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Abstract

In this paper, we consider the cost of fast controls for a large class of linear equations of parabolic

or dispersive type in one space dimension in small time. By extending the work of Tenenbaum and

Tucsnak in New blow-up rates for fast controls of Schrödinger and heat equations, we are able to give

precise upper bounds on the time-dependance of the cost of fast controls when the time of control T
tends to 0. We also give a lower bound of the cost of fast controls for the same class of equations,

which proves the optimality of the power of T involved in the cost of the control. These general results

are then applied to treat notably the case of linear KdV equations and fractional heat or Schrödinger

equations.
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1 Introduction

1.1 Presentation of the problem

This paper is devoted to studying fast boundary controls for some evolution equations of parabolic or
dispersive type, with the spatial derivative not necessarily of second order.

Let H be an Hilbert space (the state space) and U be another Hilbert space (the control space). Let
A : D(A) → H be a self-adjoint operator with compact resolvent, the eigenvalues (which can be assumed
to be di�erent from 0 without loss of generality) are called (λk)k>1, the eigenvector corresponding to
the eigenvalue λk is called ek. We assume that −A generates on H a strongly continuous semigroup
S : t 7→ S(t) = e−tA. The Hilbert space D(A∗)′(= D(A)′) is from now on equipped with the norm

||x||2D(A)′ =
∑ < x, ek >

2
H

λ2k
.

We call B ∈ Lc(U,D(A)′) an admissible control operator for this semigroup, i.e. such that there exists
some time T0 > 0, there exists some constant C > 0 such that for every z ∈ D(A), one has∫ T0

0

||B∗S(t)∗z||2U 6 C||z||2H .

We recall that if B is admissible, then necessarily the previous inequality holds at every time, that is to
say for every time T > 0, there exists some constant C(T ) > 0 such that for every z ∈ D(A), one has∫ T

0

||B∗S(t)∗z||2U 6 C(T )||z||2H .

From now on, we consider control systems of the following form:

∗lissy@ann.jussieu.fr
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yt +Ay = Bu (1)

or

yt + iAy = Bu, (2)

where A will always be supposed to be positive in the parabolic case (i.e. for Equation (1)). Then, it is
well-known (see for example [4, Chapter 2, Section 2.3], the operators −A or −iA generates a strongly
continuous semigroup under the hypothesis given before thanks to the Lummer-Phillips or Stone theorems)
that if u ∈ L2((0, T ), U), System (1) or (2) with initial condition y0 ∈ H has a unique solution satisfying
y ∈ C0([0, T ], H). Moreover, if the system is null controllable at some time T0 (i.e. for every y0 ∈ H, there
exists some control u ∈ L2((0, T0), U) such that y(T0, ·) ≡ 0), then there exists a unique optimal (for the
L2((0, T0), U)-norm) control uopt ∈ L2((0, T0), U), the map y0 7→ uopt is then linear continuous (see for
example [4, Chapter 2, Section 2.3]). The norm of this operator is called the optimal null control cost at
time T0 (or in a more concise form the cost of the control) and denoted CT0

, which is also the smallest
constant C > 0 such that for every y0 ∈ H, there exists some control u driving y0 to 0 at time T0 with

||u||L2((0,T0),U) 6 C||y0||H .

Concerning (2), it can be shown (see for example [4, Chapter 2, Section 2.3, Theorem 2.41]) that this
system is null controllable if and only if it is exactly controllable; moreover, in this case, it is easy to prove
that the cost of exact controllability has the same behavior in small time as the cost of null controllability;
hence, even for conservative systems, we will only be interested in null controllability.

Our goal in this work is to estimate precisely the cost of the control CT when the time T → 0 for some
families of operators A which are null controllable in arbitrary small time, and notably to �nd lower and
upper bounds on CT . Understanding the behavior of fast controls is of great interest in itself but it may
also be applied to study the uniform controllability of transport-di�usion in the vanishing viscosity limit as
explained in [16]. (the strategy described in [16] might probably be extended to the study of other problems
of uniform controllability for example in zero dispersion limit or in zero di�usion-dispersion limit as in [8]
or [9])

1.2 State of the art

In all what follows, f . g (with f and g some complex valued functions depending on some variable x
in some set S) means that there exists some constant C > 0 (possibly depending on other parameters) such
that for every x ∈ S, one has |f(x)| 6 C|g(x)|, (such a C is called an implicit constant in the inequality
f . g), and f ' g means that we have both f . g and g . f . Sometimes, when it is needed, we might detail
the dependance of the implicit constant with respect to some parameters. We also might write g & f when
f . g. The set S will not be explicitly given, it will in general correspond to all the variables appearing
explicitly in the inequality.

As far as we know, results concerning the cost of fast boundary controls have been obtained essentially
in the case of heat and Schrödinger equations. It is known for a long time that for the one-dimensional
heat equation posed on a time-space cylinder (0, T ) × (0, L) with boundary control on one side, the time-

dependence of the cost of the boundary control is ' eα
+

T for some constant α > 0 (see [11] and [30]), where

the notation α+ means that we simultaneously have that the cost of the control is & e
α
T and . e

K
T for every

K > α as close as α as we want (the implicit constant in front of the exponential might possibly explode
when we get closer to α). The constant α veri�es

L2/4 6 α 6 3L2/4.

The upper bound is obtained in [31] and the lower bound in [19] (it is the best bounds obtained until now).
For the Schrödinger equation posed on a time-space cylinder (0, T )× (0, L) with boundary control on one

side, one also has that the dependence in time of the cost of the boundary control is under the form ' e α̃
+

T

for some constant α̃ > 0. The constant α̃ veri�es

L2/4 6 α̃ 6 3L2/2.
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The upper bound is obtained in [31] and the lower bound in [20] (it is the bounds obtained until now). In
both cases, it is conjectured that the lower bound is optimal, i.e. that one can choose

α = α̃ = L2/4.

Our goal is to extend this results to other �rst-order time evolution equations with spatial operators
that are self-adjoint or skew-adjoint with eigenvalues λk or iλk that do not necessarily behave has k2 or
ik2, for example linear KdV equations, anomalous di�usion equations or fractional Schrödinger equations.
Our main tool is the moment method which was introduced in [6] for the study of heat-like equations in
one space dimension (and more generally for parabolic systems with eigenvalues having a behavior as in
equation (3) for some α > 1) and used successfully many times notably to prove the controllability or
uniform controllability of parabolic systems or equations or to study the behavior of the cost of the control
(see for example [5], [31], [7] or [1]). We �rst prove some general theorems about the cost of controls for
operators A having eigenvalues which behave asymptotically as kα for some α > 2, and give precise upper
bounds concerning CT . Concerning lower bounds, we also prove that lim supT→0 T

1/(α−1) ln(CT ) > 0 as
soon as α > 1. These main theorems are then applied to some families of equations, as described further.
However, since our work is mainly an extension of [31], we are not going to improve any existing upper
bounds in the case of heat or Schrödinger equations. The generality of the equations considered here enables
us to give a uni�ed framework, and to use the results proved to complete or improve some results coming
from the litterature is some special cases.

Concerning linear dispersive equations of KdV type, the controllability has been widely studied with
di�erent boundary conditions and di�erent boundary controls (see, in particular, [26], [27], [24], [25], [9],
[8] or [10]), in general in order to prove a result of controllability for the corresponding nonlinear KdV
equation. According to the result given in [8, Proposition 3.1], one should expect that for such equations

involving space derivatives until the order 3, the cost of fast controls is bounded by Ce
C√
T because of the

weights used in the Carleman estimates. The novelty is that we give here a precise estimate of C and prove
that this power of T is optimal.

The cost of fast controls for anomalous di�usion equations has been studied notably in [21] and [18],
the results are improved in [22, Section 4.1], the latter article gives the optimal power of 1/T involved (see
also [32]), but the techniques (spectral inequalities and the Lebeau-Robbiano method) are very di�erent
from what we are going to do in this article. In all these articles, the authors were interested in distributed
controls in a (small) open subset of the space domain and does not estimate precisely the constant appearing
in the cost of the control. The novelty is that we consider here boundary controls and give precise estimates.

Our last example concerns the control of fractional Schrödinger equations. As far as we know, the
question of the control of such equations was never studied. As before, we are able to derive a precise upper
bound on CT .

1.3 Some de�nitions and notations

De�nition 1.1 Let C be a countable set. We say that a sequence of real numbers (λn)n∈C is regular if

γ((λn)n∈C) := inf
m 6=n
|λm − λn| > 0.

From now on, we assume that B is a control of the form

Bu = bu,

where b ∈ D(A)′ (U is here R or C), and we call

bk =< b, ek >(D(A)′,D(A)),

where <,>(D(A)′,D(A)) is here the duality product between D(A)′ and D(A) with pivot space H. It is
well-known (see [13] and [33]) that if ||(bk)k∈N||∞ < +∞ and if (λk)k>1 is regular, then B is an admissible
control operator. From now on, we will always assume that T is small enough (for example T ∈ (0, 1)). In
the case where A is positive, our main result is the following:

Theorem 1.1 1. Assume that (λn)n>1 is a regular increasing sequence of strictly positive numbers
verifying moreover that there exist some α > 2 and some R > 0 such that

λn = Rnα + O
n→∞

(nα−1), (3)
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and assume that bk ' 1 (in the sense that the sequence (|bk|)k∈N is bounded from below and above
by strictly positive constants). Then system (2) is null controllable. Moreover, the cost of the control
veri�es

CT . e
K

(RT )1/(α−1) , for every K >
21/(α−1)3(α− 1)πα/(α−1)

((α sin(π/(α)))α/(α−1))
.

2. Assume that (λn)n>1 is a regular increasing sequence of strictly positive numbers verifying moreover
that there exists some α > 1 and some constant R > 0 such that (3) holds. Assume that bk ' 1.
Then system (1) is null controllable. Moreover, the control can be chosen in the space C0([0, T ], U)
and the cost of the control (in norm L∞(0, T ), so this is also true in L2(0, T )) veri�es

CT . e
K

(RT )1/(α−1) , for every K >
21/(α−1)3(α− 1)πα/(α−1)

(2α sin(π/(2α)))α/(α−1))
.

(the implicit constant in the previous inequalities might depend on α but not on T ).

Remark 1 In the case α = 2, we obtain exactly the results of [31].

As we will see, we will need for applications in the dispersive case to consider operators A that are
not necessarily positive. In the following theorem, we assume that A is self-adjoint with compact resolvent
(but not necessarily positive) with a family of eigenvalues (λn)n∈Z∗ verifying that λn → +∞ as n → +∞
and λn → −∞ as n → −∞, and we consider the corresponding dispersive system (2) (of course, the
corresponding �parabolic� system (1) cannot be considered).

Theorem 1.2 Assume that the sequence of increasing eigenvalues (λn)n∈Z∗ of A is a regular sequence of
non-zero numbers verifying moreover that there exist some α > 1 and some constant R > 0 such that

λn = Rnα + O
n→∞

(nα−1), n > 0,

λ−n = −Rnα + O
n→∞

(nα−1), n < 0,

sgn(λn) = sgn(n),

(4)

and assume that bk ' 1. Then system (2) is null controllable. Moreover, the cost of the control veri�es

CT . e
K

(RT )1/(α−1) , for every K >
2(α+1)/(α−1)3(α− 1)πα/(α−1)

((α sin(π/(α)))α/(α−1))
.

(the implicit constant in the previous inequalities might depend on α but not on T )

We are also going to prove that the power of 1/T involved in the expression of the cost is optimal in the
following sense:

Theorem 1.3 With the same notations and under the same hypothesis as in Theorems 1.1 and 1.2, the
power of 1/T involved in the exponential is optimal, in the sense that there exists some constant C > 0
such that in both cases of (1) and (2) one has

e
C

T1/(α−1) . CT . (5)

(the implicit constant in the previous inequality might depend on α but not on T )

2 Proofs of Theorems 1.1-1.3

2.1 Proof of Theorem 1.1

The following lemma is a re�nement of the estimates proved in [6, Lemma 3.1] and is strongly inspired
by [31, Lemma 4.1].
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Lemma 2.1 Let (λn)n>1 be a regular increasing sequence of strictly positive numbers verifying moreover
that there exists some α > 2 and some constant R > 0 such that (3) holds.

Let Φn be de�ned as follows:

Φn(z) :=
∏
k 6=n

(1− z

λk − λn
).

Then

1. If z ∈ C,

Φn(z) . e
π

R1/(α−1) sin(π/α)
|z|

1
α

P (|z|), (6)

where P is a polynomial.

2. If x ∈ R,

Φn(−ix− λn) . e
π

2R1/(α−1) sin(π/2α)
|x|

1
α

P (λn, |x|), (7)

where P is a polynomial.

(In the previous inequalities, the implicit constant may depend on α but not on z, x or n)

Remark 2 One can see numerically that inequalities (6) and (7) are optimal for α > 2, but are false for
α ∈ (1, 2) (but one could �nd a less precise estimate).

Proof of Lemma 2.1. Without loss of generality, we can assume that R = 1 (one can go back to the
general case by an easy scaling argument). We have then the existence of some constant C > 0 such that
|λn − nα| 6 Cnα−1. From now on we call γ := γ((λn)n>1). As in [31, Page 81], one has

ln|Φn(z)| 6
∫ |z|
0

∫ ∞
γ

Ln(s)

(t+ s)2
dsdt, (8)

where
Ln(s) := #{k||λk − λn| 6 s}.

Let us estimate precisely Ln(s).
One has

|λk − λn| 6 s

if and only if

λk − λn 6 s (9)

and

λn − λk 6 s. (10)

1. Assume that (9) holds. Then
kα−1(k − C) 6 λn + s.

Let
R(X) = Xα−1(X − C).

We call D = λn + s. By studying function R, we see that R(0) = 0, R(+∞) = +∞ and that R
is strictly decreasing on [0, C(1 − 1/α)] and then strictly increasing on [C(1 − 1/α),∞). Hence the
equation R(X) = D has a unique solution X̃ for n su�ciently large and the inequality R(X) 6 D is
equivalent to 0 6 X 6 X̃. Moreover,

R(D
1
α )−D = −CD

α−1
α < 0

and
R(D

1
α + C)−D = (D

1
α + C)α−1D

1
α −D = D((1 + CD−

1
α )α−1 − 1) > 0.

So X̃ ∈ [D1/α, D1/α + C] and
0 6 k 6 X̃

implies

k 6 (λn + s)
1
α + C. (11)
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2. Assume now that (10) holds.

λn − s 6 kα−1(k + C). (12)

We call E = λn − s. If λn − s < 0 then inequality (12) is always true. If λn + s > 0, we introduce

R̃(X) = Xα−1(X + C).

By studying function R̃, we see that R̃(0) = 0, R̃(+∞) = +∞ and that R̃ is strictly increasing on
[0,∞). Hence the equation R̃(X) = E has a unique solution X̄ ∈ [0,∞) and the inequality R̃(X) > D
is equivalent to X > X̄. Moreover,

R̃(E
1
α )− E = CE

α−1
α > 0

and
R̃((E

1
α − C)+)− E = ((E

1
α − C)+)α−1E

1
α − E = E(((1− CE− 1

α )+)α−1 − 1) < 0.

So
X̄ ∈ [E1/α − C,E1/α]

and k > X̃ implies

k > ((λn − s)
1
α − C)+ > ((λn − s)

1
α − C). (13)

Finally, if we have simultaneously the conditions (9) and (10), then combining inequalities (11) and (13)
necessarily

k ∈ [((λn − s)+)
1
α − C, (λn + s)

1
α + C]

and

Ln(s) 6 (λn + s)
1
α − ((λn − s)+)

1
α + 2C. (14)

Finally, from (8) and (14),

|Φn(z)| . (1 + |z|/γ)2Ce
∫ |z|
0

∫∞
γ

(λn+s)
1
α −((λn−s)+)

1
α

(t+s)2
dsdt

. (15)

One has (using the change of variables v = s/λn for the last inequality)∫ |z|
0

∫ ∞
γ

(λn + s)
1
α − ((λn − s)+)

1
α

(t+ s)2
dsdt 6 |z|

∫ ∞
γ

(λn + s)
1
α − ((λn − s)+)

1
α

s(s+ |z|)
ds

6
|z|

λ
1− 1

α
n

(U(
|z|
λn

) + V (
|z|
λn

)),

(16)

where

U(x) :=

∫ 1

0

(1 + v)
1
α − (1− v)

1
α

v(v + x)
dv (17)

and

V (x) :=

∫ ∞
1

(v + 1)
1
α

v(v + x)
dv. (18)

To prove inequality (6), in view of (15) and (16) it is now enough to prove

x1−
1
α (U(x) + V (x)) 6

π

sin(πα )
(19)

for every x > 0.
Let us now prove inequality (19). Let us �rst study x1−1/αV (x). We remark that

x1−1/αV (x) = x1−1/α
∫ ∞
1

(v + 1)
1
α

v(v + x)
dv =

∫ ∞
1

(v/x+ 1/x)
1
α

v(v/x+ 1)
dv.
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By considering the change of variables t = x/v, we obtain

x1−1/αV (x) =

∫ x

0

(1/t+ 1/x)
1
α

1 + t
dt. (20)

Similarly one has

x1−1/αU(x) =

∫ ∞
x

(1/t+ 1/x)
1
α − (1/x− 1/t)

1
α

1 + t
dt. (21)

Using the dominated convergence Theorem, one proves easily that

x1−1/αV (x) →
x→∞

∫ ∞
0

dt

t
1
α (1 + t)

and
x1−1/αU(x) →

x→∞
0.

Let us call

I(α) :=

∫ ∞
0

dt

t
1
α (1 + t)

.

One can compute explicitly this integral.

Lemma 2.2 Let x > 1. Then
I(x) =

π

sin(π/x)
.

Proof of Lemma 2.2. We remind the following De�nition of the Euler Beta function B (see [23, Page
142, 5.12.3]):

B(x, y) :=

∫ ∞
0

tx−1

(1 + t)x+y
dt.

We then have

I(x) = B(1− 1/x, 1/x). (22)

Using the link between the B function and the Γ function, we obtain

B(1− 1/x, 1/x) =
Γ(1− 1/x)Γ(1/x)

Γ(1− 1/x+ 1/x)
= Γ(1− 1/x)Γ(1/x). (23)

Using the Euler re�ection formula (which can be applied here because 1/x ∈ (0, 1)), we obtain the desired
result.

We will prove that for every x > 0 one has

x1−
1
α (U(x) + V (x)) 6 I(α). (24)

Let us remark that one can compute explicitly V in terms of linear combining of hypergeometric functions:
one can use for example Mathematica to check that

x1−1/αV (x) = −αx−1/α 2F1(−1/α,−1/α, 1− 1/α,−1)

+ α(1 + 1/x)1/α 2F1(−1/α,−1/α, 1− 1/α, (x− 1)/(x+ 1)),
(25)

where 2F1 is the ordinary hypergeometric function. It is then easy to prove that for every α > 2, x 7→
x1−1/αV is increasing by di�erentiating (25) with respect to x. Let us consider two di�erent cases:

1. Assume x < 1. In this case,

x1−1/αV (x) 6 −α2F1(−1/α,−1/α, 1− 1/α,−1) + α21/α. (26)
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We remark (by di�erentiating x1−1/αU(x) with respect to α in expression (21)) that α 7→ x1−1/αU(x)
is increasing, so

x1−1αU(x) 6
√
x

∫ 1

0

(1 + v)
1
2 − (1− v)

1
2

v(v + x)
dv 6 1. (27)

(the last inequality in (27) can be checked numerically for x ∈ [0, 1])

We also have (the function α 7→ 2F1(−1/α,−1/α, 1− 1/α,−1) is increasing)

−α2F1(−1/α,−1/α, 1− 1/α,−1) 6 −α2F1(−1/2,−1/2, 1− 1/2,−1) 6 −0.52α. (28)

Combining (26), (27) and (28), we deduce

x1−1/α(U(x) + V (x)) 6 1 + α21/α − 0.52α.

We just have to prove that

1− 0.52α+ α21/α 6
π

sin(π/α)
. (29)

One veri�es numerically that (29) it is true for α ∈ [2, 3], and one veri�es easily by di�erentiating the
expression with respect to α that α 7→ 1 − 0.52α + α21/α − π

sin(π/α) is decreasing at least on (3,∞).

Inequality (24) is proved at least for x < 1.

2. Assume x > 1. We have (the equality can be easily obtained thanks to Mathematica for example)

x1−1/αU(x) 6 x−1/α
∫ 1

0

(1 + v)
1
α − (1− v)

1
α

v
dv

= x−1/α(H1/α + 2F1(−1/α,−1/α, 1− 1/α,−1)),

(30)

where we call H1/α the (generalized) harmonic number of order 1/α. We have

H1/α 6 H1/2 6 0.62. (31)

Using (25), (30) and (31), we deduce

x1−1/α(U(x) + V (x)) 6 x−1/αA(α) +B(x) (32)

with
A(α) = (0.62− α)2F1(−1/α,−1/α, 1− 1/α,−1)

and
B(x) = α(1 + 1/x)1/α 2F1(−1/α,−1/α, 1− 1/α, (x− 1)/(x+ 1)).

One has A(α) < 0, moreover, one easily proves that B is increasing with respect to x and tends to
α2F1(−1/α,−1/α, 1− 1/α, 1) = I(α). Hence inequality (32) implies that inequality (24) is also proved for
x > 1 and �nally (19) is proved.

Inequality (7) is easier to prove. Doing as in [31, Page 83], we have

|Φn(−ix− λn)|2 =
∏
k 6=n

|1 + ix/λk|2

(1− λn/λk)2
= B2

n

∏
k 6=n

|1 + x2/λ2k| (33)

where
Bn :=

∏
k 6=n

(1− λn/λk)−1.

Let us remark that

∑
k>1

ln(1 + x2/λ2k) =

∫ |x|2/λ2
1

0

M(t)

1 + t
dt, (34)
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where
M(t) :=

∑
λk6|x|/

√
t

1.

One easily observe using same computations as before that

M(t) 6 |x| 1α t−1/(2α) + C. (35)

We then obtain, using (34) and (35),∑
k>1

ln(1 + x2/λ2k) 6 C ln(1 + |x|2/λ21) + |x| 1α
∫ ∞
0

1

t1/(2α)(1 + t)
dt 6 C ln(1 + |x|2/λ21) + |x| 1α I(2α).

We deduce by Lemma 2.2 and (33) that

Φn(−ix− λn) . Bn(1 + |x|2/λ21)C/2eπ|x|
1
α /(2 sin(π/(2α)))

and it can be proved that Bn is at most polynomial in λn (the computations are the same as in [31, Pages
83-84]) as wished. This proves inequality (7).

Now, we study the multiplier, which is very similar to the one studied in [31]. Let ν > 0 and β > 0 be
linked by the following relation:

βνα−1 = (4(α− 1))α−1
(

π + δ

α sin(π/α)

)α
, (36)

where δ > 0 is a small parameter.
We call

σν(t) := exp(− ν

(1− t2)
)

prolonged by 0 outside (−1; 1). σν is analytic on B(0, 1). We call

Hβ(z) := Cν

∫ 1

−1
σν(t)e−iβtzdt,

where
Cν := 1/||σν ||1.

Thanks to [31, Lemma 4.3], we have

Hβ(0) = 1, (37)

Hβ(ix) &
eβ|x|/(2

√
ν+1)

√
ν + 1

, (38)

1

2
eν 6 Cν 6

3

2

√
ν + 1eν , (39)

|Hβ(z)| 6 eβ|Im(z)|. (40)

The main estimate is the following:

Lemma 2.3 For x ∈ R, we have

Hβ(x) .
√
ν + 1e3ν/4−((π+δ/2)|x|

1
α )/(sin(π/α)).

(The implicit constant may depend on α)

Remark 3 Lemma 2.3 is false for α ∈ (1, 2). This explains why we were not able to extend Theorem 1.1
to the case where α ∈ (1, 2). However, we know that systems like (1) and (2) are null controllable as soon
as α > 1, so one can conjecture that there is a way to extend the previous estimates for α ∈ (1, 2).
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Proof of Lemma 2.3. First of all, consider some t ∈ [0, 1) and θ ∈ (−π, π). We call ρ := 1 − t and
z := t+ ρeiθ. One has (see [31, Page 85])

Re
1

1− z2
>

1

4ρ
+

1

4
>

ν

4ρ1/(α−1)
+

1

4
,

because ρ 6 1 and α > 2. So, doing as in [31], we obtain by applying the Cauchy formula for holomorphic
functions

|σ(j)
ν (t)| 6 j!e−

ν
4 sup
ρ>0

e
− ν

4ρ1/(α−1)

ρj
.

Computing the supremum on ρ ∈ R+∗, we obtain

|σ(j)
ν (t)| 6 j!e−

ν
4 e−(α−1)j

(
4(α− 1)j

ν

)(α−1)j

, t ∈ [0, 1). (41)

Using the fact that σν is even, inequality (41) is true for every t ∈ (−1, 1). Using inequality j! > jje−j in
(41), we obtain

|σ(j)
ν (t)| 6 (j!)αe−

ν
4

(
4(α− 1)

ν

)(α−1)j

. (42)

Since all derivatives of σν vanish at t = −1 and t = 1, we have

|Hβ(x)| 6 2Cν ||σ(j)
ν ||∞

(βx)j
, (43)

for every x > 0 and j ∈ N. Combining (42), (43) and (39), we deduce that

|Hβ(x)| .
√
ν + 1(j!)αe

3ν
4

(4(α− 1))(α−1)j

(βνα−1x)j
, j ∈ N. (44)

We set

j := b(1/a)(βνα−1x)1/γc (45)

with some constants a and γ which will be chosen correctly soon. Then we have

βx > (aj)γ . (46)

Using (46) and (44) we obtain

|Hβ(x)| .
√
ν + 1(j!)αe

3ν
4

4(α−1)j

(aj)γj
. (47)

We choose γ = α and a = (4(α− 1))1−1/α. Combining (47), (45), (36) and inequality

(j!)α . jα/2jαje−αj ,

we deduce

|Hβ(x)| .
√
ν + 1e

3ν
4 e−αjjα/2 6

√
ν + 1e

3ν
4 e−(π+δ/2)/(sin(π/α))|x|

1
α .

Proof of Theorem 1.1.

The proof follows the proof of [31, Theorem 3.1 and 3.4]. We still assume without loss of generality that
R = 1. Let us �rst consider the dispersive case (Equation (2)). We call

gn(z) := Φn(−z − λn)Hβ(z + λn). (48)

10



We want to apply at the end the Paley-Wiener Theorem (see estimate (40)) in an optimal way, so we want
β to be close to T/2. Assume that β < T/2 and close to T/2, for example

β =
T (1− δ)

2
. (49)

One has gn(−λk) = δkn. Moreover, thanks to (48), (6), Lemma 2.3, (36) and (49)

|gn(x)| . e
3ν
4 +π/ sin(π/α)|x+λn|

1
α−(π+δ/2)/ sin(π/α)|x+λn|

1
α P (|x+ λn|)

. e
3ν
4 −δ/(2 sin(π/α))|x+λn|

1
α P (|x+ λn|)

.
e3(α−1)(π+δ)

α/(α−1)/((α sin(π/α))α/(α−1)β1/(α−1))

1 + (x+ λn)2

.
e2

1/(α−1)3(α−1)(π+δ)α/(α−1)/((α sin(π/α))α/(α−1)(T (1−δ))1/(α−1))

1 + (x+ λn)2
.

Let us �x some
K > 3(α− 1)21/(α−1)πα/(α−1)/(α sin(π/α))α/(α−1).

Considering δ as close as 0 as needed, we deduce that

|gn(x)| . e
K

T1/(α−1)

1 + (x+ λn)2
(50)

This notably proves that gn ∈ L2(R). Moreover, using (6), (48), (49) and (40), we obtain

|gn(z)| . eT |z|/2.

Hence, using the Paley-Wiener Theorem, gn is the Fourier transform of a function fn ∈ L2(R) with compact
support [−T/2, T/2]. Moreover, by construction {fn} is biorthogonal to the family {eiλnt}. Then, one can
create the control thanks to the family {fn}. Let us consider y0 =

∑
akek the initial condition, we call

u(t) := −
∑
k∈N

(ak/bk)e−iTλk/2fk(t− T/2). (51)

This expression is meaningful since bk ' 1, moreover the corresponding solution y of (2) veri�es y(T, ·) ≡ 0.
Using the Minkovski inequality, Parseval equality, (51), bk ' 1 and (50), we obtain

||u(t)||L2(0,T ) . e
K

T1/(α−1) (
∑
|ak|2(

∫
R

dx

(1 + (x+ λn)2)2
))1/2

. e
K

T1/(α−1) (π/2
∑
|ak|2)1/2

. e
K

T1/(α−1) ||y0||H .

We now consider the parabolic case (Equation (1)). We call

hn(z) :=
Φn(−iz − λn)Hβ(z sin(π/α)α/(2 sin(π/(2α))α))

Hβ(iλn sin(π/α)α/(2 sin(π/(2α))α))
. (52)

Assume that

β <
T (2 sin(π/2α))α

2 sin(π/(α))α

and close to
T (2 sin(π/2α))α

2(sin(π/(α)))α
,

for example

β =
(1− δ)T (2 sin(π/2α))α

2 sin(π/(α))α
. (53)

11



One has hn(iλk) = δkn. Moreover, thanks to (52), (7), (38), Lemma 2.3, (36) and (53), one has

|hn(x)| .(ν + 1)e
3
4ν+π/(2 sin(π/2α))|x|

1
α−((π+δ/2)/(2 sin(π/2α)))|x|

1
α− β|λn|

2
√
ν+1P (|x|, |λn|)

. (ν + 1)e
3
4ν−δ/(2 sin(π/2α))|x|

1
α− βλn

2
√
ν+1P (|x|, λn|)

. (ν + 1)
e3(α−1)(π+δ)

α/(α−1)/((2α sin(π/α))α/(α−1)β1/(α−1))

(1 + (x+ λn)2)

. (ν + 1)
e3(α−1)2

1/(α−1)(π+δ)α/(α−1)/((2α sin(π/(2α)))α/(α−1)(T (1−δ))1/(α−1))

(1 + (x+ λn)2)
.

Let us �x some
K > 3(α− 1)21/(α−1)πα/(α−1)/((2α sin(π/(2α)))α/(α−1)).

Considering δ as close as 0 as needed, we deduce that

|hn(x)| . e
K

T1/(α−1)

(1 + (x+ λn)2)
, (54)

This notably implies that hn(x) ∈ L1(R) ∩ L2(R) and

||hn||L1(R) . e
K

T1/(α−1) . (55)

Moreover, using (6), (52), (40) and (53)
|hn(z)| . eT |z|/2,

so using the Paley-Wiener Theorem, hn is the Fourier transform of a function wn ∈ L2(R) with compact
support [−T/2, T/2]. Moreover, by construction {wn} is biorthogonal to the family {e−λnt}. Then, one
can create the control thanks to the family {hn}. Let us consider y0 =

∑
akek the initial condition, we call

u(t) := −
∑

(ak/bk)e−Tλk/2wk(t− T/2), (56)

This expression is meaningful since bk ' 1, moreover the corresponding solution y of (1) veri�es y(T, ·) ≡ 0.
One easily veri�es that u ∈ C0([0, T ],R). Using (56), |bk| ' 1 and inequality (55), we obtain

||u(t)||L∞(0,T ) . e
K

T1/(α−1)

∑
|ak|e−Tλk/2.

Using the Cauchy-Schwarz inequality, one deduces

||u(t)||L∞(0,T ) . e
K

T1/(α−1) ||y0||H .

2.2 Proof of Theorem 1.2

We will not give the details of the proof of Theorem 1.2 because it is exactly the same as the one of
Theorem 1.1. We just explain in details the modi�cations appearing in Lemma 2.1.

Lemma 2.4 Let (λn)n∈Z be a regular increasing sequence of non-zeros numbers verifying moreover that
there exists some α > 2 and some constant R > 0 such that (4) holds. Let Φn be de�ned as follows:

Φn(z) :=
∏
k 6=n

(1− z

λk − λn
),

then

Φn(z) . e
2π

R1/(α−1) sin( π
α

)
|z|

1
α

P (|z|), (57)

where P is a polynomial in |z|. (In the previous inequality, the implicit constant may depend on α but not
on z or n.)
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Proof of Lemma 2.4. We use the same notations as in the proof of Lemma 2.1 and assume without loss
of generality that R = 1. Let us give a new upper bound for Ln(s).

Let s > 0 and let us estimate #{k||λk − λn| 6 s}. If k and n have the same sign, we have necessarily
(see the proof of Lemma 2.1 and (4))

#{k||λk − λn| 6 s, sgn(k) = sgn(n)} 6 (|λn|+ s)
1
α − ((|λn| − s)+)

1
α + 2C. (58)

If k and n have di�erent sign, one can assume without loss of generality that k > 0, so that one has λk > 0
and λn < 0 (see (4)). If |λk − λn| 6 s, then necessarily λk 6 (s− |λn|)+, i.e.

kα − Ckα−1 6 D,

with D = s− |λn|. Using the same reasoning as in the proof of Lemma 2.1, this implies that

k 6 ((|λn| − s)+)
1
α + C. (59)

Finally, combining (58) and (59), we obtain

Ln(s) 6 (|λn|+ s)
1
α − ((|λn| − s)+)

1
α + ((s− |λn|)+)

1
α + 3C. (60)

We then have using (8) and (60)

|Φn(z)| . (1 + |z|/δ)3Ce
∫ |z|
0

∫∞
γ((|λn|)n>1)

(|λn|+s)
1
α −((|λn|−s)+)

1
α +((s−|λn|)+)

1
α

(t+s)2
dsdt

.

One has∫ |z|
0

∫ ∞
γ

(|λn|+ s)
1
α − ((|λn| − s)+)

1
α + ((s− |λn|)+)

1
α

(t+ s)2
dsdt 6

|z|
|λn|1−

1
α

(U(
|z|
|λn|

) + V (
|z|
|λn|

) +W (
|z|
|λn|

)),

where U and V have already been de�ned in (17) and (18), and where

W (x) :=

∫ ∞
1

(u− 1)1/α

u(u+ x)
du.

Since we already proved by Lemma 2.2 and (24) that

x1−
1
α (U(x) + V (x)) 6

π

sin(π/α)
,

Lemma 2.4 will be proved as soon as

x1−
1
αW (x) 6

π

sin(π/α)
. (61)

Using the change of variable u = 1/s, we obtain

W (x) =

∫ 1

0

(1− s)1/α

s1/α(1 + sx)
ds =

∫ 1

0

(1− s)1/α−1

s1/α
1− s

1 + sx
ds. (62)

One has the equality

1− s
1 + sx

=
1 + x

x(1 + sx)
− 1

x
. (63)

Replacing (63) in (62), we deduce

W (x) =
1 + x

x

∫ 1

0

(1− s)1/α−1

s1/α(1 + sx)
ds− 1

x

∫ 1

0

(1− s)1/α−1

s1/α
ds. (64)

The usual de�nition of B (see [23, Page 142, 5.12.1]) gives∫ 1

0

(1− s)1/α

s1/α
ds = B(1− 1/α, 1/α). (65)
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Using Lemma 2.2,(24), (64), (65) and the symmetry of the B function, we deduce

W (x) =
1 + x

x

∫ 1

0

(1− s)1/α−1

s1/α(1 + sx)
ds− π

x sin(π/α)
. (66)

Using the change of variables u = 1/s, we have∫ 1

0

(1− s)1/α−1

s1/α(1 + sx)
dt =

∫ ∞
1

(u− 1)1/α−1

(u+ x)
du. (67)

Using the change of variables s = u/(1 + x), Lemma 2.2,(24), and the symetry of the Beta function, we
obtain∫ ∞

1

(u− 1)1/α−1

u+ x
du =

∫ ∞
0

u1/α−1

u+ 1 + x
du = (1 + x)1/α−1B(1/α, 1− 1/α) = (1 + x)1/α−1

π

sin(π/α)
. (68)

Going back to (66) and using (67) and (68), we deduce

W (x) =
π((x+ 1)

1
α − 1)

x sin(π/α)
.

Then, using also the inequality (true for x > 0 and α > 1)

(x+ 1)
1
α − 1 6 x

1
α ,

we obtain (61).

2.3 Proof of Theorem 1.3

We follow the strategy given in [11]. Without loss of generality we can assume that R = 1 in (3) and
(4). Looking carefully at this article, one observes that one could adapt the reasoning to equations (1) and
(2). We treat the case of real or pure imaginary eigenvalues (of A or iA, see equations (1) and (2)) λn or
iλn with λn verifying (3) (one could easily adapt the reasoning to obtain the same results in the dispersive
case with λn verifying (4)). We introduce (µn) := (λn) in the parabolic case and (µn) := (−iλn) in the
dispersive case. We call

E(T ) := span({e−µnt|n ∈ N})
L2(0,T )

,

Em(T ) := span({e−µnt|n 6= m})
L2(0,T )

.

We remark that using the results of [29] for the parabolic case and [28] for the dispersive case, if the
sequence (λn)n∈N∗ veri�es (3), then E(T ) in a proper subspace of L2(0, T ) and e−µmt 6∈ Em(T ). Moreover,
if we call dm(T ) the distance between e−µmt and Em(T ) and rm the orthogonal projection of e−µmt over
Em(T ), then the family {ψm} de�ned by

ψm(t) :=
e−µmt − rn(t)

dm(T )2

is biorthogonal to the family of exponentials {e−µmt} (see [6] or [11], this can be easily generalized in the
case of purely imaginary eigenvalues). One also has

||ψm||L2(0,T ) =
1

dm(T )
. (69)

If y0 :=
∑
akek, then the control u is given by

u(t) := −
∑

ak/bkψk(T − t) (70)

and one can easily prove that this control is optimal in L2(0, T ). We are now going to give an upper bound
on dm(T ), which would provide a lower bound on CT . In all what follows, C(m) denotes some constant
depending only on the integer m (and possibly on α) that may change from one line to another.
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Lemma 2.5 For every m ∈ N, there exists some numerical constant a(m) and some constant C(m) such
that

dm(T ) 6 C(m)T 1/2(j!)α−1(a(m)T )j (71)

holds for j ∈ N and T > 0.

Remark 4 As before, we are not able to extend this Lemma to the case where α ∈ (1, 2) (precisely because
of estimate (79) which is false in this case), and hence we are not able to extend Theorem 1.3 to this case.

Proof of Lemma 3.3. Following [11], we only treat the case j > m (inequality (71) has only an interest
for large j because if we prove it for j > m then it is automatically true for j < m by increasing the
constant C(m) in front of the right-hand side if necessary). One can prove (by considering a �nite number
of modes, see (4.9) in [11]) that for every j > 1 one has

dm(T ) 6
T j+

1
2

j!
√

2j + 1

m−1∏
r=1

|λr − λm|
j∏

r=m

|λr+1 − λm|. (72)

For k, l ∈ N one has

|λk − λl| 6 |kα − lα|+ C(kα−1 + lα−1). (73)

We deduce from (73) that

m−1∏
r=1

|λr − λm|
j∏

r=m

|λr+1 − λm|

6
m−1∏
r=1

|rα −mα|(1 + C
(rα−1 +mα−1)

rα −mα
)

j∏
r=m

|(r + 1)α −mα|(1 + C
((r + 1)α−1 +mα−1)

(r + 1)α −mα
).

(74)

For every m ∈ N, there exists some C(m) > 0 such that for every j 6= m,

1 + C
(jα−1 +mα−1)

jα −mα
6 1 +

C(m)

j
. (75)

Using (72), (73),(74) and (75), we deduce that

dm(T ) 6 C(m)
T j+

1
2

j!
√

2j + 1

j∏
r=m

(1 + C(m)/r)|(r + 1)α −mα|. (76)

One has
∑j
r=m ln(1 + C(m)/r) ∼ C(m) ln(j) as j →∞ so

j∏
r=m

(1 + C(m)/r) . jC(m). (77)

Let us study the quantities of the form kα − lα with k > l.

|kα − lα| = kα|1− lα

kα
|. (78)

One easily veri�es that the following inequality holds for α > 2 and x ∈ [0, 1]:

1− xα 6 (1 + x)α−1(1− x). (79)

We deduce from (78) and (79) (the constant C(m) may change from one line to another)

j∏
r=m

|(r + 1)α −mα|

6
j∏

r=m

(r + 1−m)(r + 1 +m)α−1

6 C(m)(j + 1−m)!((j + 1 +m)!)α−1.
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Using the computations above, inequality (true for j > m)

(j + 1 +m)! 6 C(m)jC(m)j!,

(76) and (77), we deduce that

dm(T ) 6 C(m)jC(m)(j!)α−1T j+
1
2 ,

so that (71) holds if we choose a(m) > 0 large enough such that jC(m) 6 a(m)j .

We deduce, using (69) and (71), that for every j ∈ N one has

||ψm||L2(0,T ) >
1

C(m)T 1/2(j!)α−1(a(m)T )j
. (80)

Using equality (70) with initial condition eigenvector em and the following inequality true for j large enough

j! 6 jje−j/2,

and choosing (with T small enough)

j := d(1/(a(m)T ))
1

α−1 e,

one easily proves using inequality (80) that (5) holds.

3 Applications

3.1 Linear KdV equations controlled on the boundary: the case of periodic

boundary conditions with a boundary control on the derivative of the state

In this section, we consider the following controlled linearized KdV equation posed on (0, T ) × (0, L)
(this is the �rst example studied in [24]). Let us �rst introduce the following family of periodic Sobolev
spaces (endowed with the usual Sobolev norm)

Hk
p := {y ∈ Hk(0, L)|u(j)(0) = u(j)(L), j = 0 . . . k − 1}.

We consider the following equation:
yt + yxxx = 0 in (0, T )× (0, L),

y(t, 0) = y(t, L) in (0, T ),

yx(t, 0) = yx(t, L) + u(t) in (0, L),

yxx(t, 0) = yxx(t, L) in (0, L),

(81)

with initial condition y0 ∈ H := (H1
p )′ and control u ∈ L2(0, T ). This system was �rst studied in [26]

where the authors proved a result of exact controllability under the technical condition that the integral
in space of the initial state had to be equal to the one of the �nal state. This result was improved later in
[24]. We know (see [24, Remark 2.3]) that in this case there exists a unique solution y ∈ C0([0, T ], (H1

p )′) to
(81). Moreover, it is explained in [24, Remark 2.3] that this equation is exactly controllable (and then null
controllable) at all time T > 0 for every length L > 0 (in fact the case which is treated in [24] is L = 2π
but it can be easily extended to all L). We call A the operator ∂3xxx with domain D(A) := H2

p (0, L). This
operator is skew-adjoint, the eigenvalues are iλk := 8iπ3k3/L3 for k ∈ Z , the corresponding eigenfunction
is (normed in (H1

p )′)

ek : x 7→ (1 + 4π2k2/L2)1/2e
i2πkx
L

√
L

.

If y0 ∈ (H1
p )′ is written under the form y0(x) =

∑
k∈Z akek(x), then the solution y of (81) can be written

under the form
y(t, x) =

∑
k∈Z

ake
iλktek(x).

One easily proves (using integrations by parts, see for example [4, Section 2.7, page 101]) that for every
ϕ ∈ D(A),

b(ϕ) = −(∆−1ϕ)′(0),
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so that
b = δ′L ◦∆−1,

where ∆−1 := −(−∆−1) is the inverse of the Dirichlet-Laplace operator. We have

|bk| = |e′k(L)|/k2 ' 1.

One can apply directly Theorem 1.2 and Theorem 1.3 with k = 3 and R = 8π3

L3 to obtain:

Theorem 3.1 Equation (81) is null controllable and the cost of fast controls CT veri�es

CT . e
K√
T

for every K >
8

35/4
L3/2. Moreover, the power of 1/T involved in the exponential is optimal.

3.2 Linear KdV equations controlled on the boundary: the case of Dirichlet

boundary conditions with a boundary control on the derivative of the state

In this section, we consider the following controlled linearized KdV equation posed on (0, T )× (0, L):
yt + yx + yxxx = 0 in (0, T )× (0, L),

y(t, 0) = 0 in (0, T ),

y(t, L) = 0 in (0, T ),

yx(t, L) = u(t) + yx(t, 0) in (0, L),

(82)

with initial condition y0 ∈ H := H−1(0, L) and control u ∈ L2(0, T ). We call A the operator ∂3xxx + ∂x
with domain

D(A) := {y ∈ H2(0, L)|y(0) = y(L) = 0, y′(0) = y′(L)}.
The eigenvalues are denoted (iλn)n∈Z with λn ∈ R.

This equation describes the propagation of water waves in a uniform channel where (x, y) represents
the horizontal and vertical coordinates of the level of water (see for example [2]). We know (see [3]) that
in this case there exists a unique mild solution y ∈ C0([0, T ], H−1(0, L)). Moreover, it is proved in [3] that
this equation is exactly controllable (and then null controllable) at all time as soon as L 6∈ N where

N := {2π
√
k2 + kl + l2

3
|(k, l) ∈ (N∗)2}.

The original system studied in [24] was
yt + yx + yxxx = 0 in (0, T )× (0, L),

y(t, 0) = 0 in (0, T ),

y(t, L) = 0 in (0, T ),

yx(t, L) = h(t) in (0, L),

(83)

with initial condition y0 ∈ L2(0, L) and control h ∈ L2(0, T ).
However, the problem is that the steady-state operator associated to (83) with the given boundary

condition is neither self-adjoint nor skew-adjoint, so we cannot apply directly the results presented before.
That is why we have to change a little bit the boundary condition so that the associated steady-state
operator becomes skew-adjoint by using the system (82) studied in [3].

To be able to apply Theorem 1.1 or Theorem 1.2, we have to study the sequence of eigenvalues (λn)n>1.
One has the following result:

Lemma 3.2 (λn)n∈Z is regular and one has

λn =
8π3n3

L3
+O(n2) (84)

as n→ ±∞.

Proof of Lemma 3.2. This is an immediate consequence of [3, Proposition 1], which gives exactly (84)
and proves that each eigenspace is of dimension 1, which implies the regularity of (λk)k∈Z because of the
asymptotic behavior given by (84).
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From now on, we call ek one of the unitary eigenvector (for the H−1-norm) corresponding to the
eigenvalue iλk. We �x an initial condition y0 :=

∑
k∈Z akek ∈ H−1(0, L). As in the previous Subsection,

we have for every ϕ ∈ D(A),
b(ϕ) = −(∆−1ϕ)′(0),

so that
b = δ′L ◦∆−1,

and
|bk| = |e′k(L)|/k2.

To apply Theorem 1.1, we just need to ensure that

Lemma 3.3

bk ' 1.

Proof of Lemma 3.3. bk 6= 0 is a consequence of [24, Lemma 3.5] (because L 6∈ N ) and [3, Lemma 3.1]
gives immediately that |e′k(0)| is equivalent as k → ∞ to 2π

√
3k2/L3/2 (because in Lemma 3.1 of [3] the

eigenvectors are normalized in the L2-norm and here in the H−1-norm so the behavior of their norm as
k →∞ has to be multiplied by k), so we �nally have bk ' 1.

Applying Theorem1.2, we obtain directly the following Theorem:

Theorem 3.4 Let L 6∈ N . Then equation (82) is null controllable and the cost of fast controls CT veri�es

CT 6 e
K√
T

for every K >
8

35/4
L3/2. Moreover, the power of 1/T involved in the exponential is optimal.

Remark 5 Using [9, Remark 1.3], one can also add a term of di�usion −yxx in equation (82) and obtain
the same upper bound as in Theorem 3.4.

3.3 Anomalous di�usion equation in one dimension

Let us �rst consider the 1 −D Laplace operator ∆ in the domain D(∆) := H1
0 (0, L) with state space

H := H−1(0, L). It is well-known that −∆ : D(∆)→ H−1(0, L) is a de�nite positive operator with compact
resolvent, the k-th eigenvalue is

λk =
k2π2

L2
,

one of the corresponding normed (in H) is

ek(x) :=

√
2(1 + kπ/L) sin(kπx/L)√

L
.

Thanks to the continuous functional calculus for positive self-adjoint operators, one can de�ne any positive
power of −∆. Let us consider here some γ > 1/2 and let us call ∆γ := −(−∆)γ . The domain of ∆γ , that
we denote Hγ , is the completion of C∞0 (0, L) for the norm

||ψ||γ := (
∑
k∈N∗

λ2γk ) < ek, ψ >H |2)1/2.

We now consider the following equation on (0, T )× (0, L):{
yt = ∆γy in (0, T )× (0, L),

y(0, .) = y0 in (0, L).
(85)

This kind of equation can modelize anomaly fast or slow di�usion (see for example [17]).
We now consider the following controlled equation on (0, T )× (0, L), that we write under the abstract

form {
yt = ∆γy + bu in (0, T )× (0, L),

y(0, .) = y0 in (0, L),
(86)
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where for every ϕ ∈ D(A),
b(ϕ) = −(∆−1ϕ)′(0),

i.e.
b := δ′0 ◦∆−1 ∈ D((−∆)γ)′

and u ∈ L2(0, T ). If γ ∈ N∗, one can observe, using integrations by parts, that b corresponds to a boundary
control on the left side on the γ− 1-th derivative of y, so that b can be considered as a natural extension of
the boundary control in the case of non-entire γ (this kind of controls has already been introduced in [21,
Section 3.3] to give some negative results about the control of fractional di�usion equations with γ 6 1/2).

We see that
bk = |e′k(L)|/k2 ' 1.

If y0 ∈ H, then there exists a unique solution of (86) in the space C0([0, T ], H) (because b is admissible for
the semigroup). To our knowledge, the controllability of anomalous di�usion equations with such a control
operator and γ > 1 has never been studied before.

Applying directly Theorem 1.1 and Theorem 1.3, we obtain:

Theorem 3.5 Assume γ > 1. Then Equation (86) is null controllable with continuous controls. Moreover,
the cost of the control in L∞ norm, still denoted CT here, is such that

CT . e
K

T1/(2γ−1) for every K > 3(2γ − 1)21/(2γ−1)L2γ/(2γ−1)/((4γ sin(π/(4γ)))2γ/(2γ−1)).

Moreover, the power of 1/T involved in the exponential is optimal.

3.4 Fractional Schrödinger equation in one dimension

We keep the notations of the previous subsection. Let us consider the following fractional Schrödinger
equation de�ned on (0, T )× (0, L) controlled on one side:{

yt = i∆γy + bu in (0, T )× (0, L),

y(0, .) = y0 in (0, L),
(87)

with initial condition y0 ∈ H, γ > 3/4 and (as in the previous subsection) b := δ′0 ◦∆−1. The 1 − D
Laplace operator ∂xx is considered in the domain D(∂xx) := H1

0 (0, L). Equation (86) has a unique solution
in C0([0, T ], H) with H = H−1(0, L). This equation has a physical meaning and can be used to study
the energy spectrum of a 1 − D fractional oscillator or for some fractional Bohr atoms, see for [14],[15]
or [12]. As far as we know, the control of this kind of equations has never been studied. As before,
|bk| = |e′k(0)|/k2 ' 1. Applying directly Theorem 1.1, we obtain:

Theorem 3.6 Assume γ > 1. Then Equation (87) is null controllable. Moreover, the cost of the control
CT is such that

CT . e
K

T1/(2γ−1) for every K > 3(2γ − 1)21/(2γ−1)L2γ/(2γ−1)/((2γ sin(π/(2γ)))2γ/(2γ−1)).

Moreover, the power of 1/T involved in the exponential is optimal.
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