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Abstract

We deal with the internal observability for some coupled systems of partial differential equa-
tions with constant or time-dependent coupling terms by means of a reduced number of ob-
served components. We prove new general observability inequalities under some Kalman-like
or Silverman-Meadows-like condition. Our proofs combine the observability properties of the
underlying scalar equation with algebraic manipulations.

In the more specific case of systems of heat equations with constant coefficients and non-
diagonalizable diffusion matrices, we also give a new necessary and sufficient condition for ob-
servability in the natural L2-setting. The proof relies on the use of the Lebeau-Robbiano strategy
together with a precise study of the cost of controllability for linear ordinary differential equa-
tions, and allows to treat the case where each component of the system is observed in a different
subdomain.
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1 Introduction

1.1 General presentation of the problem
Let Ω be a smooth bounded domain of RN (N ∈ N∗) or a smooth compact connected Riemannian
manifold of dimension N (N ∈ N∗), with or without boundary.

We consider the following “scalar” evolution equation{
∂tz = Pz in (0, T )× Ω,
z(0) = z0,

(1.1)

where P is a linear partial differential operator with domain D(P ) ⊂ H = L2(Ω,K) of arbitrary order
with time-independent and (possibly) space-dependent coefficients, with K = R or C. The initial
datum z0 is in H.

To ensure the well-posedness of the system, we assume that P is the infinitesimal generator of a
strongly continuous semigroup on H. Moreover we assume, without loss of generality, that 0 6∈ ρ(P )
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(this property can be ensured by translating P to P − βId for some β ∈ K if necessary), so that for
every k ∈ N, one endows D(P k) with the norm

||z||D(Pk) = ||P kz||L2(Ω).

Moreover, we assume from now on that the following backward uniqueness property is verified for a
solution z of equation (1.1):

z(T ) = 0⇒ z = 0 on [0, T ]× Ω. (1.2)

Given an open subset ω of Ω and a positive time T > 0, this paper is concerned with observability
inequalities of the form

||z(T )||2L2(Ω) 6 C

∫ T

0

∫
ω

||z(t, x)||2dxdt. (1.3)

More precisely, assuming that this inequality holds for the scalar equation (1.1), i.e. that it
holds with a uniform constant C > 0 for all initial data z0, our goal is to prove new observability
inequalities of the same kind for systems of evolution equations coupling scalar equations of the form
above, observations being made on a limited number of components of the state.

In the context of finite-dimensional PDEs, the classical Kalman rank condition provides a complete
answer to the problem. Our goal here is to combine existing observability inequalities for partial
differential equations (PDE) and algebraic techniques to achieve similar results for PDE systems. We
emphasize that we do not present here new results on the observability of scalar equations. Rather, our
goal is to develop a systematic method, inspired in finite-dimensional theory and employing algebraic
manipulations, allowing to transfer the existing observability results on scalar PDE to systems of
PDE, observing a limited number of components of the state.

We shall mainly consider two situations: a) The system is constituted by a finite number of copies
of the scalar equation (1.1) coupled through a lower order term; b) The system couples, through the
principal part, various scalar equations of the form (1.1). Special attention will be devoted to the
case of parabolic systems with constant coefficients, where sharp results will be presented.

1.2 State of the art
There is a large literature on the controllability and observability of systems of partial differential
equations. Several techniques have been applied to derive observability inequalities by means of
observations done on a reduced number of components of the system in various situations. This
paper is mainly devoted to coupled systems and distributed controls.

Although these questions arise naturally for all kind of systems, the problem has been investigated
specially in the case of parabolic systems. Here we list some of the existing results and references:

• By means of Carleman estimates [7] addresses the internal control of coupled systems of heat
equations with the same diffusion coefficients and constant or time-dependent coupling terms
of zero order and [8] gives a generalization to the case of different diffusion coefficients on each
equation.

• In [41] the switching control of a scalar heat equation is analyzed. Although the model un-
der consideration is scalar the kind of ideas employed to deal with two alternating (in time)
controllers inspires our method to deal with parabolic systems.

• More specific results of internal or boundary controllability in the case of variable coefficients
in the one-dimensional case are proved in [13], [14], [11], [25] and [19]. These one-dimensional
results also allow to deal with some simple geometries like cylinders (see [18]).

• Article [49] analyzes coupled systems of two heat equations, or the coupling of different dynam-
ics, e.g. heat and wave equations, and it inspires the first part of the present article. We also
refer to [17], where similar ideas are developed for the obtention of decay estimates for partially
dissipative hyperbolic systems.

2



1.2 State of the art October 31, 2018

• Articles [30], [32] and [29] (by means of Carleman inequalities), [31], [26] and [27] (using the
fictitious control method) deal with the internal control of parabolic systems in higher space
dimension, with variable coefficients and lower order coupling terms of order 0 and 1.

• We also refer to [9], [10], [6], [31], [21] , [29] and [22] for results on systems of non-linear (or
semi-linear) heat equations.

• To conclude, we also would like to mention [39], where the internal controllability of a system
of heat equations with analytic non-local coupling terms is investigated.

For further informations on this specific topic, we refer to the survey article [12].

Hyperbolic and dispersive systems have been less studied and the results obtained are of different
nature. The following ones are worth mentioning:

• Article [3] deals with the controllability of second order in time cascade or bidiagonal systems
under suitable coercivity conditions on the coupling terms, and [5] with a system of two wave
equations with one control and asymmetric coupling matrices satisfying some additional tech-
nical properties, using a multi-energy method that has been introduced in [1] and [2] in the case
of two equations.

• Article [24] is devoted to analyzing a cascade system of two wave equations with one control
on a compact manifold without boundary, where a necessary and sufficient condition for con-
trollability, in terms of the geometry of the control domain and the coupling region, is proved
using microlocal techniques.

• Article [40] deals with he specific study of the Schrödinger equation without using transmutation
techniques, in the case of a cascade system of two equations with one control force, using
Carleman estimates.

• Article [4] treats the case of some linear systems of two periodic and one-dimensional non-
conservative transport equations with the same speed of propagation, space-time varying cou-
pling matrix and one control are also analyzed, together with some nonlinear variants, thanks
to the fictitious control method.

Remind that results on abstract wave equations can be combined with the transmutation method
(see [45], [42] or [28]) to address abstract heat and Schrödinger equations, under strong (and probably
not sharp in general) geometric restrictions on the coupling and control regions.

Some results in a more abstract setting were also obtained, see notably:

• In [47] abstract periodic groups of isometries with bounded self-adjoint control were considered,
with an application to the Schrödinger equation in arbitrary dimension on the torus, under
the assumption that the observation time has to be large enough (which is probably of purely
technical nature).

• In [38] a Kalman rank condition of controllability was also proved using the fictitious con-
trol method, in the abstract setting of groups of operators with bounded control in the case
of constant coupling coefficients, with applications to some systems of wave and Schrödinger
equations.

To finish, we also refer to the book [23] for the control of networks of 1 − d wave-like equations,
which is closely linked to the topic of control of coupled systems.

In the present article, our goal is twofold:
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• In Section 2 we present a simple method that can be applied to any first order in time PDE with
internal control, giving results of weak observability (in the sense that the observation is made
in higher order Sobolev norms) for systems of equations with zero order coupling terms and
constant or time-dependent coefficients with a reduced number of observations. Our study is a
complement of the results of [38] to the case of all scalar (notably non-conservative) PDE whose
solutions verify (1.1), in a different functional setting though. Our results are then applied to
systems of Schrödinger equations in Section 2.3 and to systems of wave equations (under some
minor modifications) in Section 2.4.

• In Section 3, we give a necessary and sufficient condition for the internal observability of sys-
tems of heat equations with constant coefficients and zero-order coupling terms. The main
difficulties are that the diffusion matrix is not necessarily diagonalizable and the open subsets
of observation can be different on each equation. This generalizes the result of [8] where only
the case of diagonalizable diffusion matrices was investigated with the same observation subset
on all components, and also the result of [44], where the author considered open subsets (or
boundary observations) that may be different for each component of the control, but under the
restrictive condition that D was the identity matrix.

2 Weak observability results

2.1 The case of constant matrices

In what follows, we consider different kind of systems involving the scalar equation (1.1), with constant
coupling matrices. Let n ∈ N∗ be the number of equations and m ∈ N∗ be the number of observed
components, with possibly m < n.

We will focus on two different situations.

1. The diagonal case with the same operator P on each line{
∂tZ = InPZ +AZ in (0, T )× Ω,
Z(0) = Z0,

(2.1)

with Z0 ∈ Hn and A ∈ Mn(K) some coupling matrix with constant coefficients and In is the
identity matrix of size n. The observation is given by 1ωBZ, where B ∈Mm,n(K).

2. The case where the coupling arises in the principal part:{
∂tZ = DPZ in (0, T̃ )× L2(Ω)n,
Z(0) = Z0,

(2.2)

with Z0 ∈ Hn and a diffusion matrix with constant coefficients D ∈ Mn(K), where D is
assumed to be diagonalizable with positive eigenvalues (note however that, when P is the
generator of a group of operators, the positivity of the eigenvalues of P is not necessary, one
may only assume non-zeros eigenvalues). From now on, without loss of generality we assume
that D = diag(d1, . . . , dn) ∈Mn(K), where di > 0 (i ∈ [|1, n|]), and we introduce the following
observation time

T̃ := max
i

T

di
. (2.3)

Of course, when the observation time T can be taken to be arbitrarily small, T̃ can be taken
to be arbitrarily small as well.

The observation is given by 1ωBZ, where B ∈Mm,n(K).
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We introduce the following notations:

KA := [B∗|A∗B∗| . . . |A∗(n−1)B∗] ∈Mn,nm(K), (2.4)

and

KD := [B∗|D∗B∗| . . . |D∗(n−1)B∗] ∈Mn,nm(K). (2.5)

Remark 1. In systems (2.1) and (2.2), we denote by A, D the coupling matrices and B the matrix
observation for the sake of clarity. This leads to the usual Kalman matrices (2.4) and (2.5), often
introduced in the context of the dual control problem. The controlled dynamics would be associated to
the matrices A∗, B∗, D∗ while the system under consideration would correspond to the dual or adjoint
one for which the question of observability under discussion in the present paper arises naturally.

For ϕ ∈ ∩n−1
k=0H

k((0, T ), D(P )n−1−k)m, we introduce

||ϕ||2Hn,m((0,T )×ω) :=

n−1∑
k=0

∫ T

0

∫
ω

||(∂t − ImP )kϕ(t, x)||2dxdt, (2.6)

For ϕ ∈ ∩n−1
k=0H

k((0, T̃ ), D(P )n−1−k)m, we also introduce

||ϕ||2In,m((0,T̃ )×ω)
:=

n−1∑
k=0

∫ T̃

0

∫
ω

||∂(k)
t ImP

n−1−kϕ(t, x)||2dxdt. (2.7)

One has the following result:

Theorem 1. Assume that the scalar equation (1.1) verifies the observability inequality (1.3). Then,

• System (2.1) is observable in time T in norm Hn,m((0, T ) × ω) in the sense that there exists
C > 0 such that for every Z0 ∈ D(InP

n−1), the solution Z of (2.1) verifies

||Z(T )||2L2(Ω) 6 C||BZ||2Hn,m((0,T )×ω) (2.8)

if and only if
rank KA = n. (2.9)

• System (2.2) is observable in time T̃ in norm In,m((0, T̃ ) × ω) in the sense that there exists
C > 0 such that for every Z0 ∈ D(InP

n−1), the solution Z of (2.2) verifies

||Z(T̃ )||2D(InPn−1) 6 C||BZ||2In,m((0,T̃ )×ω)
(2.10)

if and only if
rank KD = n. (2.11)

Remark 2. Several remarks are in order:

• Inequality (2.10) implies, in particular,

||Z(T̃ )||2L2(Ω) 6 C||BZ||2In,m((0,T̃ )×ω)
.

• Theorem 1 provides observability inequalities in weaker norms than the usual L2−norm. These
inequalities may be improved in some cases. This issue will be addressed in Section 3 for systems
of heat equations.
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• One remarks that the definitions of the two norms || · ||2Hn,m((0,T )×ω) and || · ||
2
In,m((0,T )×ω) differ.

This may be explained by the fact that each of these norms is in some sense adapted to the
specific algebraic structure of the equations. However, remarking that for any ϕ regular enough
and any (t, x) ∈ QT , one has

n−1∑
k=1

||(∂t − ImP )kϕ(t, x)||2 =

n−1∑
k=0

∣∣∣∣∣
∣∣∣∣∣
k∑
l=0

(
k
l

)
(−1)l∂

(k−l)
t ImP

lϕ(t, x)

∣∣∣∣∣
∣∣∣∣∣
2

6 C

n−1∑
k=0

∣∣∣∣∣∣∂(k)
t ImP

n−1−kϕ(t, x)
∣∣∣∣∣∣2 dxdt,

we see that the norm In,m((0, T ) × ω) is stronger that the norm Hn,m((0, T ) × ω). Moreover,
both norms contain the same type of derivatives.

• The hypothesis that D is diagonalizable is crucial in our proof of the second point Theorem 1.
Indeed, the first step of our proof is devoted to proving the following observability inequality
on the system (2.2):

||Z(T̃ )||2L2(Ω) 6 C

∫ T̃

0

∫
ω

||Z(t, x)||2dxdt,

the observation being done on all of the components of the state.
However, unless D is diagonalizable, one cannot simply deduce this inequality from (1.3) and
this kind of inequality may even be hard to obtain. For example, in [29], systems of heat
equations with (time and space-varying) zero-order coupling terms are treated by means of
Carleman estimates, but the proof only works under the condition that the Jordan blocks of D
are of size less that 4 (which seems to be a purely technical condition that until now has not
been removed).
In Section 3 we describe how to deal with a general constant diffusion matrix D, constant cou-
pling matrix A and constant observation matrix B, using the Lebeau-Robbiano strategy (see
[37] and [33]). This argument may hardly be adapted to treat more general cases (different dif-
fusion operators in the various equations entering in the system, different lower order potentials,
etc.) due to the specific arguments of the proof.

• The time of observation T̃ comes from an easy rescaling argument in time allowing to use the
observability inequality (1.3) for the initial problem (1.1).

• In the case where D is diagonal (and not only diagonalizable), the Kalman condition (2.11)
may be rewritten in a more explicit way. Assume that D = diag(d1, . . . , dn) and di 6= 0 for
every i ∈ [|1, n|]. Let us decompose B := (bji)j∈[|1,n|],i∈[|1,m|]. For i ∈ [|1,m|], set

B∗i :=


b1i 0 . . . 0
0 b2i . . . 0
...
0 . . . 0 bni

 ∈Mn,m(K),

and B̂∗ = (B∗1 | . . . |B∗m) ∈Mn,nm(K). Then, it is easy to check that there exists a permutation
matrix σ ∈ GLn(R) such that

KD = σVander(d1, . . . , dn)B̂∗,

where Vander(d1, . . . , dn) is the Vandermonde matrix of size n associated to d1, . . . , dn. Hence,
for KD to be of maximal rank n, all the di need to be distinct and B̂∗ has to be of maximal
rank, which means that for every i ∈ [1, n|], there exists j ∈ [|1,m|] such that bij 6=0.
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Proof of the first point of Theorem 1. Let us first consider system (2.1) and prove the inverse
part of the equivalence. We assume that the Kalman rank condition (2.9) is verified. First of all, let
us establish the following observability inequality on the solutions of (2.1):

||Z(T )||2L2(Ω) 6 C

∫ T

0

∫
ω

||Z(t, x)||2dxdt. (2.12)

Indeed, if Z verifies (2.1), then Z̃ := exp(−tA)Z verifies{
∂tZ̃ = InPZ̃ in (0, T )× L2(Ω)n,

Z̃(0) = Z0.
(2.13)

Hence, applying inequality (1.3) on each line of system (2.13), we obtain that

||Z̃(T )||2L2(Ω) 6 C

∫ T

0

∫
ω

||Z̃(t, x)||2dxdt.

Inequality (2.12) is then easily deduced by remarking that

C1||Z̃(t, x)||2 6 ||Z(t, x)||2 6 C2||Z̃(t, x)||2

for some constants C1 and C2 independent of t and x (but depending on T ).
Now, let us consider ||BZ||2Hn,m((0,T )×ω). Using (2.6), the fact that B has constant coefficients

and equation (2.1), we deduce that

||BZ||2Hn,m((0,T )×ω) =

n−1∑
k=0

∫ T

0

∫
ω

||BAkZ(t, x)||2dxdt. (2.14)

Since (2.9) is verified, the following map

z = (z1, . . . zn) ∈ Rn 7→
n−1∑
k=0

||BAkz||2

defines a norm on Rn, equivalent to the euclidean norm z 7→ ||z||2. Hence, we obtain, using (2.14),
that

||BZ||2Hn,m((0,T )×ω) > C

∫ T

0

∫
ω

||Z(t, x)||2dxdt,

which enables us to deduce (2.8) thanks to (2.12).
The fact that (2.8) implies (2.9) is classical and can be handled for example by using the strategy

of [7, Sections 3.1 & 3.2]: we first prove the result for m = 1 by transforming (2.1) in the Brunovsky
canonical form and we treat the general case m > 1 by transforming (2.1) into a block triangular
system where each diagonal block is in the Brunovsky canonical form. Note that system (2.1) also
verifies a backward uniqueness property, which is required for the above strategy to hold. This can
be easily proved by using the uncoupled equation (2.13) on Z̃ together with (1.2).

Proof of the second point of Theorem 1. Let us now consider system (2.2) and prove the
inverse part of the equivalence. We assume that the Kalman rank condition (2.11) is verified.

First of all, let us prove the following observability inequality on the solutions of (2.2):

||Z(T̃ )||2L2(Ω) 6 C

∫ T̃

0

∫
ω

||Z(t, x)||2dxdt. (2.15)
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Let us consider the i− th line of system (2.2) on the time interval (0, T̃ ), i.e.{
∂tzi = diPZi in (0, T̃ )× L2(Ω),
zi(0) = z0

i .

We perform the change of unknowns z̃i(t, x) := zi(t/di, x). z̃ is now defined on (0, Ti), where
Ti = diT̃ , and z̃ verifies (1.1).

By definition (2.3) of T̃ , one has Ti > T , hence using (1.3) (on the time interval (0, T )) together
with the well-posedness of equation (1.1), we obtain

||z̃i(Ti)||2L2(Ω) 6 C

∫ Ti

0

∫
ω

||z̃i(t, x)||2dxdt,

i.e.

||zi(T̃ )||2L2(Ω) 6 C

∫ T̃

0

∫
ω

||zi(t, x)||2dxdt.

Adding on i we obtain (2.15).
Now, we consider ||BZ||2In,m((0,T̃ )×ω)

. Using (2.7), the fact that B has constant coefficients and
equation (2.1), we deduce that

||BZ||2In,m((0,T̃ )×ω)
=

n−1∑
k=0

∫ T̃

0

∫
ω

||BDkPn−1Z(t, x)||2dxdt. (2.16)

Since (2.11) is verified, the following map

z = (z1, . . . zn) ∈ Rn 7→
n−1∑
k=0

||BDkz||2

is a norm on Rn, equivalent to the euclidian one z 7→ ||z||2. Hence, we obtain, using (2.16), that

||BZ||2In,m((0,T̃ )×ω)
> C

∫ T

0

∫
ω

||InPn−1Z(t, x)||2dxdt.

Applying (2.15) to InPn−1Z, instead of Z, we know that

||Z(T̃ )||2D(InPn−1) 6 C||BZ||2In,m((0,T̃ )×ω)
,

from which we deduce (2.10).
The fact that (2.10) implies (2.11) is classical and will be omitted here (see [7, Sections 3.1 & 3.2]

for example).

2.2 The case of time-dependent matrices

In this section we assume, for the sake of simplicity, that system (1.1) is observable in arbitrary
small time. We will explain in Remark 3 how to treat the case where the minimal time of observation
is positive. We consider the following systems involving the scalar equation (1.1):
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1. The diagonal case with the same operator P on each line and time-dependent coupling terms
and observation operators:{

∂tZ = InPZ +A(t)Z in (0, T )× Ω,
Z(0) = Z0,

(2.17)

with Z0 ∈ HN and A ∈ C∞([0, T ],Mn(K)). The observation is given by 1ωBZ, where B ∈
C∞([0, T ],Mm,n(K)).

2. The case where the coupling arises in the principal part:{
∂tZ = D(t)InPZ in (0, T )× Ω,
Z(0) = Z0,

(2.18)

with Z0 ∈ HN and D ∈ C∞([0, T ],Mn(K)) assumed to be diagonal with positive eigenvalues
at all time. We write D as D = diag(d1, . . . , dn), where di(t) > 0 for all t ∈ [0, T ]. The
observation is given by 1ωBZ, where B ∈ C∞([0, T ],Mm,n(K)).

We introduce the notations
B
∗
0 = B̃∗0 = B∗, B

∗
i = A∗B

∗
i−1 −B

∗′
i−1 and B̃∗i = D∗B̃∗(i−1) − B̃

∗′
i−1 for i ∈ N∗.

One has the following result:

Theorem 2. Assume that (1.1) is observable in arbitrary small time.

• System (2.17) is observable in norm Hn,m((0, T )×ω) in the sense that there exists C > 0 such
that for every Z0 ∈ D(InP

n−1), the solution Z of (2.17) verifies (2.8) if there exists t ∈ [0, T ]
such that

Span {B∗k(t)(Rm)|k ∈ N} = Rn. (2.19)

• System (2.18) is observable in norm In,m((0, T )× ω) in the sense that there exists C > 0 such
that for every Z0 ∈ D(InP

n−1), the solution Z of (2.18) verifies (2.10) if there exists t̃ ∈ [0, T ]
such that

Span {B̃∗k(t̃)(Rm)|k ∈ N} = Rn. (2.20)

Remark 3. • The regularity conditions on A, B and D can be weakened. Notably, Theorem 2
still holds provided that we assume that there exists p ∈ N such that A ∈ Cp([0, T ],Mn(K)),
D ∈ Cp([0, T ],Mn(K)) and B ∈ Cp+1([0, T ],Mm,n(K)), and that (2.19) and (2.20) are replaced
by the stronger conditions

Span {B∗k(t)(Rm)|k ∈ [|0, p+ 1|]} = Rn

and
Span {B̃∗k(t̃)(Rm)|k ∈ [|0, p+ 1|]} = Rn.

• The condition that the minimal time of observation needs to be arbitrarily small comes from
conditions (2.19) and (2.20), which require that one has to observe on a small interval of time
near t or t̃ (this will be made more precise during the proof of Theorem 2). One can readily
see from the proof of Theorem 2 that it is possible to get rid of the condition of observability
in arbitrary small time by assuming respectively the following conditions: there exists K ∈ N
such that for every t ∈ [0, T ],

Span {B∗k(t)(Rm)|k ∈ [0,K]} = Rn,

and there exists K ∈ N such that for every t ∈ [0, T ],

Span {B̃∗k(t)(Rm)|k ∈ [0,K]} = Rn.

We would then obtain a result of observability in time T for (2.17) and T̃ := maxi
∫ T

0
(di(s))

−1ds
for (2.18).
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Proof of the first point of Theorem 2. Let us first consider system (2.1). We assume that
condition (2.19) is verified.

We will need the following Lemma, that essentially says that in condition (2.19), we can restrict
to a finite number of B

∗
i on an interval close to t.

Lemma 2.1. Assume that (2.19) is verified. Then there exists ε > 0 such that for every t ∈ [|t −
ε, t+ ε|] \ {t},

Span {Bk(t)∗(Rm)|k ∈ [|0, n− 1|]} = Rn. (2.21)

This Lemma is proved in [20, Proposition 1.19, Page 11].
Hence, we now consider some interval [t0, t1] ⊂ [0, T ] such that for every t ∈ [t0, t1], one has

{Bk(t)∗(Rm)|k ∈ [|0, n− 1|]} = Rn.
We proceed as in the proof of Theorem 1. We want to prove the following observability inequality

on the solutions of (2.17):

||Z(t1)||2L2(Ω) 6 C

∫ t1

t0

∫
ω

||Z(t, x)||2dxdt. (2.22)

Since we assumed that (1.1) holds in arbitrary small time, we know that there exists C > 0 such
that for any solution z of (1.1), we have

||z(t1)||2L2(Ω) 6 C

∫ t1

t0

∫
ω

||z(t, x)||2dxdt. (2.23)

We now use the change of variables Z̃ := R−A(t, t0)Z, where R−A is the resolvent operator
associated to the ordinary differential equation y′ = −A(t)y. Then Z̃ is solution of{

∂tZ̃ = InPZ̃ in (0, T )× L2(Ω)n,

Z̃(0) = Z0.
(2.24)

Using inequality (2.23) on each equation of (2.24), we deduce that

||Z̃(t1)||2L2(Ω) 6 C

∫ t1

t0

∫
ω

||Z̃(t, x)||2dxdt.

Inequality (2.22) is then easily deduced by remarking that, thanks to the regularity of A, one has

C1||Z̃(t, x)||2 6 ||Z(t, x)||2 6 C2||Z̃(t, x)||2

for some constants C1 and C2 independent of t and x (but depending on t0, t1).
Thanks to (2.17), one can prove by an easy induction that for any i ∈ [|0, n− 1|], one has

(∂t − ImP )iBZ(t, x) = BiZ(t, x),

where Z ∈ ∩n−1
k=0H

k((t0, t1), D(P )n−1−k)n is the solution of (2.17).
Using (2.6), we deduce that

||BZ||2Hn,m((t0,t1)×ω) =

n−1∑
i=0

∫ t1

t0

∫
ω

||Bi(t)Z(t, x)||2dxdt. (2.25)

Since (2.21) is verified, for every t ∈ (t0, t1), the following map

x = (x1, . . . xn) ∈ Rn 7→
n−1∑
i=0

||Bi(t)x||2

10
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is a norm on Rn, equivalent to the euclidean one x 7→ ||x||2, which means that there exists some
constant C(t) > 0 such that

n−1∑
i=0

||Bi(t)x||2 > C(t)||x||2.

Moreover, by restricting (t0, t1) if necessary, we may always assume that C(t) > C for t ∈
[t0, t1] since C(t) can be chosen as the smallest singular value of [|B∗0(t)|B∗1(t) . . . |B∗n(t)|]∗, which is
continuous with respect to t. We deduce that for any t ∈ [t0, t1], one has

n−1∑
i=0

||Bi(t)x||2 > C||x||2. (2.26)

Hence, we obtain, using (2.14) and (2.26), that

||BZ||2Hn,m((t0,t1)×ω) > C

∫ t1

t0

∫
ω

||Z(t, x)||2dxdt,

which enable us to deduce (2.8) thanks to (2.22) and the well-posedness of (2.17).

Proof of the second point of Theorem 2 The proof is similar and then omitted.

2.3 An example: coupled systems of Schrödinger equations
In this Section, we explain how we can apply our previous results to different families of systems
of Schrödinger equations. We set P = i∆ with domain D(P ) = H2(Ω) ∩H1

0 (Ω). Remark that the
backward uniqueness property (1.2) is verified by conservation of the energy in time. With the same
notations as in the previous subsections, we consider the following systems: ∂tZ = i∆Z +AZ in (0, T )× Ω,

Z = 0 on (0, T )× ∂Ω,
Z(0) = Z0 ∈ L2(Ω),

(2.27)

 ∂tZ = iD∆Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

Z(0) = Z0 ∈ L2(Ω),
(2.28)

 ∂tZ = i∆Z +A(t)Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

Z(0) = Z0 ∈ L2(Ω),
(2.29)

 ∂tZ = iD(t)∆Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

Z(0) = Z0 ∈ L2(Ω).
(2.30)

being implicit that ∂Ω = ∅ if Ω is a manifold without boundary.
We assume from now on that ω verifies the geometric control condition (see [46] and [16]), so that

the scalar Schrödinger equation is observable in arbitrary small time (see [36]). Remark that this
sufficient condition might be weakened in some particular geometries. We introduce the following
norms:

||ϕ||2Hn,m((0,T )×ω) :=

n−1∑
k=0

∫ T

0

∫
ω

||(∂t − i∆)kϕ(t, x)||2dxdt,

11
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and

||ϕ||2In,m((0,T )×ω) :=

n−1∑
k=0

∫ T

0

∫
ω

||∂(k)
t (i∆)

n−1−k
ϕ(t, x)||2dxdt.

Applying directly Theorems 1 and 2, we obtain the following result.

Corollary 2.1. Assume that ω verifies the geometric control condition.

• System (2.27) is observable in any time T in norm Hn,m((0, T ) × ω) in the sense that there
exists C > 0 such that for every Z0 ∈ D(∆n−1), the solution Z of (2.27) verifies (2.8) if and
only if (2.9) is verified.

• System (2.28) is observable in any time T in norm In,m((0, T ) × ω) in the sense that there
exists C > 0 such that for every Z0 ∈ D(∆n−1), the solution Z of (2.28) verifies (2.10) if and
only if (2.11) is verified.

• System (2.29) is observable in norm Hn,m((0, T )×ω) in the sense that there exists C > 0 such
that for every Z0 ∈ D(∆n−1), the solution Z of (2.29) verifies (2.8) if there exists t ∈ [0, T ]
such that (2.19) holds.

• System (2.30) is observable in norm In,m((0, T )× ω) in the sense that there exists C > 0 such
that for every Z0 ∈ D(∆n−1), the solution Z of (2.30) verifies (2.10) if there exists t̃ ∈ [0, T ]
such that (2.20) holds.

2.4 Another example: coupled systems of wave equations
In this Section, we explain how we can apply (under some minor modifications) our previous results to
different families of systems of wave equations. We set P = ∆ with domain D(P ) = H2(Ω)∩H1

0 (Ω).
We consider then the following “scalar” wave equations ∂2

ttz = ∆z in (0, T )× Ω,
z = 0 on (0, T )× ∂Ω,

(z(0), ∂tz(0)) = (z0, z1) ∈ H1
0 (Ω)× L2(Ω),

(2.31)

being implicit that ∂Ω = ∅ if Ω is a manifold without boundary. Remark that the backward uniqueness
property (1.2) is verified by conservation of the energy in time. Here, we cannot enter directly the
framework of this article, because of the second derivative in time. However, the same result holds,
under minor modifications in the proof that will be explained afterwards.

We assume from now on that ω verifies the geometric control condition (see [46] and [16]), so that
(2.31) is observable in sufficiently large time T0 > 0. With the same notations as in the previous
subsections, we consider the following systems: ∂2

ttZ = ∆Z +AZ in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

(Z(0), ∂tZ(0) = (Z0, Z1) ∈ H1
0 (Ω)n × L2(Ω)n,

(2.32)

 ∂2
ttZ = D∆Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

(Z(0), ∂tZ(0) = (Z0, Z1) ∈ H1
0 (Ω)n × L2(Ω)n,

(2.33)

 ∂2
ttZ = D(t)∆Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

(Z(0), ∂tZ(0)) = (Z0, Z1) ∈ H1
0 (Ω)n × L2(Ω)n.

(2.34)

We introduce the following observation time for (2.33) and (2.34): T̃0 := maxi
∫ T0

0
(di(s))

−1ds.

12
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We also introduce the following norms:

||ϕ||2Hn,m((0,T0)×ω) :=

n−1∑
k=0

∫ T0

0

∫
ω

||(∂2
tt −∆)kϕ(t, x)||2dxdt,

and

||ϕ||2In,m((0,T̃0)×ω)
:=

n−1∑
k=0

∫ T̃0

0

∫
ω

||∂(2k)
t ∆n−1−kϕ(t, x)||2dxdt.

We have the following results:

Theorem 3. Assume that ω verifies the geometric control condition.

• System (2.32) is observable at time T0 in norm Hn,m((0, T0)× ω) in the sense that there exists
C > 0 such that for every (Z0, Z1) ∈ D(∆n−1/2)×D(∆n−1)), the solution Z of (2.32) verifies
(2.8) if and only if (2.9) is verified.

• System (2.33) is observable at time T̃0 in norm In,m((0, T̃0)× ω) in the sense that there exists
C > 0 such that for every (Z0, Z1) ∈ D(∆n−1/2)×D(∆n−1)), the solution Z of (2.33) verifies
(2.10) if and only if (2.11) is verified.

• System (2.34) is observable at time T0 in norm In,m((0, T̃0)× ω) in the sense that there exists
C > 0 such that for every (Z0, Z1) ∈ D(∆n−1/2)×D(∆n−1), the solution Z of (2.34) verifies
(2.10) if there exists K ∈ N such that for every t ∈ [0, T̃0],

Span {B̃k(t)∗(Rm)|k ∈ [0,K]} = Rn.

Remark 4. We do not know how to obtain a similar result in the case ∂2
ttZ = ∆Z +A(t)Z in (0, T )× Ω,
Z = 0 on (0, T )× ∂Ω,

(Z(0), ∂tZ(0) = (Z0, Z1) ∈ H1
0 (Ω)n × L2(Ω)n,

(2.35)

Indeed, the first step of Theorem 2 (i.e. observing each component on (0, T )×ω) cannot be performed
using the same reasoning, and also cannot be performed by a compactness-uniqueness argument (see
what follows).

Sketch of the proof of Theorem 3. The first step is to prove that there exists C > 0 such
that for any solution Z of (2.32), we have

||Z(T0)||2L2(Ω) 6 C

∫ T0

0

∫
ω

||Z(t, x)||2dxdt, (2.36)

and that there exists C > 0 such that for any solution Z of (2.33), and (2.34), we have

||Z(T̃0)||2L2(Ω) 6 C

∫ T̃0

0

∫
ω

||Z(t, x)||2dxdt. (2.37)

For (2.33) and (2.34), it is obvious that (2.37) can be proved by using the same reasoning as in the
proof of Theorems 1 and 2. Concerning (2.32), the same reasoning as in Theorem 1 cannot be used.
However, (2.36) can be easily recovered by using a standard compactness-uniqueness argument, for
example the one given in [38, Proof of Proposition 3.1].

As soon as (2.36) is proved, the reasoning is totally similar as in the case of first-order systems in
time.

13
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3 Sharp results for non-diagonalizable systems of parabolic
equations with constant coefficients

In this Section, we are interested in the question of observing the following system of heat equations{
∂tZ = D∆Z +AZ in (0, T )× Ω,
Z(0) = Z0,

(3.1)

with Z0 ∈ L2(Ω)n, A ∈Mn(R) and D ∈Mn(R) verifying an ellipticity condition given by

〈DX,X〉 > α||X||2,∀X ∈ Rn, (3.2)

for some α > 0. This condition is sufficient to ensure the well-posedness of (3.1), since the system is
strongly parabolic in the sense of [34, Chapter 7, Definition 7].

The observation is done on
m∑
i=1

BiZ1ωi ,

where Bi is the i-th line of B ∈ Mn,m(K), and ωi (i ∈ [|1,m|]) are some open subsets of Ω. These
observation subsets can be chosen arbitrarily. In particular all the subdomains ωi may be disjoint.

Let {λk}k≥1 be the eigenvalues of −∆ with Dirichlet boundary conditions and ek ∈ H1
0 (Ω) be the

corresponding eigenfunctions, constituting an orthonormal basis of L2(Ω).
We also introduce the one-parameter (λ > 0) family of matrices

K(λ) := [B∗|(−λD∗ +A∗)B∗| . . . |(−λD∗ +A∗)n−1B∗]. (3.3)

The main result of this section is as follows:

Theorem 4. System (3.1) is observable on (0, T ) in the sense that for every Z0 ∈ L2(Ω)n, the
solution Z of (3.1) verifies

||Z(T )||2L2(Ω) 6 C

∫ T

0

∫
Ω

m∑
i=1

(BiZ(t, x)1ωi
(x))

2
dxdt (3.4)

if and only if

rank K(λp) = n, ∀p > 1. (3.5)

Remark 5. • Contrary to the observability results presented in Section 2, it is here very easy to
give a related controllability result on the adjoint system, since we are working in the usual L2

setting. Notably, (3.1) verifies (3.4) (i.e. (3.5) is verified) if only if for any Y 0 ∈ L2(Ω)n, there
exists U ∈ L2(Ω)m such that the solution Y of{

∂tY = D∗∆Y +A∗Y +
∑m
i=1B

∗
i Y 1ωi

in (0, T )× Ω,
Y (0) = Y 0,

verifies Y (T, ·) = 0.

• Here we do not need to make any extra assumption on the Jordan blocks of D contrary to [29].
This comes from the fact that we restrict to constant coupling terms here, which enables us to
use a different strategy.

• If all ωi coincide, the same condition was obtained in [7] under the restriction that D had to
be a diagonalizable matrix and in [29] under a restriction on the Jordan blocks of D.

14
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• Some results for systems of parabolic equations with internal or boundary controls with different
control domains have already been proved in [44], under the restrictive condition that D is the
identity matrix. The author derived Kalman rank conditions similar to the ones of [7].

• The strategy developed in the proof relies heavily on the spectral observability estimate proved
by Lebeau and Robbiano (see (3.7) below). The method of proof we develop here can be applied
as soon as an appropriate spectral inequality similar to (3.7) for the scalar equation (1.1) is
available. For instance, similar results could be obtained for a system of Kolmogorov equations
on the whole space (see [35]), or for any heat equation where −∆ is replaced by (−∆)s (the
spectral fractional Dirichlet-Laplace operator of order s) for s > 1/2.

Proof of Theorem 4. We first prove the inverse part of Theorem 4. We assume that (3.5) holds.
We use the Lebeau-Robbiano strategy.

First of all, we decompose the initial condition Z0 as

Z0(x) =
∞∑
k=1

Z0
kek(x), Z0

k ∈ Rn.

Then the solution Z of (3.1) can be written as

Z(t, x) =

∞∑
k=1

Zk(t)ek(x),

where Zk is the unique solution of the ordinary differential system{
Z ′k = (−λkD +A)Zk,

Zk(0) = Z0
k .

(3.6)

Let us recall the Lebeau-Robbiano inequality for eigenfunctions of the Dirichlet-Laplace operator
as obtained in [33]: for any non-empty subset ωi of Ω, there exists Ci > 0 such that for any J > 0
and any finite linear combination of the ek (k 6 J) given by e(x) :=

∑
k6J akek(x), we have

∑
k6J

|ak|2 =

∫
Ω

∑
k6J

akek(x)

2

dx 6 Cie
Ci

√
λJ

∫
ωi

∑
k6J

akek(x)

2

dx. (3.7)

Writing (3.7) for each component of BZk and adding on n we obtain that there exists C > 0 such
that ∑

k6J

||BZk(t)||2 6 CeC
√
λJ

n∑
i=1

∫
ωi

∑
k6J

BiZk(t)ek(x)

2

dx. (3.8)

Integrating (3.8) between 0 and T , we obtain

∫ T

0

∑
k6J

||BZk(t)||2dt 6 CeC
√
λJ

n∑
i=1

∫ T

0

∫
ωi

∑
k6J

BiZk(t)ek(x)

2

dxdt. (3.9)

Now, we consider equation (3.6). Thanks to the assumption (3.5), we deduce that for every k ∈ [|1, J |],
system (3.6) is observable and we have the existence of some constant C(T, k, n) > 0 (depending on
k, T and n) such that

||Zk(T )||2 6 C(T, k, n)

∫ T

0

||BZk(t)||2dt. (3.10)

Moreover, one can prove the following Lemma:
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Lemma 3.1. There exists some C > 0 (independent on T ,k, depending only on n) such that (3.10)
holds with

C(T, n, k) 6 C

(√
T +

1

Tn−
1
2

)
F (λk), (3.11)

where F is a rational function of λk.

This lemma is proved in Appendix A.
Using (3.9), (3.10) and (3.11) we deduce that

∑
k6J

||Zk(T )||2 6 C max
k6J
{
√
C(T, k, n)}eC

√
λJ

∫ T

0

∫
ω

∑
k6J

BiZk(t)ek(x)

2

dx

6 C̃

(
1 +

1

T p1

)
eC̃
√
λJ

∫ T

0

∫
ω

∑
k6J

BiZk(t)ek(x)

2

dx

(3.12)

for some new constant C̃ > C. Once we have (3.12), it is very classical that one can deduce the
observability inequality (3.4) by coupling (3.12) with a dissipation estimate (one can for example
apply directly [43, Theorem 2.2]).

The proof of the inverse part of the equivalence is finished.
Let us now prove the direct part of Theorem 4. We argue by contradiction as in [8]. We assume

that (3.5) does not hold, i.e. there exists p0 ∈ N∗ such that

rank K(λp0) < n.

Then, by the usual Kalman rank condition for ODEs, for k = p0, (3.6) is not observable and there
exists a solution Zp0 to (3.6) verifying BZp0(t) = 0 for every t ∈ (0, T ). It is clear that Z(t, x) =
Zp0(t)ep0(x) is a solution of (3.1) verifying moreover BZ(t, x) = 0 for every (t, x) ∈ (0, T )×Ω, which
means that (3.1) is not observable and concludes the proof.

4 Conclusion and open problems

In this article, we presented a simple method for finding algebraic sufficient (and sometimes necessary)
conditions for weak observability of coupled systems of partial differential equations with constant
or time-dependent coefficients and a reduced number of observations, and we applied the Lebeau-
Robbiano strategy on a non-diagonalizable system of heat equations in order to derive a spectral
necessary and sufficient condition of observability on distinct subsets. We address to following natural
open questions arising after our study:

• In the case of systems (2.1), (2.2), (2.17) and (2.18), can we obtain observability inequalities in
the natural L2-norm? If not, what are the optimal Sobolev norms that one can estimate in the
left-hand side?

• In the case of systems (2.2) and (2.18), can we obtain the same Kalman or Silverman-Meadows
condition for non-diagonalizable coupling matrices D∗?

• In the case of systems (2.17) (resp. (2.18)), is the Silverman-Meadows condition necessary in
the case where A (resp. D) and B are analytic? If A (resp. D) or B is not analytic, is it
possible to find a counter-example showing that the Silverman-Meadows condition may be not
verified whereas null-controllability is still verified?
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• In the case where P is self-adjoint but no spectral inequality similar to (3.7) is known for
the eigenfunctions of P , or in the case of parabolic systems of order two with time and space-
dependent coefficients, can we obtain by other means necessary and sufficient conditions similar
to (3.4) for general systems of the form ∂tZ = D∗InPZ +A∗Z?

• One may also ask the question of finding necessary and sufficient conditions for general systems
of the form ∂tZ = D∗InPZ + A∗Z for unitary groups of operators like Schrödinger or wave
equations.

• In the case of systems (2.1), (2.2), (2.17) and (2.18), can we obtain observability inequalities
with different (and possibly disjoint) observation subsets ωi as in the case of (3.1)?

• Can we obtain the same characterizations if we couple different dynamics (for example systems
of mixed heat and wave equations), as in [49]?

• Can obtain the same results for an infinite number of coupled equations (i.e. n =∞)?

A Proof of Lemma 3.1
We consider the corresponding control problem naturally associated to the adjoint problem (3.6)
given by {

Y ′k = (−λkD∗ +A∗)Yk +B∗Uk,
Yk(0) = Y 0

k ,
(A.1)

where Uk ∈ L2((0, T ),Rm).
In order to prove Lemma 3.1, we will use a construction of (non-necessarily optimal) controls

given in [48] (see also [15]). For k ∈ N∗, we call C(λk) := −λkD∗ + A∗. We introduce the following
linear continuous operator

Q(λk) : (u0, u1, . . . un−1) ∈ (Rm)n 7→ B∗u0 + C(λk)B∗u1 + . . .+ C(λk)n−1B∗un−1 ∈ Rn.

Thanks to (3.5), we know that for any k ∈ N∗, Q(λk) is onto, so that there exists a right inverse
E(λk) : Rn → (Rm)n to Q(λk). If we identify E(λk) with its matrix in the canonical basis, It is
clear that all the elements of E(λk) are fractional functions of λk, since E(λk) can be constructed
using Gauss elimination on the matrix that represents Q(λk) in the canonical basis. Writing E(λk)
as E(λk) = (E0(λk), . . . En−1(λk)), by definition of E(λk) we have

n−1∑
i=0

CikB
∗Ei(λk) = IdRn .

Let us consider the function ϕ ∈ Cn([0, T ],R) defined as the normalization in L1-norm of the function
t 7→ tn(T − t)n. This function verifies

ϕ(i)(0) = ϕ(i)(T ) = 0, i ∈ [|0, n− 1|], and
∫ T

0

ϕ = 1.

Moreover, we know by [15, Page 891] that for any i ∈ [|0, n− 1|], there exists a constant Ci > 0 such
that

||ϕ(i)||∞,[0,T ] 6 Ci max

(
1

T
,

1

T i+1

)
6 Ci max

(
1

T
,

1

Tn

)
6 Ci

(
1 +

1

Tn

)
,

so that taking the maximum of all these Ci, there exists some constant C > 0 such that for any
i ∈ [|0, n− 1|], we have

||ϕ(i)||∞,[0,T ] 6 C

(
1 +

1

Tn

)
. (A.2)
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Then, following [48] and [15], we may give the following expression of a control Uk steering Y 0
k to

0 at time T :

Uk(t) :=

n−1∑
i=0

Ei(λk)ψ(i)(t), (A.3)

where ψ(t) = −etC(λk)Y 0
k ϕ(t). Now, using the Leibniz rule, we have that

ψ(i)(t) = −
i∑
l=0

(
l

i

)
C(λk)(i−l)etC(λk)Y 0

k ϕ
(l)(t). (A.4)

We remark that for X ∈ Rn, using (3.2) and denoting by |||.||| the matrix norm associated to the
usual euclidian norm, we have

〈C(λk)X,X〉 = −λk〈DX,X〉+ 〈AX,X〉 6 (−λkα+ |||A|||)||X||2,

so that for λk large enough (which is sufficient for our purpose), we have existence of some β > 0
(independent of k) such that

〈C(λk)X,X〉 6 −β||X||2.

Then, it is standard to deduce that we have, for any t > 0,

||etC(λk)Y 0
k || 6 e−βt||Y 0

k || 6 ||Y 0
k ||. (A.5)

Combining (A.4) together with (A.2) and (A.5), we deduce that for any i ∈ [|, 0, n− 1|], we have

||ψ(i)||∞,[0,T ] 6

(
C

(
1 +

1

Tn

) i∑
l=0

|||C(λk)|||i−l
)
||Y 0

k ||.

Since C(λk) has coefficients that depend linearly on λk > 0, one can find some C > 1 such that
|||C(λk)||| 6 C(1 + λk). We deduce that

||ψ(i)||∞,[0,T ] 6

(
C

(
1 +

1

Tn

)
Ci(1 + λk)i

)
||Y 0

k || 6
(
C

(
1 +

1

Tn

)
Cn(1 + λk)n

)
||Y 0

k ||.

Using this last inequality together with (A.3), we deduce that there exists come C > 0 (depending
only on n) such that

||Uk(t)||∞,[0,T ] 6

(
C

(
1 +

1

Tn

)
(1 + λk)n

)
max

i∈[|0,n−1|]
||Ei(λk)||,

from which we deduce

||Uk(t)||L2(0,T 6
√
T ||Uk(t)||∞,[0,T ] 6

(
C

(√
T +

1

Tn−
1
2

)
(1 + λk)n

)
max

i∈[|0,n−1|]
||Ei(λk)||.

Since the coefficients of Ei(λk) depend only on λk and are fractional in λk, the desired result follows.
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