0

otherwise).
Now, for k ∈ [[1,M ]] and a ∈ {1, 2}, using Proposition 1.4, for any α > 0, there

exists hαk,a∈L2(0, T ;L2(ω)) such that the solution (yhαk,a , zhαk,a) of (2.8)–(2.9) satisfies:

(2.20) ‖∂nyhαk,a − γk,a,y‖L2(0,T ;L2(∂ Ω0)) + ‖∂nzhαk,a − γk,a,y‖L2(0,T ;L2(∂ Ω0)) 6 α.

Using (2.19) and (2.20), we easily show that, for any λ = (λk)k∈[[1,M ]] ∈ RM , for
any k ∈ [[1,M ]], ∣∣∣∣Qk( M∑

j=1

(λjh
α
j,1 + |λj |hαj,2)

)
− λk|λk|

∣∣∣∣ 6 Cα‖λ‖2RM ,
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for some C > 0 independent of α, where Qk is defined in (2.16). Therefore, choosing
α > 0 small enough such that Cα 6 1/(2M) and dropping the superscript α from
now on, we have, for all λ = (λk)k∈[[1,M ]] ∈ RM , for any k ∈ [[1,M ]],

(2.21)
∣∣∣∣Qk( M∑

j=1

(λjhj,1 + |λj |hj,2)

)
− λk|λk|

∣∣∣∣ 6 1

2M
‖λ‖2RM .

Our next goal is to check that

(2.22) ∃ (λk)k∈[[1,M ]] ∈ RM , ∀ k ∈ [[1,M ]], Uk

( M∑
j=1

(λjhj,1 + |λj |hj,2)

)
= 0,

where Uk is defined in (2.14). Based on the decomposition (2.15), in order to do that,
we will use a fixed point argument. We introduce the continuous function s : R→ R
given by

s(y) =

{√
y if y > 0,

−
√
−y if y < 0.

Now, let us define the mapping

F : λ = (λk)k∈[[1,M ]] ∈ RM 7−→ λ̂ = (λ̂k)k∈[[1,M ]] ∈ RM ,

where, for all k ∈ [[1,M ]], λ̂k is defined as

λ̂k = s

(
−
(
Qk

( M∑
j=1

(λjhj,1 + |λj |hj,2)

)
− λk|λk|

)
− Lk

( M∑
j=1

(λjhj,1 + |λj |hj,2)

)
− Ck

)
,

for Qk, Lk and Ck given in (2.16)–(2.17)–(2.18). Notably, by definition of s, we have

(2.23) λ̂k |λ̂k| = −
(
Qk

( M∑
j=1

(λjhj,1 + |λj |hj,2)

)
−λk|λk|

)
− Lk

( M∑
j=1

(λjhj,1 + |λj |hj,2)

)
− Ck.

Using the identity (2.23), one easily checks that if (λk)k∈[[1,M ]] ∈ RM is a fixed
point of F , then, it solves the problem (2.22).

It is clear that the function F is continuous in RM . We will simply show that it
maps a ball into itself and conclude using Brouwer fixed point theorem. In order to
prove that, we use the bound (2.21) and the following straightforward estimates: for
all k ∈ [[1,M ]],∣∣∣∣Lk( M∑

j=1

(λjhj,1 + |λj |hj,2)

)∣∣∣∣ 6 C ‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2‖λ‖RM ,

|Ck| 6 C̃ ‖(∂nyξ, ∂nzξ)‖2(L2(0,T ;L2(∂Ω0)))2 ,

where C̃ is a positive constant (independent of k ∈ [[1,M ]] and of ξ).
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Accordingly, by denoting ‖·‖RM the euclidean norm, one has for all λ ∈ RM ,

‖λ̂‖2RM 6
1

2
‖λ‖2RM + C̃ ‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2‖λ‖RM

+ C̃ ‖(∂nyξ, ∂nzξ)‖2(L2(0,T ;L2(∂Ω0)))2

6
3

4
‖λ‖2RM + 2C̃ ‖(∂nyξ, ∂nzξ)‖2(L2(0,T ;L2(∂Ω0)))2 .

In particular, setting

R = 2
√

2C̃ ‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2 ,

where C̃ denotes the constant in the previous estimate, the closed ball of RM of
radius R (for the euclidean norm) is stable by F . Therefore, by Brouwer fixed point
theorem, there exists λ ∈ RM in the closed ball of radius R such that F (λ) = λ.

This proves the existence of λ = (λk)k∈[[1,M ]] ∈ RM satisfying (2.22) and with the
bound

(2.24) ‖λ‖RM 6 Ĉ ‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2 ,

for some positive constant Ĉ. In particular, this bound implies that the corresponding
control

(2.25) h =

M∑
j=1

(λjhj,1 + |λj |hj,2),

and the corresponding controlled trajectory (yh, zh) of (2.8)–(2.9) satisfies

(2.26) ‖h‖L2(0,T ;L2(ω)) + ‖(yh, zh)‖(L2(0,T ;H2(Ω0)))2

+ ‖(∂nyh, ∂nzh)‖(L2(0,T ;L2(∂Ω0)))2

6 C‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2 ,

for some positive constant C.

Last step: adding the approximate desensitizing property. — The idea there is to decom-
pose the approximate and exact desensitizing problems. To be more precise, we will
choose the control h in two steps, under the form h = h0 + h1, where h0 is used to
get the approximate desensitizing property, and h1 is then chosen afterward to get
the exact desensitizing property in the directions of E.

Given ξ ∈ L2(0, T ;L2(Ω0)) and ε > 0, we set

ε0 =

√
ε

C + 1
, where C is the constant in (2.26).

According to Proposition 1.4, there exists h0 ∈ L2(0, T ;L2(ω)) such that the solution
(y, z) of (1.9) satisfies

(2.27) ‖(∂ny, ∂nz)‖(L2(0,T ;L2(∂Ω0)))2 6 ε0.
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Now, we set ξ1 = ξ + h01ω, which belongs to L2(0, T ;L2(Ω0)). According to the
previous paragraph applied for the source term ξ1, there exists h1 ∈ L2(0, T ;L2(ω))

such that

(2.28) ∀V ∈ E,

∫
∂Ω0

(V · n)

(∫ T

0

∂ny0∂nz0 dt

)
dσ = 0,

where (y0, z0) is the solution of

(2.29)



∂y0

∂t
−∆y0 = ξ1 + h11ω = ξ + (h0 + h1)1ω in (0, T )× Ω0,

y0 = 0 on (0, T )× ∂Ω0,

y0 (0, ·) = 0 in Ω0,

−∂z0

∂t
−∆z0 = 1Θy0 in (0, T )× Ω0,

z0 = 0 on (0, T )× ∂Ω0,

z0 (T, ·) = 0 in Ω0.

Besides,
∂ny0 = ∂ny + ∂nyh1

, ∂nz0 = ∂nz + ∂nzh1
,

so that the bounds (2.26) and (2.27) imply

‖(∂ny0, ∂nz0)‖(L2(0,T ;L2(∂Ω0)))2 6 (C + 1)ε0,

where C is the constant in (2.26). We then easily get that, for all V ∈W 3,∞(Rd,Rd),∣∣∣∣∫
∂Ω0

(V · n)

(∫ T

0

∂ny0∂nz0 dt

)
dσ

∣∣∣∣ 6 (C + 1)2ε2
0‖V · n‖L∞(∂Ω0)

6 ε‖V · n‖L∞(∂Ω0)

6 ε‖V · n‖W 3,∞(Ω0).

In other words, h = h0 + h1 exactly desensitizes Jh for E and ε-approximately desen-
sitizes Jh.

3. The case ω ∩Θ 6= ∅

In this whole section, we assume the geometric setting (1.13).

3.1. Proof of Proposition 1.8. — Similarly to the proof of Proposition 1.4, we refor-
mulate the first part of Proposition 1.8, i.e., the approximate controllability property
(1.14), as the density of the range of the operator L defined for h ∈ L2(0, T ;L2(ω))

with values in (L2(0, T ;L2(∂Ω0)))2 × L2(Ω0) by

L(h) = (∂ny, ∂nz, y(T )),

where (y, z) is the solution of (2.1). Arguments similar to the one developed in the
proof of Proposition 1.4 imply that L is a bounded operator. By using similar classical
arguments resting upon duality, as in the proof of Proposition 1.4, one has RanL =

(L2(0, T ;L2(∂Ω0)))2 × L2(Ω0) if and only if KerL∗ = {0} (we refer for instance to
[7, Cor. 2.18]). Using the arguments developed in [28, Prop. 2.1] together with [12,
Th. 2.43, p. 56] (in order to take into account the term y(T ) in the definition of L),
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one can compute explicitly L∗ and deduce that KerL∗ = {0} is equivalent to the
following unique continuation problem: if (g1, g2, ψT ) ∈ (L2(0, T ;L2(∂Ω0)))2×L2(Ω0),
and (ψ,ϕ) solves

(3.1)



−∂ψ
∂t
−∆ψ = 1Θϕ in (0, T )× Ω0,

ψ = g1 on (0, T )× ∂Ω0,

ψ (T, ·) = ψT in Ω0,
∂ϕ

∂t
−∆ϕ = 0 in (0, T )× Ω0,

ϕ = g2 on (0, T )× ∂Ω0,

ϕ (0, ·) = 0 in Ω0,

then, we have the following unique continuation property:

(3.2) ψ = 0 in (0, T )× ω =⇒ g1 = g2 = 0 and ψT = 0.

Let us then take (g1, g2, ψT ) ∈ (L2(0, T ;L2(∂Ω0)))2 × L2(Ω0), (ψ,ϕ) solving (3.1)
with ψ = 0 in (0, T ) × ω. Then the equation (3.1) on ψ implies that ϕ = 0 in
(0, T ) × (ω ∩Θ). The classical unique continuation property for the heat equation
(for instance, by the Holmgren uniqueness theorem, see e.g. [21, §8.6 & Th. 8.6.5])
then applies to ϕ and ϕ = 0 in (0, T )×Ω0. Following arguments similar to the proof
of Proposition Proposition 1.4, we deduce that g2 = 0, and that ψ solves the heat
equation

−∂ψ
∂t
−∆ψ = 0, in (0, T )× Ω0.

Since ψ = 0 in (0, T )× ω, we immediately deduce again, from the Holmgren unique-
ness theorem (see e.g. [21, §8.6 & Th. 8.6.5]), that ψ = 0 in (0, T ) × Ω0. Since
ψ ∈ C0([0, T ], H−1(Ω0)) (see e.g. [34, Prop. 7.1.3]), the initial datum ψT vanishes
as well. Following arguments similar to the proof of Proposition Proposition 1.4,
we deduce that g1 = 0.

This finishes the proof of the unique continuation property (3.2) for solutions
of (3.1), hence the proof of the first part of Proposition 1.8, i.e., of the approximate
controllability property (1.14).

Let us now focus on the proof of the null-controllability property when ξ ∈
L2(0, T ;L2(Ω0)) can be steered to 0 using a control hnc∈L2(0, T ;L2(ω)), in the sense
that the solution ync of (1.15) satisfies (1.16).

Then, for any ε > 0 and f1, f2 in L2(0, T ;L2(∂Ω0)), we look for y, z and h

respectively as y = ync + y1, z = z1 and h = hnc + h1, where (y1, z1) satisfies

(3.3)



∂y1

∂t
−∆y1 = h11ω in (0, T )× Ω0,

y1 = 0 on (0, T )× ∂Ω0,

y1 (0, ·) = 0 in Ω0,

−∂z1

∂t
−∆z1 = 1Θ(ync + y1) in (0, T )× Ω0,

z1 = 0 on (0, T )× ∂Ω0,

z1 (T, ·) = 0 in Ω0,
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and

(3.4)
{
‖∂ny1 − f̃1‖L2(0,T ;L2(∂Ω0)) + ‖∂nz1 − f2‖L2(0,T ;L2(∂Ω0)) 6 ε,

y1(T ) = 0 in Ω0,

where

(3.5) f̃1 = f1 − ∂nync.

In order to do that, we consider the functional Kε defined for

(g1, g2, ψT ) ∈ (L2(0, T ;L2(∂Ω0)))2 × L2(Ω0)

by

Kε(g1, g2, ψT ) =
1

2

∫ T

0

∫
ω

|ψ(t, x)|2 dx dt

+

∫ T

0

∫
∂Ω0

(
f̃1g1 + f2g2

)
dσdt+

∫ T

0

∫
Ω0

1Θy0ϕ+ ε‖(g1, g2)‖(L2(0,T ;L2(∂Ω0)))2 ,

where (ψ,ϕ) is the solution of (3.1) corresponding to (g1, g2, ψT ).
Then, we endow the set

X0 = (L2(0, T ;L2(∂Ω0)))2 × L2(Ω0)

with the norm

‖(g1, g2, ψT )‖2obs =

∫ T

0

∫
ω

|ψ(t, x)|2 dx dt+

∫ T

0

∫
∂Ω0

(
|g1|2 + |g2|2

)
dσdt,

where ψ is the solution of (3.1). The fact that this defines a norm comes from the
unique continuation property (3.2). Then, we define

Xobs = X0
‖·‖obs

.

We claim that Kε can be extended continuously to Xobs. Indeed, let us emphasize
that for (g1, g2, ψT ) ∈ Xobs, ψ|(0,T )×ω is well defined by density as an element of
L2(0, T ;L2(ω)) since the function (g1, g2, ψT ) ∈ X0 7→ ψ|(0,T )×ω is well-defined on X0

and continuous (by construction) for the topology of Xobs, and that we have the
following straightforward estimate of the solution ϕ of (3.1): there exists C > 0 such
that for any (g1, g2, ψT ) ∈ X0,

(3.6) ‖ϕ‖L2(0,T ;L2(Ω0)) 6 C‖g2‖L2(0,T ;L2(∂Ω0)) 6 C‖(g1, g2, ψT )‖obs.

Now, given (g1, g2, ψT ) ∈ X0, ψ satisfies the backward heat equation (3.1). We then
introduce the solution ψ1 of

−∂ψ1

∂t
−∆ψ1 = 0 in (0, T )× Ω0,

ψ1 = g1 on (0, T )× ∂Ω0,

ψ1 (T, ·) = 0 in Ω0,

which belongs to L2(0, T ;L2(Ω0)), with

‖ψ1‖L2(0,T ;L2(Ω0)) 6 C‖g1‖L2(0,T ;L2(∂Ω0)).
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Next, ψ − ψ1 satisfies the heat equation with homogeneous Dirichlet boundary con-
ditions, so that classical Carleman estimates, see for instance [34, Th. 9.4.1] (after
having bounded the weight function α(x) by some constant C > 0 from above and
by 1 from below) implies

‖e−C/(t(T−t))(ψ − ψ1)‖L2(0,T ;L2(Ω0))

6 C‖ψ − ψ1‖L2(0,T ;L2(ω)) + C‖ − ∂tψ −∆ψ‖L2(0,T ;L2(Ω0)).

Using that the backward heat equation is well posed, standard energy estimates show
that

‖e−C/(T−t)(ψ − ψ1)‖L2(0,T ;L2(Ω0))

6 C‖ψ − ψ1‖L2(0,T ;L2(ω)) + C‖ − ∂tψ −∆ψ‖L2(0,T ;L2(Ω0)).

In particular,

‖e−C/(T−t)ψ‖L2(0,T ;L2(Ω0)) 6 C‖ψ‖L2(0,T ;L2(ω)) + C‖ϕ‖L2(0,T ;L2(Ω0))

+ C‖g1‖L2(0,T ;L2(∂Ω0))

6 C‖(g1, g2, ψT )‖obs.

Hence, by density of X0 in Xobs, to each (g1, g2, ψT ) ∈ Xobs, we can associate a
solution (ψ,ϕ) to 

−∂ψ
∂t
−∆ψ = 1Θϕ in (0, T )× Ω0,

ψ = g1 on (0, T )× ∂Ω0,
∂ϕ

∂t
−∆ϕ = 0 in (0, T )× Ω0,

ϕ = g2 on (0, T )× ∂Ω0,

ϕ (0, ·) = 0 in Ω0,

such that for all T ′ < T , ψ ∈ L2(0, T ′;L2(Ω0)). We can thus apply the unique con-
tinuation property (3.2) with T replaced by T ′, using the same strategy as before
relying on Holmgren’s uniqueness theorem, and we obtain that if, for (g1, g2, ψT ) ∈
Xobs we have ψ|(0,T ′)×ω = 0 then ϕ and ψ vanishes identically on (0, T ′). Since
T ′ ∈ (0, T ) is arbitrary, we deduce that the unique continuation property (3.2) extends
to (g1, g2, ψT ) ∈ Xobs.

Classical contradiction arguments relying on (3.2) (see e.g. [14]) then give that

(3.7) lim inf
‖(g1,g2,ψT )‖obs→∞

Kε(g1, g2, ψT )

‖(g1, g2, ψT )‖obs
> ε.

Indeed, let us prove (3.7) by contradiction. Assume that there exists a sequence
(g1,n, g2,n, ψT,n) ∈ Xobs such that

(3.8)


ρn := ‖(g1,n, g2,n, ψT,n)‖obs →∞ as n→∞,

α := lim supn→∞
Kε(g1,n, g2,n, ψT,n)

‖(g1,n, g2,n, ψT,n)‖obs
< ε.
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We first renormalize the corresponding functions, and set

(g̃1,n, g̃2,n, ψ̃T,n) =
(g1,n, g2,n, ψT,n)

‖(g1,n, g2,n, ψT,n)‖obs
,

so that

(3.9) ‖(g̃1,n, g̃2,n, ψ̃T,n)‖obs = 1.

Therefore, there exists (g̃1, g̃2, ψ̃T ) in Xobs such that

(3.10) (g̃1,n, g̃2,n, ψ̃T,n) weakly converges to (g̃1, g̃2, ψ̃T ) in Xobs as n −→∞.

According to (3.8), we have

(3.11) 1

2
(ρn)2

∫ T

0

∫
ω

|ψ̃n|2 dx dt+ ρn

(∫ T

0

∫
∂Ω0

(
f̃1g̃1,n + f2g̃2,n

)
dσdt

+

∫ T

0

∫
Ω0

χΘy0ϕ̃n + ε‖(g̃1,n, g̃2,n)‖(L2(0,T ;L2(∂Ω0)))2

)
6 αρn.

By (3.6) and (3.10), the sequence(∫ T

0

∫
∂Ω0

(
f̃1g̃1,n + f2g̃2,n

)
dσdt+

∫ T

0

∫
Ω0

χΘy0ϕ̃n

+ ε‖(g̃1,n, g̃2,n)‖(L2(0,T ;L2(∂Ω0)))2

)
n∈N

is uniformly bounded in n. Therefore, dividing by ρn and using that ρn → +∞ when
n→∞, we infer

lim
n→∞

(∫ T

0

∫
ω

|ψ̃n|2 dx dt
)

= 0,

hence
ψ̃ = 0 in (0, T )× ω.

We also deduce, according to (3.9), that

lim
n→∞

‖(g̃1,n, g̃2,n)‖(L2(0,T ;L2(∂Ω0)))2 = 1.

Furthermore, using the unique continuation property (3.2), which has been shown to
be also valid for elements of Xobs, we deduce that

(g̃1, g̃2, ψ̃T ) = (0, 0, 0).

In particular, according to (3.10) and the equation satisfied by ϕ̃,

lim
n→∞

(∫ T

0

∫
∂Ω0

(
f̃1g̃1,n + f2g̃2,n

)
dσdt+

∫ T

0

∫
Ω0

χΘy0ϕ̃n

+ ε‖(g̃1,n, g̃2,n)‖(L2(0,T ;L2(∂Ω0)))2

)
= ε,

which is in contradiction with (3.11), since α was assumed to be smaller than ε

by (3.8). This concludes the proof of the coercivity estimate (3.7).
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Therefore, since the functional Kε is also obviously strictly convex on Xobs, it ad-
mits a unique minimizer (g∗1 , g

∗
2 , ψ

∗
T ) ∈ Xobs. Writing the Euler-Lagrange equation

satisfied by the minimizer gives that, setting

h1 = ψ∗ in (0, T )× ω,

the corresponding solution (y1, z1) of (3.3) satisfies (3.4). We refer for instance to
[14, Th. 1.2 and its proof] for further details about the approach considered here.
To conclude the proof of Proposition 1.8, we set (y, z) = (y1 + ync, z1). Since (y1, z1)

satisfies (3.3) and ync satisfies (1.15), (y, z) is a solution of (1.9), verifying moreover
(1.17) and (1.18), thanks to (3.4), (3.5) and (1.16).

3.2. Proof of Theorem 1.10. — The proof of Theorem 1.10 mainly reduces to Propo-
sition 1.8, similarly as for the proof of Theorem 1.6, that follows from Proposition 1.4.

When the goal is to get the approximate controllability for y0 at time T > 0,
i.e., (1.20), the only novelty is that for any ε > 0 and yT ∈ L2(Ω0), we should
take the control function h ∈ L2(0, T ;L2(ω)) such that the solution (y0, z0) of (1.4)
satisfies (2.4) and (1.20), which can be done according to Proposition 1.8.

When the goal is to get null-controllability of y0 at time T when ξ is null-con-
trollable, the argument is basically the same, by using a control function h ∈
L2(0, T ;L2(ω)) such that the solution (y0, z0) of (1.4) satisfies the estimate (2.4), i.e.,

‖∂ny0‖L2(0,T ;L2(∂Ω0)) + ‖∂nz0‖L2(0,T ;L2(∂Ω0)) 6
√
ε,

and (1.18).
Details are left to the reader.

3.3. Proof of Theorem 1.11. — Here again, the proof of Theorem 1.11 is very similar
to the one of Theorem 1.7. We focus on the case in which we only want approximate
controllability of y0 at time T since the other case in which we want null-controllability
at time T when ξ is null-controllable can be deduced similarly, following the proof of
Theorem 1.7.

To be more precise, we will choose the control h in two steps, under the form
h = h0 + h1, where h0 is used to get the approximate desensitizing property and the
approximate controllability of y0 at time T , and h1 is then chosen afterward to get
the exact desensitizing property in the directions of E.

We assume that E is of finite dimension N > 2. Let E = {V ·n | V ∈ E}, which is
itself a finite dimensional subspace of L2(∂Ω0) of dimensionM 6 N . Now, we proceed
exactly as in the proof of Theorem 1.7 by choosing, for a parameter α > 0 to be chosen
later, for k ∈ [[1,M ]], a ∈ {1, 2}, control functions hαk,a such that (2.20) holds and

(3.12) ‖yhαk,a(T )‖L2(Ω0) 6 1,

where yhαk,a solves (2.8)–(2.9). Note that this can be done according to Proposition 1.8.
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Then, the same arguments as before yields the following result: there exists h of
the form (2.25) with λ ∈ RM satisfying (2.24) such that for all V ∈ E,∫

∂Ω0

V · n
(∫ T

0

(∂nyξ + ∂nyh)(∂nzξ + ∂nzh) dt

)
dσ = 0,

where (yξ, zξ) solves (2.6)–(2.7) and (yh, zh) solves (2.8)–(2.9). Besides, combin-
ing (2.24), (2.25) and (3.12), the corresponding controlled trajectory (yh, zh) of
(2.8)–(2.9) satisfies:

(3.13) ‖h‖L2(0,T ;L2(ω)) + ‖(yh, zh)‖(L2(0,T ;H2(Ω0)))2 + ‖yh(T )‖L2(Ω0)

+ ‖(∂nyh, ∂nzh)‖(L2(0,T ;L2(∂Ω0)))2

6 C‖(∂nyξ, ∂nzξ)‖(L2(0,T ;L2(∂Ω0)))2 .

Therefore, to solve the problem of approximate desensitizing of Jh, exact desen-
sitizing of Jh for E and approximate controllability (1.20), we do as in the proof of
Theorem 1.11: for any ε > 0, setting

ε0 =
min{

√
ε, ε}

C + 1
,

where C is the constant in (3.13), we start by taking h0 ∈ L2(0, T ;L2(ω)) such that
the solution (y, z) of (1.9) satisfies

‖(∂ny, ∂nz)‖(L2(0,T ;L2(∂Ω0)))2 + ‖y(T )− yT ‖L2(Ω0) 6 ε0,

which can be done according to Proposition 1.8.
Setting ξ1 = ξ + h01ω, which belongs to L2(0, T ;L2(Ω0)), by the previous para-

graph and the estimate (3.13) applied for the source term ξ1, there exists h1 ∈
L2(0, T ;L2(ω)) such that the identity (2.28) holds for all V ∈ E, where (y0, z0) denotes
the solution of (2.29) and the solution (yh1

, zh1
) of (2.8)–(2.9) satisfies the bound

‖yh1
(T )‖L2(Ω0) + ‖(∂nyh1

, ∂nzh1
)‖(L2(0,T ;L2(∂Ω0)))2 6 Cε0.

Besides,
y0(T ) = y(T ) + yh1

(T ), ∂ny0 = ∂ny + ∂nyh1
, ∂nz0 = ∂nz + ∂nzh1

,

so that
‖y0(T )− yT ‖L2(Ω0) + ‖(∂ny0, ∂nz0)‖(L2(0,T ;L2(∂Ω0)))2 6 (C + 1)ε0,

where C is the constant in (3.13). Then, we easily get that, for all V ∈W 3,∞(Rd,Rd),∣∣∣∣∫
∂Ω0

(V · n)

(∫ T

0

∂ny0∂nz0 dt

)
dσ

∣∣∣∣ 6 (C + 1)2ε2
0‖V · n‖L∞(∂Ω0)

6 ε‖V · n‖L∞(∂Ω0)

6 ε‖V · n‖W 3,∞(Ω0),

while
‖y0(T )− yT ‖L2(Ω0) 6 (C + 1)ε0 6 ε.

In other words, h = h0 + h1 exactly desensitizes Jh for E, ε-approximately desensi-
tizes Jh and ε-approximately controls y0 at time T .
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4. The exact desensitizing problem

4.1. Proof of Proposition 1.13. — We fix ξ ∈ L2(0, T ;L2(Rd)), and we introduce
the solution yξ of 

∂tyξ −∆yξ = ξ, (t, x) ∈ (0, T )× Ω0,

yξ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω0,

yξ(0, x) = 0, x ∈ Ω0,

According to (1.22), there exists a smooth function η = η(x) such that η = 1 in Ω0rω
and η = 0 in Θ. Then, we set

y0(t, x) = η(x)yξ(t, x), for (t, x) ∈ (0, T )× Ω0,

which solves (1.4) with control function

1ω(x)h(t, x) = (η(x)− 1)ξ(t, x)− [∆, η]yξ(t, x), for (t, x) ∈ (0, T )× Ω0,

where [∆, η]yξ(t, x) := ∆(ηyξ)− η∆yξ. Note that 1ωh is localized in ω because of the
support properties of η.

Therefore, y0 vanishes in (0, T ) × Θ, hence the associated function z0 such that
(y0, z0) satisfies (1.4) is identically zero. In particular, according to (1.3), we immedi-
ately have the exact desensitizing property (1.5).

4.2. Proof of Theorem 1.14. — We start by introducing open sets ω0, ω1, ω2, and ω3

such that
∂Θ ⊂ ω0 b ω1 b ω2 b ω3 b ω,

which is possible thanks to Assumption (1.23). We also introduce a smooth function
η23 = η23(x) taking value 1 in Ω r ω3 and vanishing in ω2.

We fix ξ ∈ L2(0, T ;L2(Rd)), and we introduce the solution yξ to
∂tyξ −∆yξ = η23ξ, (t, x) ∈ (0, T )× Ω0,

yξ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω0,

yξ(0, x) = 0, x ∈ Ω,

and the solution zξ to

(4.1)


−∂tzξ −∆zξ = η12 yξ1Θ, (t, x) ∈ (0, T )× Ω0,

zξ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω0,

zξ(T, x) = 0, x ∈ Ω0.

where η12 =η12(x) is a smooth function taking value 1 in Ω0rω2 and vanishing in ω1.
Then, we introduce a smooth function η01 = η01(x) such that η01 vanishes in ω0

and equal to 1 in Ω0 rω1, so that 1Θη01 is actually a smooth function taking value 1

in Θrω1 and vanishing in ω0∪ (Ω0rΘ). Then z0(t, x) = 1Θ(x)η01(x)zξ(t, x) satisfies
−∂tz0 −∆z0 = η01η12 yξ1Θ − [∆,1Θη01] zξ, (t, x) ∈ (0, T )× Ω0,

z0(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω0,

z0(T, x) = 0, x ∈ Ω0,
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and, by construction,

z0(t, x) = 0 for all (t, x) ∈ (0, T )× (Ω0 r Θ).

Now, we remark that by construction, [∆,1Θη01]zξ is localized in ω1 ∩ Θ. Besides,
local regularity results for (4.1) imply that zξ is C 2([0, T ]× ω1 ∩Θ). We then take

y0(t, x) = η01(x)η12(x)yξ(t, x)− [∆,1Θη01]zξ(t, x), for all (t, x) ∈ (0, T )× Ω0,

which satisfies (1.4) for h given for (t, x) ∈ (0, T )× Ω0 by

h(t, x) = (η01(x)η12(x)η23(x)− 1)ξ(t, x)− [∆, η01η12]yξ(t, x)

− (∂t −∆)([∆,1Θη01]zξ)(t, x).

This control function h is localized in (0, T )×ω due to the conditions on the support
of η01, η12, η23. This concludes the proof of Theorem 1.14.

4.3. Proof of Theorem 1.15. — Firstly, we consider a function g ∈ C 4(∂Ω0) such
that g is nowhere C 5(∂Ω0) (such functions form a dense set in the sense of Baire of
C 4(∂Ω0) and thus exist).

Then, we introduce a function q∗ ∈ H4(Ω0) such that

q∗(x) = 0 for x ∈ ∂Ω0, ∂nq∗(x) = g(x) for x ∈ ∂Ω0,

∆q∗(x) = 0 for x ∈ ∂Ω0, ∂n∆q∗(x) = g(x) for x ∈ ∂Ω0,

whose existence is guaranteed by classical trace theorems, see e.g. [26, Chap. 1,
Th. 8.3], and we choose a smooth non-negative function η = η(t) such that

η(0) = η(T ) = η′(0) = 0 and
∫ T

0

η(t)2 dt = 1.

Then, we set, for (t, x) ∈ (0, T )× Ω0,

zξ(t, x) = η(t)q∗(x),

yξ(t, x) = −∂tzξ(t, x)−∆zξ(t, x) = −η′(t)q∗(x)− η(t)∆q∗(x),

ξ(t, x) = ∂tyξ(t, x)−∆yξ(t, x).

Note that ξ ∈ L2(0, T ;L2(Ω0)) since q∗ ∈ H4(Ω0).
Assume that we can solve the exact desensitizing problem for this choice of ξ.

Hence, from (1.5) and formula (1.3), there exists h ∈ L2(0, T ;L2(ω)) such that

(4.2) ∀x ∈ ∂Ω0,

∫ T

0

∂ny0(t, x)∂nz0(t, x) dt = 0,

where (y0, z0) solves (1.4). Now, we decompose y0 as

y(t, x) = yξ(t, x) + yh(t, x),

where yh is the solution of (2.8), and z0 as

z0(t, x) = zξ(t, x) + zh(t, x), (t, x) ∈ (0, T )× Ω0,

where zh solves (2.9).
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From (4.2), for all x ∈ ∂Ω0,

0 =

∫ T

0

(∂nyξ + ∂nyh)(∂nzξ + ∂nzh) dt

= −(g(x))2 + g(x)

∫ T

0

(η(t)∂nyh(t, x)− (η′(t) + η(t))∂nzh(t, x)) dt

+

∫ T

0

∂nyh(t, x) ∂nzh(t, x) dt,

where we used that
∂nyξ = −(η + η′)g, ∂nzξ = ηg.

Since ω b Ω0, the regularizing properties of the heat equation imply that yh is
smooth close to the boundary [0, T ]×∂Ω0, and thus so is zh. Therefore, the quantities

a0(x) =

∫ T

0

(η(t)∂nyh(t, x)− (η′(t) + η(t))∂nzh(t, x)) dt,

a1(x) =

∫ T

0

∂nyh(t, x) ∂nzh(t, x) dt,

are smooth (C∞) in ∂Ω0. Since for all x ∈ ∂Ω0, g(x) is a real root to the polynomial
−X2 +Xa0(x) + a1(x), we necessarily have that for all x ∈ ∂Ω0, a0(x)2 + 4a1(x) > 0

and for all x ∈ ∂Ω0,

g(x) ∈
{1

2

(
a0(x) +

√
a0(x)2 + 4a1(x)

)
,

1

2

(
a0(x)−

√
a0(x)2 + 4a1(x)

)}
.

In particular, if there exists x0 ∈ ∂Ω such that a0(x0)2 > 4a1(x0), since g is continu-
ous, there is a sign s ∈ {−1, 1} such that in a neighbourhood of x0 (in ∂Ω) in which
a2

0 + 4a1 stays positive,

g(x) =
1

2

(
−a0(x) + s

√
a0(x)2+4a1(x)

)
,

implying in particular that g is smooth (C∞) in a neighbourhood of x0, which con-
tradicts the choice of g.

Thus, for all x ∈ ∂Ω0, we should have a0(x)2+4a1(x) = 0, so that g(x) = −a0(x)/2.
But this would again imply that g is smooth in ∂Ω0, thus contradicting the choice
of g.

We have thus obtained a contradiction. There cannot be any control h ∈
L2(0, T ;L2(ω)) such that the condition (4.2) holds.
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