
Non-localization of eigenfunctions for Sturm-Liouville

operators and applications

Thibault Liard∗ Pierre Lissy† Yannick Privat‡§

Abstract

In this article, we investigate a non-localization property of the eigenfunctions of Sturm-
Liouville operators Aa = −∂xx + a(·) Id with Dirichlet boundary conditions, where a(·) runs
over the bounded nonnegative potential functions on the interval (0, L) with L > 0. More
precisely, we address the extremal spectral problem of minimizing the L2-norm of a function
e(·) on a measurable subset ω of (0, L), where e(·) runs over all eigenfunctions of Aa, at the
same time with respect to all subsets ω having a prescribed measure and all L∞ potential
functions a(·) having a prescribed essentially upper bound. We provide some existence and
qualitative properties of the minimizers, as well as precise lower and upper estimates on the
optimal value. Several consequences in control and stabilization theory are then highlighted.
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1 Introduction

1.1 Localization/Non-localization of Sturm-Liouville eigenfunctions

In a recent survey article concerning the Laplace operator ([10]), D. Grebenkov and B.T. Nguyen
introduce, recall and gather many possible definitions of the notion of localization of eigenfunctions.
In particular, in section 7.7 of their article, they consider the Dirichlet-Laplace operator ∆ on a
given bounded open set Ω of IRn, a Hilbert basis of eigenfunctions (ej)j∈IN∗ in L2(Ω) and use as a
measure of localization of the eigenfunctions on a measurable subset ω ⊂ Ω the following criterion

Cp(ω) = inf
j∈IN∗

‖ej‖pLp(ω)

‖ej‖pLp(Ω)

,

where p > 1. For instance, evaluating this quantity for different choices of subdomains ω if Ω is a
ball or an ellipse allows to illustrate the so-called whispering galleries or bouncing ball phenomena.
At the opposite, when Ω denotes the d-dimensional box (0, `1)× · · · × (0, `d) (with `1, . . . , `d > 0),
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it is recalled that Cp(ω) > 0 for any p > 1 and any measurable subset ω ⊂ Ω whenever the ratios
(`i/`j)

2 are not rational numbers for every i 6= j.
Many other notions of localization have been introduced in the literature. Regarding the

Dirichlet/Neumann/Robin Laplacian eigenfunctions on a bounded open domain Ω of IRn and using
a semi-classical analysis point of view, the notions of quantum limit or entropy have been widely
investigated (see e.g. [1, 3, 4, 9, 13, 20]) and provide an account for possible strong concentrations
of eigenfunctions. Notice that the properties of Cp(ω) are intimately related to the behavior
of high-frequency eigenfunctions and especially to the set of quantum limits of the sequence of
eigenfunctions considered. Identifying such limits is a great challenge in quantum physics ([4, 9, 40])
and constitute a key ingredient to highlight non-localization/localization properties of the sequence
of eigenfunctions considered.

Given a nonzero integer p, the non-localization property of a sequence (ej)j∈IN∗ of eigenfunctions
means that the real number Cp(ω) is positive for every measurable subset ω ⊂ Ω. Concerning the
one-dimensional Dirichlet-Laplace operator on Ω = (0, π), it has been highlighted in the case where
p = 2 (for instance in [12, 24, 36]) that

inf
|ω|=rπ

C2(ω) = inf
|ω|=rπ

inf
j∈IN∗

2

π

∫

ω

sin(jx)2 dx > 0,

for every r ∈ (0, 1).
Motivated by these considerations, the present work is devoted to studying similar issues in

the case p = 2, for a general family of one-dimensional Sturm-Liouville operators of the kind Aa =
−∂xx +a(·) Id with Dirichlet boundary conditions, where a(·) is a nonnegative essentially bounded
potential defined on the interval (0, L). More precisely, we aim at providing lower quantitative
estimates of the quantity C2(ω), where (ea,j)j∈IN∗ denotes now a sequence of eigenfunctions of Aa,
in terms of the measure of ω and the essential supremum of a(·) by minimizing this criterion at
the same time with respect to ω and a(·), over the class of subsets ω having a prescribed measure
and over a well-chosen class of potentials a(·), relevant from the point of view of applications.
Independently of its intrinsic interest, the choice “p = 2” is justified by the fact that the quantity
C2(ω) plays a crucial role in many mathematical fields, notably the control or stabilization of the
linear wave equation (see for example [25] and [12]) and the randomised observation of linear wave,
Schrödinger or heat equations (see for example [33], [37] or [38]).

Explicit lower bounds of C2(ω) have already been obtained in [31] in the case a(·) = 0. In the
case where the potential a(·) differs from 0, some partial estimates of C2(ω) are gathered in [12]
holding in a restricted class of potentials with very small variations around constants. Up to our
knowledge, there are no other articles investigating this precise problem.

The article is organized as follows: in Section 1.2, the extremal problem we will investigate
is introduced. The main results of this article are stated in Section 2: a comprehensive analysis
of the extremal problem is performed, reducing in some sense (that will be made precise in the
sequel) this infinite-dimensional problem to a finite one. Moreover, we provide very simple lower
and upper estimates of the optimal value. The whole section 3 is devoted to the proofs of the main
and intermediate results. Finally, consequences and applications of our main results for observation
and control theory and several numerical illustrations and investigations are gathered in Section 4.

1.2 The extremal problem

Let L be a positive real number and a(·) be an essentially nonnegative function belonging to
L∞(0, L). We consider the operator

Aa := −∂xx + a(·), (1)

2



defined on D(Aa) = H1
0 (0, L) ∩H2(0, L). As a self-adjoint operator, Aa admits a Hilbert basis of

L2(0, L) made of eigenfunctions denoted ea,j ∈ D(Aa) and there exists a sequence of increasing
positive real numbers (λa,j)j∈IN∗ such that ea,j solves the eigenvalue problem

{
−e′′a,j(x) + a(x)ea,j(x) = λ2

a,jea,j(x), x ∈ (0, L),

ea,j(0) = ea,j(L) = 0.
(2)

By definition, the normalization condition

∫ L

0

e2
a,j(x) dx = 1 (3)

is satisfied and we also impose that e′a,j(0) > 0, so that ea,j is uniquely defined.
With regards to the explanations of Section 1.1, we are interested in the non-localization prop-

erty of the sequence of eigenfunctions (ea,j)j∈IN∗ . The quantity of interest, denoted J(a, ω), is
defined by

J(a, ω) = inf
j∈IN∗

∫
ω
e2
a,j(x) dx

∫ L
0
e2
a,j(x) dx

= inf
j∈IN∗

∫

ω

e2
a,j(x) dx, (4)

where ω denotes a measurable subset of (0, L) of positive measure.
The real number J(a, ω) is the equivalent for the Sturm-Liouville operators Aa of the quantity

C2(ω) introduced in Section 1.1 for the one-dimensional Dirichlet-Laplace operator.
It is natural to assume the knowledge of a priori informations about the subset ω and the

potential function a(·). Indeed, we will choose them in some classes that are small enough to make
the minimization problems we will deal with non-trivial, but also large enough to provide “explicit”
(at least numerically) values of the criterion for a large family of potential.

Hence, in the sequel, we assume that:

• the measure (or at least a lower bound of the measure, which leads to the same solution of
the optimal design problem we consider) of the subset ω is given;

• the potential function a(·) is nonnegative and essentially bounded.

Such conditions are relevant and commonly used in the context of control or inverse problems.
Fix M > 0, r ∈ (0, 1), α and β two real numbers such that α < β. Let us introduce the class

of admissible observation subsets

Ωr(α, β) = {Lebesgue measurable subset ω of (α, β) such that |ω| = r(β − α)}, (5)

as well as the class of admissible potentials

AM (α, β) = {a ∈ L∞(α, β) such that 0 6 a(x) 6M a.e. on (α, β)} , (6)

Let us now introduce the optimal design problem we will investigate.

Extremal spectral problem. Let M > 0, r ∈ (0, 1) and L > 0 be fixed. We consider

m(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω), (PL,r,M )

where the functional J is defined by (4), Ωr(0, L) and AM (0, L) are respectively defined
by (5) and (6).
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In the sequel, we will call minimizer of the problem (PL,r,M ) a triple (a∗, ω∗, j0) ∈ AM (0, L)×
Ωr(0, L)× IN∗ (whenever it exists) such that

inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω) =

∫

ω∗
ea∗,j0(x)2 dx.

Remark 1. Noting that for a given real number c, the operator Aa + c Id has the same eigenfunc-
tions as Aa, we claim that all the results and conclusions of this article will also hold if we replace
the class of potentials AM (α, β) by the larger class

ÃM (α, β) :=

{
ρ ∈ L∞(α, β) such that sup

(α,β)

ρ(·)− inf
(α,β)

ρ(·) 6M

}
.

Indeed, for any ρ ∈ ÃM (0, L), set a = ρ− inf(0,L) ρ. Then, a ∈ AM (0, L), and every eigenfunction
eρ,j solving the system

{
−e′′ρ,j(x) + ρ(x)eρ,j(x) = µρ,jeρ,j(x), x ∈ (0, L),

eρ,j(0) = eρ,j(L) = 0,

is also a solution of the system

{
−e′′ρ,j(x) + a(x)eρ,j(x) = λ2

a,jeρ,j(x), x ∈ (0, L),

eρ,j(0) = eρ,j(L) = 0

with λ2
a,j = µρ,j + inf(0,L) ρ, whence the claim.

2 Main results and comments

Let us state the main results of this article. The next theorems are devoted to the analysis of
the optimal design problems (PL,r,M ).

We also stress on the fact that the following estimates of J(a, ω) are valid for every measurable
subset ω of prescribed measure and that we do not need to add any topological assumption on it.

Theorem 1. Let r ∈ (0, 1) and M ∈ IR∗+.

i Problem (PL,r,M ) has a solution (a∗, ω∗, j0). In particular, there holds

m(L,M, r) = min
a∈AM (0,L)

min
ω∈Ωr(0,L)

∫

ω

ea,j0(x)2 dx,

and the solution a∗ of Problem (PL,r,M ) is bang-bang, (i.e. equal to 0 or M a.e. in (0, L)).

ii Assume that M ∈ (0, π2/L2]. Then, ω∗ is the union of j0 + 1 intervals, and a∗ has at most
3j0 − 1 and at least j0 switching points1.

Moreover, one has the estimate

γmin(r, r2)3 6 m(L,M, r) 6 r − sin(πr)

π
, (7)

with γ = 7
√

3
8 (3− 2

√
2) ' 0.2600 and r2 =

√
5

5 +
√

10
10 ' 0.7634.

1Recall that a switching point of a bang-bang function is a point at which this function is not continuous.
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In the following result, we highlight the necessity of imposing a pointwise upper bound on the
potentials functions a(·) to get the existence of a minimizer.

Theorem 2. Let r ∈ (0, 1) and j ∈ IN∗. Then, the optimal design problem of finding a minimizer
to

inf
a∈A∞(0,L)

inf
ω∈Ωr(0,L)

J(a, ω), (PL,r,∞)

where A∞(0, L) = ∪M>0AM (0, L), has no solution.

We conclude this section by some remarks and comments.

Remark 2. The estimate (7) can be considered as sharp with respect to the parameter r, at least
for r small enough (which is the most interesting case in view of the applications). Indeed, there

holds πr−sin(πr)
π ∼ π2

6 r
3 as r tends to 0, which shows that the power of r in the left-hand side

cannot be improved. The graphs of the quantities appearing in the left and right-hand sides of (7)
with respect to r are plotted on Figure 1 below.

An interesting issue would thus consist in determining the optimal bounds in the estimate (7),
namely

`− = inf
r∈(0,1)

m(L,M, r)

r3
and `+ = sup

r∈(0,1)

m(L,M, r)

r3
. (P`−,`+)

It is likely that investigating this issue would rely on a refined study of the optimality conditions
of the problems (P`−,`+), but also of the problem (PL,r,M ). According to (7), we know that

`− ∈ [γ(
√

5
5 +

√
10

10 )3, 1] and `+ ∈ [γ, π2/6].

Remark 3. Let us highlight the interest of Theorem 1 for numerical investigations. Indeed, in
view of providing numerical lower bounds of the quantity J(a, ω), Theorem 1 enables us to reduce
the solving of the infinite-dimensional problems (PL,r,M ) to the solving of finite ones, since one
has just to choose the optimal 3j∗0 − 1 switching points defining the best potential function a∗ and
to remark that necessarily ω∗ is uniquely defined once a∗ is defined (since it is defined in terms of
a precise level set of ea∗,j∗0 , see Proposition 1). We will strongly use this remark in Section 4.2.1,
where illustrations and applications of Problem (PL,r,M ) are developed.

Remark 4. The restriction on the range of values of the parameter M in the second point of
Theorem 1 makes each eigenfunction ea,j convex or concave on each nodal domain. The upper
bound on the parameter M , namely the real number π2/L2 correspond to the lowest eigenvalue
of the Dirichlet Laplacian A0. It constitutes a crucial element of the proofs of Theorem 1 and
Proposition 4, that allows to compare each quantity

∫
ω
ea,j(x)2 dx with the integral of the square

of well-chosen piecewise affine functions. Unfortunately, the solving of Problem (PL,r,M ) when
M > π2/L2 appears much more intricate and cannot be handled with the same kinds of arguments.
Some numerical experiments in the case M > π2/L2 will be presented in Section 4.2.

Remark 5. According to Section 4.2.1, numerical simulations seem to indicate that there exists
a triple (j∗0 , ω

∗, a∗) solving Problem (PL,r,M )such that j∗0 = 1, the set ω∗ and the graph of a∗ are
symmetric with respect to L/2 and a∗ is a bang-bang function having exactly two switching points.
We were unfortunately unable to prove this assertion.

A first step would consist in finding an upper estimate of the optimal index j∗0 . Even this ques-
tion appears difficult in particular since it is not obvious to compare the real numbers

∫
ω
ea,j(x)2 dx

for different indices j. One of the reasons of that comes from the fact that the cost functional we
considered does not write as the minimum of an energy function, making the comparison between
eigenfunctions of different orders on the subdomain ω intricate.
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Remark 6. It can be noticed that the lower bound in Proposition 4 is independent of the parameter
L. This can be justified by using an easy rescaling argument allowing in particular to restrict our
numerical investigations to the case where L = π (for instance).

Lemma 1. Let j ∈ IN∗, r ∈ (0, 1), M > 0 and L > 0. Then, there holds

inf
a∈AM (0,π)

inf
ω∈Ωr(0,π)

∫

ω

ea,j(x)2 dx = inf
a∈AMπ2

L2

(0,L)
inf

ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx, (8)

Remark 7. One can show by using tedious computations inspired by those of Appendix B that the
sequences (mj)j∈IN∗ and (rj)j∈IN∗ are increasing. Moreover, straightforward computations show
that (mj)j∈IN∗ converges to 2/3 and (rj)j∈IN∗ converges to 1 as j tends to +∞.
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Figure 1: (Left) Plots of r 7→ γmin(r,
√

5
5 +

√
10

10 )3 (thin line) and r 7→ (πr− sin(πr))/π (bold line).
(Right) Zoom on the graph for the range of values r ∈ [0, 0.2].

3 Proofs of Theorem 1 and Theorem 2

3.1 Preliminary material: existence results and optimality conditions

We gather in this section several results we will need to prove Theorem 1 and Theorem 2.
Let us first investigate the following simpler optimal design problem, where the potential a(·)

is now assumed to be fixed, and which will constitute an important ingredient in the proof.

Auxiliary problem: fixed potential. For a given j ∈ N∗, M > 0, r ∈ (0, 1) and
a ∈ AM (0, L), we investigate the optimal design problem

inf
χ∈Ur

∫ L

0

χ(x)ea,j(x)2 dx, (Aux-Pb)

where the set Ur is defined by

Ur =

{
χ ∈ L∞(0, L) | 0 6 χ 6 1 a.e. in (0, L) and

∫ L

0

χ(x) dx = rL

}
. (9)
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We provide a characterization of the solutions of Problem (Aux-Pb).

Proposition 1. Let r ∈ (0, 1). The optimal design problem Problem (Aux-Pb) has a unique
solution that writes as the characteristic function of a measurable set ω∗ of Lebesgue measure rL.
Moreover, there exists a positive real number τ such that ω∗ is a solution of Problem (Aux-Pb) if
and only if

ω∗ = {ea,j(x)2 < τ}, (10)

up to a set of zero Lebesgue measure.

In other words, any optimal set, solution of Problem (Aux-Pb), is characterized in terms of
the level set of the function ea,j(·)2. This result is a direct consequence of [34, Theorem 1] or [39,
Chapter 1] and the fact that for every c > 0, the set {e2

a,j = c} has zero Lebesgue measure, by
using standard properties of eigenfunctions of Sturm-Liouville operators.

The following continuity result is standard. We refer to [32, Chap. 1, page 10] for a proof.

Lemma 2. Let M ∈ IR∗+ and j ∈ N∗. Let us endow the space AM (0, L) with the weak-? topology
of L∞(0, L) 2 and the space H1

0 (0, L) with the standard strong topology inherited from the Sobolev
norm ‖ · ‖H1

0
. Then the function a ∈ AM (0, L) 7→ ea,j ∈ H1

0 (0, L) is continuous.

Another key point ouf our proof is the study of the following auxiliary optimal design Problem:

mj(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx, (Pj,L,r,M )

for a fixed j ∈ IN∗.
The next result is a direct consequence of Lemma 2.

Proposition 2. Let M ∈ IR∗+, j ∈ IN∗ and r ∈ (0, 1). The optimal design Problem (Pj,L,r,M ) has
at least one solution (a∗j , ω

∗
j ).

Proof of Proposition 2. Let us consider a relaxed version of the optimal design Problem
(Pj,L,r,M ), where the characteristic function of ω has been replaced by a function χ in Ur (defined
in (9)). This relaxed version of (Pj,L,r,M ) writes

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx.

Let us endow AM (0, L) and Ur with the weak-? topology of L∞(0, L). Thus, both sets are compact.
Moreover, according to Lemma 2 and since it is linear in the variable χ, the functional (a, χ) ∈
AM (0, L)×Ur 7→

∫ L
0
χ(x)ea,j(x)2 dx is continuous. The existence of a solution (a∗j , χ

∗
j ) follows for

the relaxed problem. Finally, noting that

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx = inf
χ∈Ur

∫ L

0

χ(x)ea∗j ,j(x)2 dx,

there exists a measurable set ω∗j of measure rL such that χ∗j = χω∗j , by Proposition 1.

The existence of a solution of Problem (Pj,L,r,M ) is then proved and there holds

inf
(a,χ)∈AM (0,L)×Ur

∫ L

0

χ(x)ea,j(x)2 dx = inf
a∈AM (0,L)

∫

ω∗
ea,j(x)2 dx.

2Recall that a sequence (an)n∈IN∗ of L∞(0, L) converges to a for the weak-? topology of L∞(0, L) whenever∫ L
0 an(x)ϕ(x) dx converge to

∫ L
0 a(x)ϕ(x) dx for every ϕ ∈ L1(0, L).
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We now state necessary first order optimality conditions that enable us to characterize every
critical point (a∗j , ω

∗
j ) of the optimal design problem (Pj,L,r,M ).

Proposition 3. Let j ∈ IN∗, r ∈ (0, 1) and M > 0. Let (a∗j , ω
∗
j ) be a solution of the optimal design

problem (Pj,L,r,M ) and let

0 = x0
j < x1

j < x2
j < · · · < xj−1

j < L = xjj (11)

be the j + 1 zeros3 of the j-th eigenfunction ea∗j ,j.

For i ∈ {1 . . . j}, let us denote by a∗j,i the restriction of the function a∗j to the interval (xi−1
j , xij)

and by ω∗j,i the set ω∗j ∩ (xi−1
j , xij). Then, necessarily, there exists τ ∈ IR∗+ such that

• one has ω∗j = {ea∗j ,j(x)2 < τ} up to a set of zero Lebesgue measure,

• one has
Mχ{pj(x)ea∗

j
,j(x)>0}(x) 6 a∗j (x) 6Mχ{pj(x)ea∗

j
,j(x)>0}(x), (12)

for almost every x ∈ (0, L), where pj is defined piecewisely as follows: for i ∈ {1 . . . j}, the
restriction of pj to the interval (xi−1

j , xij) is denoted pj,i, and pj,i is the (unique) solution of
the adjoint system

{−p′′j,i(x) + (a∗j,i(x)− λ2
a∗j ,j

)pj,i(x) = (χω∗j,i − c̃j,i)ea∗j ,j , x ∈ (xi−1
j , xij),

pj,i(x
i−1
j ) = pj,i(x

i
j) = 0,

(13)

verifying moreover ∫ xij

xi−1
j

pj,i(x)ea∗j,i,j(x) dx = 0, (14)

where ˜cj,i is given by

c̃j,i =

∫ xij
xi−1
j

χω∗j,i(x)e2
a∗j ,j

(x) dx

∫ xij
xi−1
j

e2
a∗j ,j

(x) dx
. (15)

In other words, any optimal set solution of Problem (Pj,L,r,M ) is characterized in terms of a
level set of the function ea∗j ,j(·)2 and the optimal potential a∗j is characterized in terms of a level

set of the function pj(·)ea∗j ,j(·).

Remark 8. i According to Fredholm’s alternative (see for example [15]), System (13)-(14)
has a unique solution.

ii Another presentation of the first order optimality conditions gathered in Proposition 3 could
have been obtained by applying the so-called Pontryagin Maximum Principle (see e.g. [27]).

Before proving this proposition, let us state a technical lemma about the differentiability of the
eigenfunctions ea,j with respect to a.

3Recall that the family {xk
j }06k6j is the set of nodal points that are known to be of cardinal j and to be simple

roots of the eigenfunction ea∗,j (see [32, Chap. 2, Thm 6]).
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Lemma 3. Let us endow the space AM (0, L) with the weak-? topology of L∞(0, L) and the space
H1

0 (0, L) with the standard strong topology inherited from the Sobolev norm ‖ · ‖H1 . Let a ∈
AM (0, L) and Ta,AM (0,L) be the tangent cone4 to the set AM (0, L) at point a. For every h ∈
Ta,AM (0,L), the mapping a 7→ ea,j is Gâteaux-differentiable in the direction h, and its derivative,
denoted ėa,j, is the (unique) solution of

{
−ė′′a,j(x) + a(x)ėa,j(x) + h(x)ea,j(x) = ˙(

λ2
a,j

)
ea,j(x) + λ2

a,j ėa,j(x), x ∈ (0, L),

ėa,j(0) = ėa,j(L) = 0,
(16)

with ˙(
λ2
a,j

)
=
∫ L

0
h(x)ea,j(x)2 dx.

The proof of the differentiability is completely standard and is based on the fact that the eigen-
values λa,j are simple. For this reason, we skip it and refer to [21, pages 375 and 425].

Proof of Proposition 3. The first point results from Proposition 1.
Let us prove the second point.We compute the Gâteaux-derivative of the cost functional a 7→

Jω∗j (a), where

Jω∗j (a) = J(a, ω∗j ) =

∫

ω∗j

ea,j(x)2 dx,

at a = a∗j in the direction hj ∈ Ta∗j ,AM (0,L). We denote it by 〈dJω∗j (a∗j ), h〉 and there holds

〈dJω∗j (a∗j ), hj〉 = 2

∫

ω∗
ėa∗j ,j(x)ea∗j ,j(x) dx,

where ėa∗j ,j is the solution of (16).
Let us write this quantity in a more convenient form to state the necessary first order optimality

conditions. Let hj be an element of the tangent cone Ta∗j ,AM (0,L). Let us write hj =
∑j−1
i=1 hj,i

where hj,i = hjχ(xi−1
j ,xij)

for all i ∈ {1 . . . j}. Hence, hj,i ∈ Ta∗j ,AM (0,L) and there holds

〈dJω∗j (a∗j ), hj〉 =

j∑

i=1

〈dJω∗j (a∗j ), hj,i〉.

It follows that it is enough to consider perturbations with compact support contained in each
nodal domain in order to compute the Gâteaux-derivative of Jω∗j . We will use for that purpose the

adjoint state pj piecewisely defined by (13)-(14).
Fix i ∈ {1 . . . j} and let hj,i be an element of the tangent cone Ta∗j ,AM (xi−1

j ,xij)
. Let us multiply

the first line of (13) by ėa∗j,i,1 and then integrate by parts. We get

∫ xij

xi−1
j

ė′a∗j,i,1(x)p′j,i(x) + (a∗j,i(x)− λ2
a∗j,i,1

)ėa∗j,i,1(x)pj,i(x) dx =
1

2
〈dJ(a∗j ), hj,i〉. (17)

Similarly, let us multiply the first line of (16) by pj,i and then integrate by parts. We get

∫ xij

xi−1
j

ė′a∗j,i,1(x)p′j,i(x) + (a∗j,i(x)− λ2
a∗j,i,1

)ėaj,i,1(x)pj,i(x) dx

=
˙(

λ2
a∗j ,j

)∫ xij

xi−1
j

eaj,i,1(x)pj,i(x) dx−
∫ xij

xi−1
j

hj,i(x)eaj,i,1(x)pj,i(x) dx. (18)

4That is the set of functions h ∈ L∞(0, L) such that, for any sequence of positive real numbers εn decreasing to
0, there exists a sequence of functions hn ∈ L∞(0, L) converging to h as n → +∞, and a + εnhn ∈ AM (0, L) for
every n ∈ IN (see for instance [16, chapter 7]).
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Combining (17) with (18) and using the condition (14) yields

〈dJω∗j (a∗j ), hj,i〉 = −2

∫ xij

xi−1
j

hj,i(x)ea∗j,i,1(x)pj,i(x) dx. (19)

As a result, for a general hj ∈ Ta∗j ,AM (0,L), there holds

〈dJω∗j (a∗j ), hj〉 = −2

j∑

i=1

∫ xij

xi−1
j

hj,i(x)pj,i(x)ea∗j,i,1 dx = −2

∫ L

0

hj(x)ea∗j ,j(x)pj(x) dx.

Let us state the first order optimality conditions. For every perturbation hj in the cone Ta∗j ,AM (0,L),

there holds 〈dJ(a∗j ), hj〉 > 0, which writes

− 2

∫ L

0

hj(x)ea∗j ,j(x)pj(x) dx > 0. (20)

The analysis of such optimality condition is standard in optimal control theory (see for example
[27]) and permits to recover easily (12).

3.2 Proof of Theorem 1

Step 1: existence and bang-bang property of the minimizers (first point of Theorem 1).
Notice first that each of the infima defining Problem (PL,r,M ) can be inverted with each other. As
a result, and according to Proposition 2, there exists an optimal pair (a∗j , ω

∗
j ) such that

m(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

J(a, ω) = inf
j∈IN∗

inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx

= inf
j∈IN∗

∫

ω∗j

ea∗j ,j(x)2 dx.

It remains then to prove that the last infimum is reached by some index j0 ∈ IN∗. We will use the
two following lemmas.

Lemma 4. Let M > 0 and (aj)j∈IN∗ be a sequence of AM (0, L). The sequence (e2
aj ,j

)j∈IN∗ converges

weakly-? in L∞(0, L) to the constant function 1
L .

The proof of Lemma 4 is standard and is postponed to Appendix A for the sake of clarity. The
proof of the next lemma can be found in [12, 31, 35].

Lemma 5. Let L > 0 and V0 ∈ (0, L). There holds

inf
ρ∈L∞(0,L;[0,1])∫ L

0
ρ(x) dx=V0

∫ L

0

ρ(x) sin2

(
jπ

L
x

)
dx =

1

2

(
V0 −

L

π
sin
(π
L
V0

))
,

for every j ∈ IN∗. Moreover, this problem has a unique solution ρ that writes as the characteristic
function of a measurable subset ω∗j defined by ω∗j = {sin2( jπL ·) 6 ηj} for some well-chosen positive

number ηj determined in such a way that the constraint
∫ L

0
ρ(x) dx = V0 is satisfied.

10



As a consequence of Lemma 5 (which gives the last equality) and by minimality of m(L,M, r)
(note that 0 ∈ AM (0, L)), there holds

m(L,M, r) = inf
j∈IN∗

∫

ω∗j

ea∗j ,j(x)2 dx = inf
ω∈Ωr(0,L)

inf
j∈IN∗

∫

ω

ea∗j ,j(x)2 dx

6 inf
ω∈Ωr(0,L)

inf
j∈IN∗

∫

ω

e0,j(x)2 dx =
2

L
inf

ω∈Ωr(0,L)
inf
j∈IN∗

∫

ω

sin2

(
jπ

L
x

)
dx

= r − 1

π
sin (rπ) .

Using Lemma 4 (the weak-? convergence being used with the “test” function χω∗ ∈ L1(0, L))
we have r = limj→+∞

∫
ω∗
ea∗j ,j(x)2 dx. Thus, m(L,M, r) < limj→+∞

∫
ω∗
ea∗j ,j(x)2 dx. As a conse-

quence, the infimum infj∈IN∗
∫
ω∗j
ea∗j ,j(x)2 dx is reached by a finite integer j∗0 . The existence result

follows.
From now on and for the sake of clarity, we will denote by (j0, ω

∗, a∗) instead of (j0, ω
∗
j0
, a∗j0) a

solution of Problem (PL,r,M ). We now prove that the solution a∗ of Problem (PL,r,M ) is bang-bang.
Let us write the necessary first order optimality conditions of Problem (PL,r,M ). To simplify the
notations, the adjoint state introduced in Proposition 3 will be denoted by p (resp. pi) instead of
pj0 (resp. pj0,i). For 0 < α < β < L, introduce the sets

• I0,a∗(α, β): any element of the class of subsets of [α, β] in which a∗(x) = 0 a.e.;

• IM,a∗(α, β): any element of the class of subsets of [α, β] in which a∗(x) = M a.e.;

• I?,a∗(α, β): any element of the class of subsets of [α, β] in which 0 < a∗(x) < M a.e., that
writes also

I?,a∗(α, β) =

+∞⋃

k=1

{
x ∈ (α, β) :

1

k
< a∗(x) < M − 1

k

}
=:

+∞⋃

k=1

I?,a∗,k(α, β).

We will prove that the set I?,a∗,k(0, L) =
⋃j
i0=1 I?,a∗,k(xi0−1

j , xi0j ) has zero Lebesgue measure,
for every nonzero integer k. Let us argue by contradiction, assuming that one of these sets
I?,a∗,k(xi0−1

j , xi0j ) is of positive measure. Let x0 ∈ I?,a∗,k(xi0−1
j , xi0j ) and let (Gk,n)n∈IN be a

sequence of measurable subsets with Gn,k included in I?,a∗,k(xi0−1
j , xi0j ) and containing x0, the

perturbations a∗ + th and a∗ − th are admissible for t small enough. Choosing h = χGk,n and
letting t go to 0, it follows that

〈dJ(a∗), h〉 =

∫ x
i0
j

x
i0−1
j

h(x)
(
−ea∗j ,j(x)pi0(x)

)
dx = 0⇐⇒

∫

Gk,n

(
−ea∗j ,j(x)pi0(x)

)
dx = 0.

Dividing the last equality by |Gk,n| and letting Gk,n shrink to {x0} as n → +∞ shows that
ea∗j ,j(x0)pi0(x0) = 0 for almost every x0 ∈ I?,a∗,k(xi0−1

j , xi0j ), according to the Lebesgue density

Theorem. Since ea∗j ,j does not vanish on (xi0−1
j , xi0j ) we then infer that pi0(x) = 0 for almost

every x ∈ I?,a∗,k(xi0−1
j , xi0j ). Let us prove that such a situation cannot occur. The variational

formulation of System (13)-(14) writes: find pi0 ∈ H1
0 (xi0−1

j , xi0j ) such that for every test function

ϕ ∈ H1
0 (xi0−1

j , xi0j ), there holds

−
∫ x

i0
j

x
i0−1
j

pi0(x)ϕ′′(x) + (ai0(x)− λ2
ai0 ,1

)pi0(x)ϕ(x) dx =

∫ x
i0
j

x
i0−1
j

(χω∗j,i0
− c̃j,i0)ea∗j ,jϕ(x) dx.
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Since I?,a∗,k(xi0−1
j , xi0j ) is assumed to be of positive measure, let us choose test functions ϕ whose

support is contained in I?,a∗,k(xi0−1
j , xi0j ). There holds

∫ L

0

(χω∗j,i0
− c̃j,i0)ea∗j ,j(x)ϕ(x) dx = 0,

for such a choice of test functions, whence the contradiction by using that c̃j,i0 ∈ (0, 1). We then
infer that |I?,a∗,k(xi0−1

j , xi0j )| = 0 and necessarily, a∗ is bang-bang.

Step 2: counting the switching points of a∗ and the number of connected components
of ω∗ (first part of the second point of Theorem 1). For the sake of simplicity, we first
give the argument in the case where the infimum m(L,M, r) is reached at j0 = 1 and we will then
generalize our analysis to any j0 ∈ IN∗.

At this step, we know that a∗1 is bang-bang and ω∗1 is characterized in terms of the level set of
the function ea∗1 ,1(·)2. According to (12), the number of switching points of a∗1 corresponds to the
number of zeros of the function x 7→ p1(x)ea∗1 ,1(x). Let us evaluate this number.

Since M 6 π2/L2, there holds ‖a∗1‖∞ 6 π2

L2 . As a consequence and using (2), one deduces that
the eigenfunction ea∗! ,1 is concave and reaches its maximum at a unique point xmax ∈ (0, L). More-
over, since ea∗1 ,1 is increasing on (0, xmax) and decreasing on (xmax, L) with ea∗1 ,1(0) = ea∗1 ,1(π) = 0,
from Proposition 1, there exists (α, β) ∈ (0, L)2 such that α < β and

χω∗1 = 1− χ(α,β), (21)

with α < xmax < β.
Let us provide a precise description of the function p1. One readily checks by differentiating

two times the function p1/ea∗1 ,1 that the function p1 may be written as

p1(x) = f(x)ea∗1 ,1(x) (22)

for every x ∈ (0, L), where the function f is defined by

f(x) = −
∫ x

0

g(t)dt+ f(0), with f(0) =

∫ L

0

(∫ x

0

g(t)dt

)
e2
a∗1 ,1

(x) dx (23)

and the function g is defined by

g(t) =

∫ t
0
(χω∗1 (s)− c̃)e2

a∗1 ,1
(s) ds

e2
a∗1 ,1

(t)
, (24)

where here and in the rest of the proof, we will call c̃ the number c̃1,1 (whose definition was given
in (15)). In the following result, we provide a description of the function g.

Lemma 6. The function g defined by (24) verifies

g(0) = g(L) = 0, (25)

there exists a unique real number og in (0, L) such that g(og) = 0, (26)

g > 0 in (0, og) and g < 0 in (og, L), (27)

g is decreasing on (α,min(og, xmax)) and (max(og, xmax), β). (28)
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Proof of Lemma 6. Let us first prove (26). We consider the function g̃ defined by

g̃(t) =

∫ t

0

(χω∗1 (s)− c̃)e2
a∗1 ,1

(s) ds, (29)

so that the function g writes

g =
g̃

ea∗1 ,1(·)2
. (30)

According to (21) and remarking that 0 < c̃ < 1 according to (15), the function g̃ is strictly
increasing on (0, α) and (β, L), and strictly decreasing on (α, β). Besides, using (15), there holds

g̃(0) = g̃(L) = 0. (31)

Hence, using the variations of g̃ given before and (31) that g̃ (and hence g) has a unique zero on
(0, L) that we call og from now on. Moreover, clearly g̃ > 0 on (0, og) and g̃ < 0 on (og, L), hence,
using (30), we deduce the same property for g and (27) is proved.

Equality (25) is readily obtained by making a Taylor expansion of e2
a∗1 ,1

and g̃ around 0 and L

and using (30). Indeed, there holds

e2
a∗1 ,1

(x) ∼ x2(e2
a∗1 ,1

)
′
(0) and g̃(x) ∼ (χω∗1 (0)− c̃)x3(e2

a∗1 ,1
)
′
(0)/3 as x→ 0,

e2
a∗1 ,1

(x) ∼ (x− π)2

2
(e2
a∗1 ,1

)
′
(π) and g̃(x) ∼ (χω∗1 (π)− c̃)(x− π)3(e2

a∗1 ,1
)
′
(π)/3 as x→ π.

To conclude, it remains to prove (28). From (24), one observes that g is differentiable almost
everywhere on (0, L) and

g′(x) = χω∗1 (x)− c̃−
2e′a∗1 ,1(x)g(x)

ea∗1 ,1(x)
, (32)

for almost every x ∈ (0, L). Using the variations of ea∗1 ,1, (21) and (32), we infer that g′ is negative
almost everywhere on (α,min(og, xmax)) ∪ (max(og, xmax), β), from which we deduce (28).

As a consequence of (27) and (23), f is strictly decreasing on (0, og) and strictly increasing on
(og, L) where og is defined in (26). We conclude that f has at most two zeros in (0, L). Moreover,
thanks to (14) and (22), f has at least one zero in (0, L). Since ea∗1 ,1(·) does not vanish in (0, L),
one infers that a∗1 has at least 1 and at most 2 switching points.

To generalize our argument to any order j > 2, notice that using the notations of Proposition
3 and its proof, one has (−1)i0+1ea∗j,i0 ,1

(x) > 0 for all x ∈ (xi0−1
j , xi0j ) with i0 ∈ {1 · · · j}. Then,

mimicking the argument above in the particular case where j0 = 1, one shows that the function a∗j
has at most two switching points in (xi0−1

j , xi0j ) and at least one. Besides, since the nodal points{
xij
}
i∈{1,···j−1} can also be switching points, we conclude that the function a∗j has at most 3j0− 1

and at least j0 switching points in (0, L).

Step 3: proof of the estimate (7) (last part of the second point of Theorem 1). Let
us first show the easier inequality, in other word the right one. It suffices to write that m(L,M, r)
is bounded from above by infω∈Ωr(0,L) J(0, ω). Inverting the two infima and using Lemma 5 leads
immediately to the desired estimate.

The left inequality appears more intricate to establish. It is in fact inferred from a more precise
estimate for the optimal design problem (Pj,L,r,M ). Because of its intrinsic interest, we state this
estimate in the following proposition, which constitutes therefore an essential ingredient for the
proof of the last point of Theorem 1.
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Proposition 4. Let r ∈ (0, 1) and let us assume that M ∈ (0, π2/L2]. Then, there holds

mj(L,M, r) > min(r, rj)
3mj , (33)

for every j ∈ IN∗, where the sequences (mj)j∈IN∗ and (rj)j∈IN∗ are defined by

mj =





1
2 if j = 1,

(2j2−1)(j2−1)
3
2

(√
j2

j2−2
−1

)2

3j3

((
j2

j2−2

) j
2−1

)2 if j > 2,

and

rj =





1 if j = 1,(
j+
√
j2−2

2
√
j2+1

)(
j − (j2−2)

j
2

jj−1

)
if j > 2.

The proof of this proposition is quite long and technical but the method is elementary and
interesting. For this reason, we will temporarily admit this result and postpone its proof to
Section 3.3. Let us assume for the moment that r 6 r2. Let us notice that m2 = 7

8

√
3(3 − 2

√
2)

and r2 =
√

5
5 +

√
10

10 . Then, it just remains to prove that mj > m2 and rj > r2 for every
j ∈ IN\{0, 1}.

Proof of mj > m2: We introduce the function F defined on [2,+∞) by

F (x) =

(2x2 − 1)(x2 − 1)3/2

((
x2

x2−2

)1/2

− 1

)2

x3

((
x2

x2−2

)x/2
− 1

)2 .

Notice that F (j) = 3mj for every j ∈ IN∗. Let us write F (x) = u(x)v(x) with

u(x) =

(2x2 − 1)

((
x2

x2−2

)1/2

− 1

)2

((
x2

x2−2

)x/2
− 1

)2 and v(x) =
(x2 − 1)3/2

x3
.

Let us show that u(x) > u(2) for every x > 2. This comes to show that ψ(x) 6 0, where

ψ(x) = γ

((
x2

x2 − 2

)x/2
− 1

)
−
√

2x2 − 1

((
x2

x2 − 2

)1/2

− 1

)
,

with γ =
√
u(2) =

√
7(
√

2− 1), for every x > 2. The derivative of ψ writes

ψ′(x) = γ

(
x2

x2 − 2

)x/2
w(x)− 2x√

2x2 − 1

(√
x2

x2 − 2
− 1

)
−
√

2x2 − 1

(x2 − 2)3/2
,

with w(x) = ln
(√

x2

x2−2

)
− 1

x2−2 . The derivative of w writes w′(x) = 4
x(x2−2)2 , and therefore,

the function w is increasing and negative since limx→+∞ w(x) = 0. One then infers that ψ′(x)
writes as the sum of three negative terms and is thus negative on [2,+∞). Hence, the function
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ψ decreases on this interval and therefore, ψ(x) 6 ψ(2) = 0 for every x ∈ [2,+∞). The expected
result on u follows.

Let us now show that v(x) > v(2) for every x ∈ [2,+∞). The derivative of v writes

v′(x) =
3
√
x2 − 1

x4
,

is therefore positive on [2,+∞), and the expected conclusion follows.

Proof of rj > r2: Let us write rj = u(j)v(j) with

u(j) =
j +

√
j2 − 2

2
√
j2 + 1

and v(j) = j − (j2 − 2)
j
2

jj−1
.

We claim that j 7→ u(j) is a increasing function for every j > 2 and j 7→ v(j) is a increasing
function for every j > 4. Indeed, straightforward computations show that

∀j > 2,
du

dj
(j) =

(j +
√
j2 − 2)(j2 + 1− j

√
j2 − 2)

2
√
j2 − 2(j2 + 1)3/2)

> 0

and

∀j > 4,
dv

dj
(j) =

(jj−1 + (j2 − 2)j/2(ln
(√

γ(j)
)
− γ(j) + 1− 1

j )

jj−1
> 0

We thus infer that for every j > 4, there holds g(j − 1, j) > g(3, 4). Dealing separately with the
cases j = 2 and j = 3 leads to the desired conclusion for r 6 r2.

Let us now treat the case r > r2. It is obvious that the solution (ã, ω̃) of the following problem

inf
a∈AM (0,L)

inf
ω∈Ω̃r(0,L)

J(a, ω), (P̃L,r,M )

where

Ω̃r(α, β) = {Lebesgue measurable subset ω of (α, β) such that |ω| > r(β − α)},
satisfies in particular that ω̃ ∈ Ωr(0, L) (in other words, the inequality constraint is reached at the
optimum). Therefore, the problems (PL,r,M ) and (P̃L,r,M ) are the same.

Taking into account this new expression, we remark that the quantity m(L,M, r) is nonde-
creasing with respect to r and so for r > r2 we have m(L,M, r) > m(L,M, r2) > m2r

3
2, which

concludes the proof.

3.3 Proof of Proposition 4

The proof, although quite technical, is based on a simple idea: by using the concavity of the
eigenfunction ea,j on each nodal domain, we will determine a piecewise affine function ∆j such
that ea,j > ∆j for every a ∈ AM (0, L). The construction of such a function is not obvious since
one has to control at the same time the slope of the graph of ∆j on each interval on which it is
affine, and its maximum, as the potential a describes the set AM (0, L).

As previously, we will first consider the case where j = 1. In other words, we will first provide
a lower estimate of the quantity m1(L, r). We will then generalize this estimate to any j ∈ IN∗ by
using that the j-th eigenfunction ea,j of Aa coincides with the first eigenfunction of the restriction
of Aa on each nodal domain.

Notice that, proving that the estimate (33) holds for every M ∈ (0, π2/L2] is equivalent to
showing it for the particular value

M = π2/L2,

which will be assumed from now on. Let a be a generic element of AM (0, L).
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First step: proof of Proposition 4 in the case “j = 1”. By using the concavity of ea,1
we will construct an affine function ∆1 (see Figure 2) such that ea,1 > ∆1 pointwisely on [0, L].
We will infer a lower bound of m1(L,M, r) by computing explicitly the minimum of the quantity∫
ω

∆2
1(x) dx over the class of measurable subsets ω of (0, L) such that |ω| = rL. For that purpose,

let us first provide an estimate of the max(0,L) ea,1 in terms of the L2 norm of ea,1 and the derivatives
of ea,1 at x = 0 and x = L.

Lemma 7. With the assumptions of Proposition 4, there holds

e2
a,1(xmax) > max

{
3

2L

∫ L

0

e2
a,1(x) dx,

L2

2π2
max{e′a,1(0)2, e′a,1(L)2}

}
. (34)

Proof of Lemma 7. Since e′a,1(xmax) = 0, multiplying Equation (2) by e′1 and integrating on
(x, xmax) (with possibly x > xmax) leads to

e′a,1(x)2 =

∫ xmax

x

(λ2
a,1 − a(x))

d

dx
(e2
a,1(x)) dx (35)

for every x ∈ (0, L). Besides, according to the Courant-Fischer minimax principle (see for instance
[Section C, (90)]) , one has

0 6 λ2
a,1 − a(·) 6 2π2

L2
in (0, L). (36)

Therefore, combining (35) and (36) yields

e′a,1(x)2 6
2π2

L2
(e2
a,1(xmax)− e2

a,1(x)), (37)

for every x ∈ (0, L). In particular, applying (37) at x = L and x = 0, we obtain

max{e′a,1(L)2, e′a,1(0)2} 6 2π2

L2
e2
a,1(xmax), (38)

Moreover, by integrating (37) between 0 and L, we obtain

∫ L

0

e′a,1(x)2 dx+
2π2

L2

∫ L

0

e2
a,1(x) dx 6

2π2

L2
e2
a,1(xmax)L. (39)

We obtain (34) from (38) and by combining (39) with Poincaré’s inequality

∫ L

0

ea,1(x)2 dx 6
L2

π2

∫ L

0

e′a,1(x)2 dx.

According to (34), and assuming since the eigenfunction ea,1 is normalized in L2(0, L), there
holds

e2
a,1(xmax) >

3

2L
. (40)

Since ea,1 is concave and according to (40), one has the successive inequalities

ea,1(x) > Tra,1(x) > ∆1(x), (41)
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Lα∗ β∗

(1− r)L

xmax

ea,1(xmax)

√
3
2L

0

41

Tra,1

Figure 2: Graphs of the functions ea,1, Tra,1 and ∆1.

for every x ∈ [0, L], where Tra,1 and ∆1 denote the piecewise affine functions defined by

Tra,1(x) =

{
ea,1(xmax)x

xmax
on (0, xmax)

ea,1(xmax)(L−x)
L−xmax on (xmax, L)

and ∆1(x) =





√
3x√

2Lxmax
on (0, xmax)

√
3(L−x)√

2L(L−xmax)
on (xmax, L).

Combining (40) with (41) and according to Proposition 1, we readily obtain

inf
ω∈Ωr(0,L)

∫

ω

ea,1(x)2 dx > inf
ω∈Ωr(0,L)

∫

ω

∆1(x)2dx =

∫

ω̂

∆1(x)2dx, (42)

with ω̂ = (0, α∗) ∪ (β∗, L) verifying

∆1(α∗) = ∆1(β∗) and |ω̂| = L− β∗ + α∗ = rL.

It follows that α∗ = rxmax, β∗ = (1− r)L+ rxmax and one obtains

∫

ω̂

∆1(x)2 dx =

∫ rxmax

0

∆1(x)2 dx+

∫ L

(1−r)L+rxmax

∆1(x)2 dx =
r3

2
= r3m1. (43)

We have then proved Proposition 4 in the case where j = 1.

Second step: proof of Proposition 4 in the general case. We now assume that j > 2.
Let 0 = x0

j < x1
j < x2

j < · · · < xj−1
j < L = xjj be the j + 1 zeros of the j-th eigenfunction ea,j .

Introduce γ = (γ1, · · · , γj−1) ∈ (0, 1)j such that

γi =

∫ xi+1
j

xij

e2
a,j(x) dx, i = 0, . . . , j − 1. (44)

Note that, because of the normalization condition on the function ea,j , there holds

j−1∑

i=0

γi = 1. (45)

In the sequel, we will use the following notations, for all i ∈ {0, · · · , j − 1},

Ωi = (xij , x
i+1
j ), ηi =

|Ωi|
L
∈ (0, 1), and ea,j(x

i
max) = max

x∈Ωi
ea,j(x). (46)
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Now, assume that r 6

(
j+
√
j2−2

2
√
j2+1

)(
j − (j2−2)

j
2

jj−1

)
. We will distinguish between several cases,

depending on the value of the first integer i0 ∈ {0, · · · , j−1} (that exists thanks to (45)) such that

γi0 >
1

j
. (47)

By exploiting condition (47), we will yield a lower bound Ai0 of the positive number |ea,j(xi0max)|.
Then we will derive an estimate of ea,j(x

i0−1
max ) and ea,j(x

i0+1
max ) in terms of ea,j(x

i0
max). Hence, step

by step we will get lower bounds of all j maxima needed to construct the piecewise affine function
∆j . For that purpose, we have to distinguish between several cases, depending on the value of the
integer i0

First case: assume that i0 = 0. Since the function ea,j(·) is concave, we claim that

∫

ω

ea,j(x)2 dx >
∫

ω

Tra,j(x)2dx, (48)

for every ω ∈ Ωr(0, L) where the function Tra,j is piecewise affine, defined on each interval
(xij , x

i+1
j ), with i ∈ {0, . . . , j − 1}, by

Tra,j(x) =





x−xij
ximax−xij

ea,j(x
i
max) on (xij , x

i
max),

xi+1
j −x

xi+1
j −ximax

ea,j(x
i
max) on (ximax, x

i+1
j ),

for every x ∈ (xij , x
i+1
j ).

ea,3(x
1
max)

ea,3(x
2
max)

ea,3(x
3
max)

x03
x13 x23 Lx0max

Ω0

Ω1

x1max

Ω2

Figure 3: Illustration of the case “i0 = 0” with 3 nodal domains (j = 3).

Since the j-th eigenfunction ea,j coincides with the first eigenfunction of −∂xx + a(·) with
Dirichlet conditions on (xij , x

i+1
j ), the method of the first step can be adapted. By reproducing

the proof of Lemma 7 to show (34), we obtain

ea,j(x
i
max)2 > max





2π2

|Ωi|2 + π2

L2(
π2

|Ωi|2 + π2

L2

)
|Ωi|

∫ xi+1
j

xij

ea,j(x)2 dx,
1

π2

|Ωi|2 + π2

L2

max{e′a,j(xij)2, e′a,j(x
i+1
j )2}



 .

(49)
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Notice that one recovers (34) by substituting |Ωi| by L in (49). One derives from the equivalent of
(37) in this case the estimates

π2

|Ωi|2
− π2

L2
6

e′a,j(x
i
j)

2

ea,j(ximax)2
6

π2

|Ωi|2
+
π2

L2
and

π2

|Ωi|2
− π2

L2
6

e′a,j(x
i+1
j )2

ea,j(ximax)2
6

π2

|Ωi|2
+
π2

L2
. (50)

Applying (49) for i = 0 and using (47) yields

ea,j(x
0
max)2 > A0 with A0 =

2π2

|Ω0|2 + π2

L2

j
(

π2

|Ω0|2 + π2

L2

)
|Ω0|

=
1

Lj

(
2 + η2

0

η0(1 + η2
0)

)
. (51)

Let us now provide an estimate of ea,1(x1
max)2. Combining the inequalities (49) with i = 1 and

(50) with i = 0, we get

ea,1(x1
max)2 >

e′a,j(x
1
j )

2

π2

|Ω1|2 + π2

L2

>
( π2

|Ω0|2 −
π2

L2 )ea,1(x0
max)2

π2

|Ω1|2 + π2

L2

. (52)

Combining (51) and (52) yields

ea,j(x
1
max)2 > A1 with A1 =

(L2 − |Ω0|2)|Ω1|2
(L2 + |Ω1|2)|Ω0|2

A0 =
(1− η2

0)η2
1

(1 + η2
1)η2

0

A0.

By induction, it follows that

ea,j(x
i
max)2 > Ai with Ai =

(
i∏

k=1

(1− η2
k−1)η2

k

(1 + η2
k)η2

k−1

)
A0, (53)

for every i ∈ {1, · · · , j − 1}. Hence, (53) together with (48) allows us to write
∫

ω

ea,j(x)2 dx >
∫

ω

∆j(x)2 dx,

where ∆j is the piecewise affine function defined on (0, L) by

∆j(x) =





(x−xij)
(ximax−xij)

√
Ai on (xij , x

i
max),

(xi+1
j −x)

(xi+1
j −ximax)

√
Ai on (ximax, x

i+1
j ),

(54)

for every i ∈ {0, · · · , j − 1} and x ∈ (xij , x
i+1
j ) (see Fig. 4 below).

According to Proposition 1, we obtain

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx > inf
ω∈Ωr(0,L)

∫

ω

∆j(x)2 dx =

∫

ω̂

∆j(x)2 dx, (55)

where ω̂ = {∆j(x)2 < τ} up to a set of zero Lebesgue measure and |ω̂| = rL. Let i ∈ {0, · · · , j−1}
and let us introduce ωi = ω̂ ∩ (xij , x

i+1
j ).

The following technical Lemma allows to deal with small values of the parameter r.

Lemma 8. Let j > 1, L, τ > 0, let r ∈ (0, 1) such that |ω̂| = rL, where ω̂ = {∆2
j (·) < τ},

with ∆j defined by (54). Recall that A0 is defined by (51) and Ai is defined by (53) for every
i ∈ {1, · · · , j − 1}. There holds

r <

(
j +

√
j2 − 2

2
√
j2 + 1

)(
j − (j2 − 2)

j
2

jj−1

)
=⇒ τ 6 min

i∈{0,··· ,j−1}
Ai.
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ea,3(x
1
max)

ea,3(x
2
max)

ea,3(x
3
max)

x03
x13 x23

√
A0

−
√
|A1|

√
A2

∆j

L

A0

A1

A2

A3

x14 x24 x34

τ

Figure 4: Left: graphs of the functions ea,3 and ∆3. Right: j = 4. Graph of ∆2
4 with respect to x.

The proof Lemma 8 is postponed to Section B. As a consequence of this lemma, there exist
α∗i , β

∗
i and ri ∈ (0, 1) such that ωi = (xij , α

∗
i )∪ (β∗i , x

i+1
j ), |ωi| = ri(x

i+1
j − xij) (see Figure 4 for an

illustration), and therefore
j−1∑

i=0

ri(x
i+1
j − xij) = rL. (56)

By definition of ω̂, one has ∆2
j (α
∗
i ) = ∆2

j (β
∗
i ) = ∆2

j (α
∗
i+1), consequently there holds

α∗i = ri(x
i
max − xij) + xij , β∗i = xi+1

j − ri(xi+1
j − ximax), (57)

and
r2
i+1Ai+1 = r2

iAi = · · · = r2
0A0. (58)

As a result, one obtains

∫

ω∗
∆j(x)2 dx =

j−1∑

i=0

∫

ωi

∆j(x)2 dx =
1

3

j−1∑

i=0

r3
i |Ωi|Ai. (59)

To compute the numbers ri, we use (58) together with (53), which yields to

ri =

√
A0

Ai
r0 =

√√√√
i∏

k=1

(1 + η2
k)η2

k−1

(1− η2
k−1)η2

k

r0. (60)

Since
∑j−1
i=0 ri

|Ωi|
L =

∑j−1
i=0 riηi = r, one infers

r0 =
r

η0 +
∑j−1
i=1 ηi

√∏i
k=1

(1+η2k)η2k−1

(1−η2k−1)η2k

=
r

η0

(
1 +

∑j−1
i=1

√∏i
k=1

(1+η2k)

(1−η2k−1)

) . (61)

Besides, using (60), there holds

j−1∑

i=0

r3
i |Ωi|Ai = r2

0A0

j−1∑

i=0

ri|Ωi| = r2
0A0rL. (62)

We conclude by combining (62) with (59) that
∫

ω̂

∆j(x)2 dx =
1

3
A0r

2
0rL, (63)
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where A0 and r0 are respectively given by (51) and (61).
Since our goal is to estimate

∫
ω̂

∆j(x)2 dx from below, regarding (63), we need to find a lower
bound on r0 and consequently on the numbers |Ωi| according to (62). We will use the following
Lemma.

Lemma 9. For every i ∈ {0, · · · , j − 1}, there holds

L√
j2 + 1

6 |Ωi| 6
L√
j2 − 1

. (64)

Proof of Lemma 9. According to the Courant-Fischer minimax principle, one has

jπ

L
6 λa,j 6

√(
jπ

L

)2

+
π2

L2
.

Since the j-th eigenfunction ea,j is also the first eigenfunction of the operator −∂xx + a(·) with
Dirichlet boundary conditions on Ωi, we also have

π

|Ωi|
6 λa,j 6

√(
π

|Ωi|

)2

+
π2

L2
.

We then infer
π√(

jπ
L

)2
+ π2

L2

6 |Ωi| 6
π√(

jπ
L

)2 − π2

L2

.

It follows from Lemma 9 that 1√
j2+1

6 ηi 6 1√
j2−1

and therefore

j−1∑

i=1

√√√√
i∏

k=1

(1 + η2
k)

(1− η2
k−1)

6 g1(j),

where g1(j) =
∑j−1
i=1

(
j2

j2−2

) i
2

=

(
j2

j2−2

) j
2−
(

j2

j2−2

) 1
2(

j2

j2−2

) 1
2−1

. According to (61), one has

r0 >
r

η0(1 + g1(j))
. (65)

Combining (51), (63) and (65), we obtain
∫

ω̂

∆j(x)2 dx > r3 inf
η0∈

(
1√
j2+1

, 1√
j2−1

) g2(η0, j), (66)

with

g2(η0, j) =
1

3j

(
2 + η2

0

η0(1 + η2
0)

)(
1

η0 + η0g1(j)

)2

.

Since for every η0 > 0, we have

∂g2

∂η0
(η0, j) = −

(√
j2

j2−1 − 1
)2 (

11η2
0 + 3η4

0 + 6
)

(
( j2

j2−1 )
j
2 − 1

)2

η4
0(1 + η2

0)2j
6 0,
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the function η0 7→ g2(η0, j) is decreasing, so that (66) becomes

∫

ω̂

∆j(x)2 dx > r3g2

(√
1

j2 − 1
, j

)
= r3mj , (67)

and the expected result is proved for r 6 rj :=

(
j+
√
j2−2

2
√
j2+1

)(
j − (j2−2)

j
2

jj−1

)
.

Noticing that r 7→ infω∈Ωr(0,L)

∫
ω

∆j(x)2dx is an increasing function, we infer that for every
r ∈ [rj , 1], there holds

inf
ω∈Ωr(0,L)

∫

ω

∆j(x)2 dx > inf
ω∈Ωrj (0,L)

∫

ω

∆j(x)2dx > r3
jmj ,

and the expected result is proved for r ∈ [0, 1].

Second case: assume now that i0 = 1. We will prove that the estimate choosing i0 = 0 is worst
than the estimate that we obtain with i0 = 1. Using (49) with i = 1, we have

e2
a,j(x

1
max) > A1 with A1 =

1

Lj

(
2 + η2

1

η1(1 + η2
1)

)
. (68)

Combining the inequality (49) with i = 0, (50) with i = 1 and (68) we get

A0 =
(1− η2

1)η2
0

(1 + η2
0)η2

1

A1. (69)

Using (49) with i = 2, (50) with i = 1 and (68) we have

e2
a,j(x

2
max) > A2 with A2 =

(1− η2
1)η2

2

(1 + η2
2)η2

1

A1.

By induction, for every i ∈ {2, · · · , j − 1} we have

e2
a,j(x

i
max) > Ai with Ai =

(
i∏

k=2

(1− η2
k−1)η2

k

(1 + η2
k)η2

k−1

)
A1 (70)

Let us state the equivalent of Lemma 8 for the case considered here.

Lemma 10. Let j > 1, L, τ > 0, let r ∈ (0, 1) such that |ω̂| = rL, where ω̂ = {∆2
j (·) < τ}, with

∆j is defined by (54). Recall that A1 is defined by (68), A0 is defined by (69) and Ai is defined by
(70) for every i ∈ {2, · · · , j − 1}. There holds

r <

(
j +

√
j2 − 2

2
√
j2 + 1

)(
j − (j2 − 2)

j
2

jj−1

)
=⇒ τ 6 min

i∈{0,··· ,j−1}
Ai.

The proof of this lemma is postponed to Section B.
Hence, we conclude that r2

iAi = r2
1A1 for all i ∈ {0, · · · , j − 1}. Since

∑j−1
i=0 riηi = r, one

computes by using (70) and (69)

r1 =
r

η1 + η0

√
A1

A0
+
∑j−1
i=2 ηi

√
A1

Ai

=
r

η1 + η0

√
1+η20
1−η21

+
∑j−1
i=2 ηi

√∏i
k=2

(1+η2k)η2k−1

(1−η2k−1)η2k

.
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Moreover, one has
j−1∑

i=2

ηi

√√√√
i∏

k=2

(1 + η2
k)η2

k−1

(1− η2
k−1)η2

k

= η1

j−1∑

i=2

√√√√
i∏

k=2

1 + η2
k

1− η2
k−1

and since 1√
j2+1

6 ηi 6 1√
j2−1

according to Lemma 9, there holds

r1 >
r

η1 + η1

√
j2

j2−2 + η1

∑j−1
i=2

(
j2

j2−2

) i−1
2

.

Since j > 2, we have

√
j2

j2 − 2
+

j−1∑

i=2

(
j2

j2 − 2

) i−1
2

−
j−1∑

i=1

(
j2

j2 − 2

) i
2

=

√
j2

j2 − 2
−
(

j2

j2 − 2

) j−1
2

6 0,

and it follows that
r1 >

r

η1 + η1

∑j−1
i=1

(
j2

j2−2

) i
2

.

As a consequence, using the same approach as the one used for the case where i0 = 0, we infer
that

inf
ω∈Ωr(0,L)

∫

ω

∆j(x)2 dx > r3 inf
η1∈

(
1√
j2+1

, 1√
j2−1

) g2(η1, j)

with

g2(η1, j) =
1

3j

(
2 + η2

1

η1(1 + η2
1)

)(
1

η1 + η1g1(j)

)2

and g1(j) =

(
j2

j2−2

) j
2 −

(
j2

j2−2

) 1
2

(
j2

j2−2

) 1
2 − 1

.

Noticing that the functions g1 and g2 are exactly the same as in the case i0 = 1, we conclude
similarly to the first case.

Finally, mimicking this proof and adapting it for every i0 ∈ {2, · · · , j − 1}, we prove that the
estimate with i0 = 0 is the worst one. We then obtain the same conclusion.

3.4 Proof of Theorem 2

We argue by contradiction, assuming that the optimal design problem (PL,r,∞) has a solution
a∗ ∈ L∞(0, L). Then, denoting M0 = ‖a∗‖L∞(0,L) and noting that AM0

(0, L) is included in
A∞(0, L), it follows that a∗ is a solution of the problem

inf
a∈A∞(0,L)

inf
ω∈Ωr(0,L)

J(a, ω) = inf
a∈AM0

(0,L)
inf

ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx,

for some given nonzero integer j, by using the same argument as in the first step of the proof of
Theorem 1 to show the existence of a minimizing integer.

We will use the notations of Proposition 3 and Section 3.2. The contradiction will be obtained
by constructing a perturbation a∗n of a∗ such that J(a∗n) < J(a∗). According to Proposition 3, a∗
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is non-trivial and bang-bang, equal to 0 and M0 almost everywhere in (0, L) so that there exists
i0 ∈ {1, · · · , j} such that the set IM0,a∗(x

i0−1
j , xi0j ) is measurable of positive measure.

Thanks to the regularity of the Lebesgue measure, there exists an increasing sequence of com-
pact sets (Kn)n∈IN strictly included in IM0,a∗(x

i0−1
j , xi0j ) satisfying

lim
n→∞

|Kn| = |IM0,a∗(x
i0−1
j , xi0j )|,

where | · | denotes the Lebesgue measure. In what follows, we will use the notation Ic to denote
the complement of any set I ⊂ [0, L] in [0, L]. We introduce

a∗n(x) =

{
M0 + 1

ϕ(n) on Kn,

0 on Kc
n,

with ϕ(n) = |IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n|.

Let us remark that

a∗n(x)− a(x) =





1
ϕ(n) on Kn,

−M0 on IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n,

0 on IM0,a∗(x
i0−1
j , xi0j )c.

Hence, we get

〈dJ(a), ϕ(n)(a∗n − a∗)〉 = −2

∫ x
i0
j

x
i0−1
j

ϕ(n)(a∗n(x)− a∗(x))eai0 ,1(x)pi0(x) dx

= 2M0ϕ(n)

∫

IM0,a
∗ (x

i0−1
j ,x

i0
j )∩Kc

n

eai0 ,1(x)pi0(x) dx

−
∫

Kn

eai0 ,1(x)pi0(x) dx,

for n ∈ IN. Using (12), we have eai0 ,1pi0 > 0 on IM0,a∗(x
i0−1
j , xi0j ) ∩Kc

n and eai0 ,1pi0 > 0 on Kn

for all n ∈ IN. Since limn→+∞ ϕ(n) = 0 and according to the Lebesgue density theorem,

lim
n→+∞

2M0ϕ(n)

∫

IM0,a
∗ (x

i0−1
j ,x

i0
j )∩Kc

n

eai0 ,1(x)pi0(x) dx = 0.

As a consequence, there exists n0 ∈ IN such that for all n > n0 〈dJ(a), ϕ(n)(a∗n − a∗)〉 < 0. Thus,
there exists n1 ∈ IN verifying J(a∗n1

) < J(a∗), whence the contradiction. We then infer that the
optimal design problem (PL,r,∞) has no solution.

4 Applications and numerical investigations

4.1 Controllability issues for the wave equation

4.1.1 The cost of the control in large time

Let us fix T > 0 and consider the one dimensional wave equation with potential

∂ttϕ(t, x)− ∂xxϕ(t, x) + a(x)ϕ(t, x) = 0, (t, x) ∈ (0, T )× (0, L),

ϕ(t, 0) = ϕ(t, L) = 0, t ∈ [0, T ],

(ϕ(0, x), ∂tϕ(0, x)) = (ϕ0(x), ϕ1(x)), x ∈ [0, L],

(71)
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where the potential a(·) is a nonnegative function belonging to L∞(0, L). It is well known
that for every initial data (ϕ0, ϕ1) ∈ H1

0 (0, L) × L2(0, L), there exists a unique solution ϕ in
C0(0, T ;H1

0 (0, L)) ∩ C1(0, T ;L2(0, L)) of the Cauchy problem (71).
Let ω be a given measurable subset of (0, L) of positive Lebesgue measure. The system (71) is

said to be observable on ω in time T if there exists a positive constant C such that

CEa(0) 6
∫ T

0

∫

ω

∂tϕ(t, x)2 dxdt (72)

for all (ϕ0, ϕ1) ∈ H1
0 (0, L)× L2(0, L) where

Ea(t) =

∫ L

0

(
∂tϕ(t, x)2 + ∂xϕ(t, x)2 + a(x)ϕ(t, x)2

)
dx

for all t > 0. Notice moreover that the function Ea(·) is constant5. We denote by CT,obs(a, ω) the
largest constant in the previous inequality, that is

CT,obs(a, ω) = inf
(ϕ0,ϕ1)∈H1

0 (0,L)×L2(0,L)
(ϕ0,ϕ1)6=(0,0)

∫ T
0

∫
ω
∂tϕ(t, x)2 dxdt

Ea(0)
. (73)

This constant can be interpreted a quantitative measure of the well-posed character of the inverse
problem of reconstructing the solutions from measurements over [0, T ]×ω. Moreover, this constant
also plays a crucial role in the frameworks of control theory. Indeed, consider the internally
controlled wave equation on (0, L) with Dirichlet boundary conditions





∂tty(t, x)− ∂xxy(t, x) + a(x)y(t, x) = ha,ω(t, x), (t, x) ∈ (0, T )× (0, L),

y(t, 0) = y(t, π) = 0, t ∈ [0, T ],

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ (0, L),

(74)

where ha,ω is a control supported by [0, T ] × ω and ω is a Lebesgue measurable subset of (0, L).
Recall that for every initial data (y0, y1) ∈ L2(0, L) × H−1(0, L) and every ha,ω ∈ L2((0, T ) ×
(0, L)), the problem (74) has a unique solution y verifying moreover y ∈ C0(0, T ;L2(0, L)) ∩
C1(0, T ;H−1(0, L)). This problem is said to be null controllable at time T if and only if for
every initial data (y0, y1) ∈ L2(0, L)×H−1(0, L), one can find a control ha,ω ∈ L2((0, T )× (0, L))
supported by [0, T ]× ω such that the solution y of (74) verifies y(T, ·) = ∂ty(T, ·) = 0.

Let us assume that (74) is null controllable. At fixed (y0, y1) ∈ L2(0, L) × H−1(0, L), since
the set of all controls ha,ω steering (y0, y1) to (0, 0) is a closed vector space of L2((0, T )× (0, L)),
there exists a unique control of minimal L2((0, T )×ω)−norm (see e.g. [5, Chap.2, Section 2.3] and
[28]) that we denote hopta,ω, which can be constructed “explicitly” as the minimum of a functional

according to the Hilbert Uniqueness Method. Thus, we can define the HUM operator ΓTa,ω by

ΓTa,ω : H1
0 (0, L)× L2(0, L) −→ L2((0, T )× (0, L))

(y0, y1) 7−→ hopta,ω.

ΓTa,ω is linear and continuous and we define its norm

‖ΓTa,ω‖ = sup

{ ‖ha,ω‖L2((0,T )×(0,L)

‖(y0, y1)‖L2(0,L)×H−1(0,L)
| (y0, y1) ∈ L2(0, L)×H−1(0, L) \ {(0, 0)}

}
,

5Note that, according to [8, Section 2.4.3], one has

Ea(0) =

∫ L

0

(
ϕ1(x)2 + ϕ′0(x)2 + a(x)ϕ0(x)2

)
dx
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which is called the cost of the control at time T (because it measures the minimal energy needed
to bring an initial condition to (0, 0)). Using a standard duality argument, it can be showed that
(74) is null controllable if and only if (71) is observable, and in this case the cost of the control is

‖ΓTa,ω‖2 = CT,obs(a, ω)−1,

with CT,obs(ω)−1 the optimal constant in the observability inequality (72), defined by (73).
The dependence of CT,obs(a, ω)−1 with respect to different parameters (the observability time

T , the potential a, the observability set ω) has been studied by many authors (see [41], where an
application to the controllability of semilinear wave equations is given, [7] for some results in the
multi-dimensional case obtained thanks to Carleman estimates and [12] for precise lower bounds
obtained through different methods) but its exact behavior is not known.

In the following result, one provides several estimates of CT,obs(a, ω) (and then ‖ΓTa,ω‖) and con-
stitutes another justification of the interest of the problems introduced in Section 1.2, in particular
of the issue of obtaining a lower bound estimate of the quantity J(a, ω).

Theorem 3. Let L > 0 and let a be a nonnegative function in L∞(0, L).

i There holds

CT,obs(a, ω) ∼ T

2
J(a, ω) as T → +∞.

ii Let a ∈ AM (0, L) with M < 3π2/L2 and define T (M) = 2π
γM

with γM =
3π2

L2 −M
2π
L +

√
π2

L2 +M
. For all

T > T (M), there holds

0 <
c1(T, γM )

2
6
CT,obs(a, ω)

J(a, ω)
6
T

2

with c1(T, γM ) = 2
π

(
T − 4π2

γ2
MT

)
.

The proof of this theorem is postponed to Section C. Combining Theorem 3 with Theorem 1,
we infer the following result.

Corollary 1. Let a ∈ AM (0, L) with M 6 π2/L2 and define T (M) = 2π
γM

with γM =
3π2

L2 −M
2π
L +

√
π2

L2 +M
.

For all T > T (M), there holds

7
√

3

16L3
(3− 2

√
2)c1(T, γM ) min(|ω|, r2)3 6 CT,obs(a, ω),

with r2 =
√

5
5 +

√
10

10 and c1(T, γM ) = 2
π

(
T − 4π2

γ2
MT

)
.

4.1.2 Decay rate for a damped wave equation

From the estimates of the observability constant CT,obs(a, ω), we can also deduce estimates of
the rate at which energy decays in a damped string. Consider the damped wave equation on (0, π)
with Dirichlet boundary conditions





∂tty(t, x)− ∂xxy(t, x) + a(x)y(t, x) + 2kχω(x)∂ty(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

y(t, 0) = y(t, π) = 0, t ∈ [0, T ],

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ (0, π),
(75)
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with k > 0. Recall that for all initial data (y0, y1) ∈ H1
0 (0, π)× L2(0, π), the problem (75) is well

posed and its solution y belongs to C0(0, T ;H1
0 (0, π)) ∩ C1(0, T ;L2(0, π)).

The energy associated to System (75) is defined by

Ea,ω(t) =

∫ π

0

(
∂ty(t, x)2 + ∂xy(t, x)2 + a(x)y(t, x)2

)
dx.

According to Theorem 3 and to [12, Section 3.3], by using the same notations as in the statement
of Theorem 3, if ω is a measurable subset of (0, π), a ∈ AM (0, π) with M < 3, there holds for every
(y0, y1) ∈ H1

0 (0, π)× L2(0, π) and t > 2T (M),

Ea,ω(t) 6 Ea,ω(0)e−δ(a,ω)t,

with

ln

(
1 + (1 + T (M)2)c1(T, γM )J(a, ω)

(1 + T (M)2)c1(T, γM )J(a, ω)

)
6 2T (M)δ(a, ω) 6 ln

(
1 + (1 + T (M)2)c2(T, γM )J(a, ω)

(1 + T (M)2)c2(T, γM )J(a, ω)

)
,

where c1(T, γM ) = 2
π

(
T − 4π2

γ2
MT

)
and c2(T, γM ) = 10T

π .

Notice that a close problem has been investigated in [6] in the very case where a(·) = 0 and
with a general positive damping term. The authors provide a simple expression of the decay rate
in the case where the damping term is bounded, and an explicit lower bound on the decay rate in
the general case.

Let us also mention the related works [14, 26, 30] where the authors aim at determining either
the damping term or the shape and location of its support in order to stabilize the more efficiently
the damped wave equation. However, our result is of different nature since we provide explicit
upper and lower bound of the decay rate for any mesurable set and any small enough potentials.

4.2 Numerical investigations

In what follows, we will consider for the sake of clarity that L = π according to Lemma 1,
and two given numbers r ∈ (0, 1) and M ∈ (0, 1]. As pointed out in Remark 5, the study reduces
to determining a finite number of switching points. A difficulty of this approach is to deal with
the fact that no upper bound of the optimal index j∗0 introduced in Theorem 1 is known. For
this reason, we have adopted the following numerical strategy, using the real numbers mj(L,M, r)
(already used in the proof of Theorem 1), defined for j ∈ IN∗ by

mj(L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

∫

ω

ea,j(x)2 dx.

For N ∈ IN∗, we also introduce the “truncated criterion”

mN (L,M, r) = inf
a∈AM (0,L)

inf
ω∈Ωr(0,L)

JN (a, ω) with JN (a, ω) = inf
16j6N

∫

ω

e2
a,j(x) dx.

It follows easily from Theorem 1 that the sequence (mN (L,M, r))N∈IN∗ is non-increasing, station-
ary and converges to m(L,M, r) as N → +∞.

In the numerical procedure below, we will say that the sequence (mN (L,M, r))N∈IN∗ satisfies
the stationarity property if this sequence takes equal values for at least N0 consecutive indices,
where N0 is a fixed nonzero integer.
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Numerical solving of Problem (PL,r,M)

Let L > 0, M ∈ (0, π2/L2], r ∈ (0, 1), N0 ∈ IN∗.
For j = 1, . . . , N ,

i compute the real number mj(L,M, r) (by solving a finite dimensional optimization problem,
see the explanations below);

ii compute the real number mN (L,M, r).

Stop at the first integer N such that (mN (L,M, r))N∈IN∗ satisfies the stationarity property.

Let us provide some explanations about the first step of the algorithm.
Let j ∈ IN\{0, 1} and M ∈ (0, 1]. We fix o0 = 0 and o3j = π. According to Theorem 1, we

reduce the computation of mj(L,M, r) to the resolution of a (3j − 1)-dimensional optimization
problem. More precisely, we are led to minimize the function

(0, π)3j−1 3 o = (o1, · · · , o3j−1) 7−→ inf
ω⊂(0,π)

s.t. |ω|=rπ

∫

ω

eao,1(x)2 dx,

where ao(·) denotes the potential function defined on (0, π) by

ao(x) =

{
M on (oi, oi+1),
0 on (oi+1, oi+2),

for every even integer i ∈ {0, · · · , 3j − 2} and every x ∈ (oi, oi+2). Notice that, when 3j − 2 is a
odd number then a(x) = M on (o3j−1, o3j).

Thus, given the switching points o ∈ (0, π)3j−1, one computes the eigenfunction eao,j(·) by
using a shooting method combined with a Runge-Kutta method. The eigenvalue λ is determined
by solving ea,λ(π) = 0 with a Newton method.

According to Proposition 1, the set ω coincides with {e2
a,j 6 τ} for some parameter τ chosen in

such a way that |ω| = rπ. We are then driven to find an estimate of τ , which is done by computing
the decreasing rearrangement

(
e2
a,j

)∗
of e2

a,j (see, e.g., [16, 22, 39]) and using that τ =
(
e2
a,j

)∗
(rπ).

These considerations allow to rewrite the cost functional as a function of (3j−1) variables. The
resulting finite-dimensional problem is then solved numerically by using a Nelder-Mead simplex
search method on a standard desktop machine, which provides a global minimizer.

We present below some numerical simulations to compute the numbers mj(L,M, r). In what
follows and when no confusion is possible, we will simply denote by a(·) the optimal potential
associated to mj(L,M, r).

4.2.1 Computation of m1(L,M, r)

Let M ∈ (0, 1]. According to Theorem 1, there exist at most two switching points in (0, π)
denoted o1 and o2 such that

0 6 o1 6 o2 6 π and a(x) = Mχ(0,o1)∪(o2,π). (76)

Note that, if o1 = o2, there is only one switching point. Therefore, the issue of determining the op-
timal potential a(·) comes to minimize the function (0, π)2 3 (o1, o2) 7→ inf ω⊂(0,π)

s.t. |ω|=rπ

∫
ω
ea,1(x)2 dx,
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where a(·) is given by (76). Fixing τa =
√
λ2
a,1 −M , one computes

ea,1(x) =





sin (τax) x ∈ (0, o1),
sin (τao1) cos (λa,1(x− o1)) + τa

λa,1
cos (τao1) sin (λa,1(x− o1)) x ∈ (o1, o2),

sin(τao1) cos(λa,1(o2−o1))+ τa
λa,1

cos(τao1) sin(λa,1(o2−o1))

sin(τa(π−o2)) sin(τa(π − x)) x ∈ (o2, π),

up to a multiplicative normalization constant, where the eigenvalue λa,1 solves the transcendental
equation

λa,1τa
tan(τa(π − o2 + o1))

tan(λa,1(o2 − o1))
− τ2

a = M
sin(τa(π − o2)) sin(τao1)

cos(τa(π − o2 + o1))
.

This last equation is solved numerically by using a Newton method. Since M ∈ (0, 1], the eigen-
function ea,1 is concave on (0, π). As a consequence, the optimal set ω, as level set of the function
e2
a,1, writes ω = (0, α) ∪ (β, π) with α < β, according to Proposition 1. In that case, α and β are

determined with the help of a Newton method, using that β = (1−r)π+α and ea,1(α)2 = ea,1(β)2.
The numerical results are gathered on Fig. 5.
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Figure 5: Left: L = π and M = 1. Plots of the optimal set ω∗1(−), a∗1(-) and e2
a∗1 ,1

(. . . ) w.r.t. the
space variable with r = 0.3. Middle and right: L = π and M = 1. Comparison of the numerical

results with the bounds obtained in Theorem 1: plots of r 7→ m1(π, 1, r) (—), r 7→ r− sin(πr)
π (—)

and r 7→ r3/2 (−−−).

4.2.2 Computation of mj(L,M, r) for j > 2.

Figures 6 and 7 illustrate the cases j = 2, 3, 4. The parameters r and M are running over
the interval [0, 1]. On Figure 6, the optimal value of the criterion (w.r.t. r), obtained by using a
Nelder-Mead simplex search method, is compared to the estimate obtained in Theorem 4 for the
parameter values j ∈ {2, 3, 4}. Recall that the numbers mj are defined in Proposition 4. On Figure
7, the graph of the optimal value with respect to r is plotted for the parameter values j ∈ {1, 2, 6}.
Notice that the mapping j 7→ mj(L,M, r) seems to be increasing, although we did not manage to
prove it. This seems to indicate that the optimal index j0 introduced in Theorem 1 is equal to 1.

5 Concluding remarks

In this article, we have investigated the optimization problem (PL,r,M ) which allows to provide
a quantitative estimate of the “non-localization” property of Sturm-Liouville eigenfunctions related
to the operator Aa defined by (1).
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Figure 6: L = π and M = 1. Plots of mj (−o−), mj min(r, rj)
3 (· · · ) and r 7→ r − sin(πr)

π (−) with
respect to r for j ∈ {2, 3, 4}.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

r

m1(π,r)

m2(π,r)

m6(π,r)

0 5 · 10−2 0.1 0.15 0.2

0

0.5

1

·10−2

r

m1(π,r)

m2(π,r)

m6(π,r)

Figure 7: L = π and M = 1. Plots of mj(π, 1, r) for j = 1(o), j = 2(- -) and j = 6 with respect
to r.

We have showed that it is relevant to consider potential functions a(·) whose essential-supremum
is uniformly bounded by a positive constant M , and we have provided sharp estimates of the
optimal value under smallness assumptions on the parameter M . It is notable that our estimates
only depend in that case on the measure of the observation subset ω.

Several issues remain open. Let us mention two of them:

- the investigation of the same problem for larger values of M (characterization of minimizers,
sharp estimate of the optimal value). Indeed, our approach was based on particular properties
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of eigenfunctions holding only whenever M is small enough. Obtaining new estimates would
require to develop a new approach.

- the development of efficient numerical methods to solve (PL,r,M ). On Fig. 8, we have plotted
the quantity mj(π,M, r), j = 1, 2, 3, 5 with respect to the parameter r, for several values
of M greater than the critical value M = 1. These simulations drive us to formulate, as
previously, the conjecture that the optimal index is j0 = 1. Note that the computation of
these quantities need to solve optimization problems for which the objective function enjoys
plenty of local minimizers. This is why we chose to solve this problem with the help of a
genetic algorithm, quite efficient but very costly in terms of computing time, even for small
values of j.
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Figure 8: L = π. (Top) Plots of mj(π,M, r) w.r.t. r for M = 1, 2, 4. (Bottom) Zoom on the
previous plots around r = 0.

Appendix

A Proof of Lemma 4

Let us define φj =
eaj,j(·)
e′aj,j

(0) . The function φj solves the Cauchy system

{ −φ′′j (x) + aj(x)φj(x) = λ2
a,jφj(x), x ∈ (0, L),

φj(0) = 0, φ′j(0) = 1.

Let us notice that, according to the Courant-Fischer minimax principle, there holds λaj ,j > π
L

for every j ∈ IN∗ and limj→+∞ λaj ,j = +∞. According to [32, Chapter 1, Theorem 3] and using
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a rescaling argument, we infer φj(x) =
sin(λaj,jx)

λaj,j
+ O

(
1

λ2
aj,j

)
. As a consequence, there holds

φ2
j (x) =

sin2(λaj,jx)

λ2
aj,j

+O

(
1

λ3
aj,j

)
, where the remainder term does not depend on x. Therefore, using

the Riemann-Lebesgue lemma, one gets that
∫ L

0
φ2
j (x)dx = L

2λ2
a,j

+o
(

1
λ2
a,j

)
, and since eaj ,j =

φj
‖φj‖2 ,

the combination of two last equalities yields

e2
aj ,j(x) =

2

L
sin2(λaj ,jx) + O

(
1

λaj ,j

)
. (77)

Let ϕ ∈ L1(0, L). Using (77), one shows that

∫ L

0

eaj ,j(x)2ϕ(x) dx =
2

L

∫ β

α

sin2(λaj ,jx)ϕ(x) dx+ O

(
1

λaj ,j

)
.

The expected result follows by linearizing sin2(λaj ,jx) and using the Riemann-Lebesgue lemma.

B Proofs of Lemmas 8 and 10

The proofs are based on the following Lemma.

Lemma 11. Let j ∈ IN∗ and i0 ∈ IN∗ such that i0 6 j − 1. Define

g(i0, j) =
j − i0√
j2 + 1

+
1√
j2 + 1




(
j2−2
j2

) i0
2 − 1

1−
(

j2

j2−2

) 1
2


 .

There holds

g(i0, j) > rj :=

(
j +

√
j2 − 2

2
√
j2 + 1

)(
j − (j2 − 2)

j
2

jj−1

)
.

Proof. Let γ : IN\{0, 1} 3 j 7→
(

j2

j2−2

)
. Notice that γ(j) ∈ (1, 2) for every j ∈ IN\{0, 1}. The

derivative of g with respect to i0 writes

∂i0g(i0, j) =
−
(

1
γ(j)

) i0
2

ln( 1
γ(j) ) + 2(

√
γ(j)− 1)

2
√
j2 + 1

(√
γ(j)− 1

) 6 0,

and therefore

g(i0, j) > g(j − 1, j) =

√
γ(j)(γ(j)

j
2 − 1)√

j2 + 1(
√
γ(j)− 1)γ(j)

j
2

.

Straightforward computations show that

√
γ(j)(γ(j)

j
2 − 1)√

j2 + 1(
√
γ(j)− 1)γ(j)

j
2

=

(
j +

√
j2 − 2

2
√
j2 + 1

)(
j − (j2 − 2)

j
2

jj−1

)
,

which concludes the proof.
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Proof of Lemma 8. In the sequel we will use the notations in (46), the definition of Ai in (53)
and the definition of ∆j in (54).

From (53) and 1√
j2+1

6 ηi 6 1√
j2−1

, we notice that

Ai+1

Ai
=

(1− η2
i )η2

i+1

(1 + η2
i+1)η2

i

6 1

Let i0 ∈ {1, · · · , j − 1} such that for every i 6 i0 − 1, τ < Ai and for every i > i0, τ > Ai (see
Figure ?? with j = 4 and i0 = 2). By definition of ω̂, one has

|ω̂| = |{∆j(x)2 < τ}| > |ω̂i0 |

with ω̂i0 = {∆j(·)2 6 Ai0}. Let us denote by r̄i0 ∈ (0, 1) the real number defined by r̄i0 =
|{∆j(·)26Ai0}|

L . Note that there holds obviously r > r̄i0 .

Let us now find a lower bound estimate of r̄i0 . Let i ∈ {0, · · · , j−1} and let ωi0i = ω̂i0∩(xij , x
i+1
j ).

There exist αi0i , βi0i and ri ∈ [0, 1] such that ωi0i = (xij , α
i0
i )∪ (βi0i , x

i+1
j ), |ωi0i | = ri(x

i+1
j −xij), and

therefore
∑j−1
i=0 ri(x

i+1
j − xij) = r̄i0L.

By definition of ω̂i0 one has ∆j(α
i0
i ) = ∆j(β

i0
i ) =

√
Ai0 , for every i 6 i0−1 and ω̂i0i = (xij , x

i+1
j )

for every i > i0. Consequently there holds

αi0i =

√
Ai0
Ai

(ximax − xij) + xij , βi0i = xi+1
j −

√
Ai0
Ai

(xi+1
j − ximax).

for all i 6 i0 − 1. As a result, one gets

r̄i0L =
∑i0−1
i=0 (αi0i − xij + xi+1

j − βi0i ) + (L− xi0) =
∑i0−1
i=0

√
Ai0
Ai

(xi+1
j − xij) + (L− xi0).

Dividing by L, we have

r̄i0 =

i0−1∑

i=0

√
Ai0
Ai

ηi +

j−1∑

i=i0

ηi, (78)

where the numbers ηi are defined by (46).
This last expression also rewrites

r̄i0 = ηi0

i0−1∑

i=0

√√√√
i0∏

k=i+1

(
1− η2

k−1

1 + η2
k

)
+

j−1∑

i=i0

ηi,

in terms of the real numbers ηi. Since 1√
j2+1

6 ηi 6 1√
j2−1

for every j ∈ IN∗ and i ∈ {0, · · · , j−1},
one infers that

r̄i0 > ηi0
∑i0−1
i=0

(
j2−2
j2

) i0−i
2

+
∑j−1
i=i0

ηi > g(i0, j),

with

g : (i0, j) 7→
j − i0√
j2 + 1

+
1√
j2 + 1




(
j2−2
j2

) i0
2 − 1

1−
(

j2

j2−2

) 1
2




By Lemma 11, we conclude that for every i0 > 1, r >

(
j+
√
j2−2

2
√
j2+1

)(
j − (j2−2)

j
2

jj−1

)
. As a result, if

r <

(
j+
√
j2−2

2
√
j2+1

)(
j − (j2−2)

j
2

jj−1

)
, one has τ 6 Ai for every i ∈ {0, · · · , j − 1}.

33



Proof of Lemma 10. In the sequel we will use the notations in (46) and the definition of ∆j in
(54) where A1 is defined in (68), A0 is defined in (69) and for all i ∈ {2, · · · , j − 1} Ai is defined
in (70) .

Let i0 ∈ {1, · · · , j − 1} and let us introduce the sets

Ik = {i ∈ {0, · · · , j − 1} such thatAi > Ak} and Jk = {i ∈ {0, · · · , j − 1} such thatAi 6 Ak}.

From (68), (69), (70) and 1√
j2+1

6 ηi 6 1√
j2−1

, we notice that

Ai+1

Ai
=

(1− η2
i )η2

i+1

(1 + η2
i+1)η2

i

6 1, for all i ∈ {1, · · · , j − 1} and
A0

A1
6 1. (79)

Case 1: 0 ∈ Ji0 . Thanks to (79), one has Ji0 = {0, i0 + 1, · · · , j − 1}. By mimicking the proof of
Lemma 8 (notably the equality (78)), we have

r =

i0∑

i=1

√
Ai0+1

Ai
ηi +

∑

i∈Ji0

ηi > ηi0

i0∑

i=1

√√√√
i0+1∏

k=i+1

(
1− η2

k−1

1 + η2
k

)
+

j−1∑

i=i0+1

ηi + η0,

> ηi0

i0∑

i=1

(
j2 − 2

j2

) i0+1−i
2

+

j−1∑

i=i0+1

ηi + η0 > g(i0, j),

with g : (i0, j) 7→ j−i0√
j2+1

+ 1√
j2+1



(
j2−2

j2

) i0
2 −1

1−
(

j2

j2−2

) 1
2


 , which leads to the desired conclusion using

Lemma 11.

Case 2: 0 ∈ Ii0 . Thanks to (79), one has Ji0 = {i0, · · · , j − 1}. By mimicking the proof of Lemma
8, we have

ri0 =

√
Ai0
A0

η0 +

i0−1∑

i=1

√
Ai0
Ai

ηi +

j−1∑

i=i0

ηi

Thanks to (69), (70) and 1√
j2+1

6 ηi 6 1√
j2−1

,

√
Ai0
A0

η0 > ηi0

√
(j2 + 2)(j2 − 1)

j2(j2 + 1)

(
j2

j2 − 2

) i0−2
2

and

√
Ai0
Ai

ηi > ηi0

(
j2 − 2

j2

) i0−i
2

.

Since the inequality (j2+2)(j2−1)
j2(j2+1) >

(
j2

j2−2

)2

is true for every j > 1, we thus infer

r̄i0 > ηi0

i0−1∑

i=0

(
j2 − 2

j2

) i0−i
2

+

j−1∑

i=i0

ηi > g(i0, j).

By using Lemma 11, we conclude the proof.

C Proof of Theorem 3

Before proving this theorem, let us recall some basic facts on Ingham’s inequality (see [17]), an
inequality for nonharmonic Fourier series much used in control theory.
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Proposition 5. For every γ > 0 and every T > 2π
γ , there exist two positive constants C1(T, γ)

and C2(T, γ) such that for every sequence of real numbers (µn)n∈IN∗ satisfying

∀n ∈ IN∗ |µn+1 − µn| > γ, (80)

there holds

C1(T, γ)
∑

n∈Z∗
|an|2 6

∫ T

0

∣∣∣∣∣
∑

n∈Z∗
aneiµnt

∣∣∣∣∣

2

dt 6 C2(T, γ)
∑

n∈Z∗
|an|2, (81)

for every (an)n∈IN∗ ∈ `2(C).

Denoting by C1(T, γ) and C2(T, γ) the optimal constants in (81), several explicit estimates of
these constants are provided in [17]. For example, it is proved in the article cited above that

C1(T, γ) > 2

(
T

π
− 4π

γ2T

)
and C2(T, γ) 6

10T

π
.

The idea to use Ingham inequalities in control theory is a long story (see for instance [2, 11, 18,
19, 23]).

Notice that, up to our knowledge, the best constants in [17] are not known. In the particular case
where µn = πn/L for every n ∈ IN∗, one shows easily that for every T > 2L, C1(T, γ) = 2π

⌊
T
2π

⌋

and C2(T, γ) = C1(T, γ) + 1, the bracket notation standing for the integer floor.
The following result on the asymptotic as T → +∞ of optimal constants Ingham’s inequalities

will be a crucial tool to prove Theorem 3.

Proposition 6. Assume that the sequence (µn)n∈IN∗ satisfies (80). Then, there holds

lim
T→+∞

C1(T, γ)

T
= lim
T→+∞

C2(T, γ)

T
= 1.

Proof of Proposition 6. Let (an)n∈IN∗ ∈ `2(C) be such that ‖a‖`2 = 1. Introduce the quantity

QT (a, µ) =

∫ T

0

∣∣∣∣∣
∑

n∈Z∗
aneiµnt

∣∣∣∣∣

2

dt.

We write

QT (a, µ) =

∫ T

0

∑

n∈Z∗
|an|2 dt+

∫ T

0

∑

n 6=m
anāme

i(µn−µm)t dt

= T − i
∑

n 6=m

anām(ei(µn−µm)T − 1)

µn − µm
= T − i

∑

n 6=m

bnb̄m
µn − µm

+ i
∑

n 6=m

anām
µn − µm

,

with bn = ane
iµnT for every n ∈ Z∗.

According to [29, Theorem 2], one has
∣∣∣∣∣∣
∑

n 6=m

bnb̄m
µn − µm

∣∣∣∣∣∣
6
π

γ
‖a‖2`2 and

∣∣∣∣∣∣
∑

n 6=m

anām
µn − µm

∣∣∣∣∣∣
6
π

γ
‖a‖2`2 ,

where γ = infn∈Z∗ µn+1 − µn. Then, it follows that

1− π

γT
6

1

T
inf

a∈`2|‖a‖`2=1
QT (a, µ) 6

1

T
sup

a∈`2|‖a‖`2=1

QT (a, µ) 6 1 +
π

γT
,

whence the result.
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Decomposing the solution ϕ of (71) in the spectral basis {ea,j}j∈IN∗ allows to write that

ϕ(t, x) =

+∞∑

j=1

(αj cos(λa,jt) + βj sin(λa,jt)) ea,j(x), (82)

where

αj =

∫ L

0

ϕ0(x)ea,j(x) dx, βj =
1

λa,j

∫ L

0

ϕ1(x)ea,j(x) dx, (83)

for every j ∈ IN∗. We are now ready to prove Theorem 3.

Proof of Theorem 3. Introduce the spectral gap γ = infj∈N∗ λa,j+1 − λa,j . It is well-known
that γ > 0 for every a ∈ L∞(0, L). Let us first prove point (i). Using (81), one has for T > 2π/γ,

∫ T

0

∫

ω

|∂tϕ(t, x)|2 dxdt =
1

4

∫ T

0

∫

ω

∣∣∣∣∣
∑

k∈Z∗
i sgn(k)λa,|k|

√
α2
|k| + β2

|k|e
i sgn(k)(λa,|k|t−θ|k|)ea,|k|(x)

∣∣∣∣∣

2

dxdt

>
C1(T, γ)

4

∑

k∈Z∗
(α2
|k| + β2

|k|)λ
2
a,|k|

∫

ω

ea,|k|(x)2 dx

=
C1(T, γ)

2

+∞∑

j=1

(α2
j + β2

j )λ2
a,j

∫

ω

ea,j(x)2 dx, (84)

where (θj)j∈IN∗ denotes the sequence defined by eiθj =
αj+iβj√
α2
j+β

2
j

for every j ∈ IN∗. Combining the

energy identity

∫ L

0

(
ϕ2
t (t, x) + ϕ2

x(t, x) + a(x)ϕ2(t, x)
)
dx =

+∞∑

j=1

λ2
a,j(α

2
j + β2

j ), (85)

with (73), (82), (83) and (85), one gets

CT,obs(ω) = inf
(λa,jαj ,λa,jβj)∈l2(IR)2

∫ T
0

∫
ω
|∑+∞

j=1 (−λa,jαj sin(λa,jt) + λa,jβj cos(λa,jt)) ea,j(x)|2 dxdt
∑+∞
j=1 λ

2
a,j(α

2
j + β2

j )
,

(86)
According to (84), it follows that

CT,obs(ω) >
C1(T, γ)

2
inf
j∈IN∗

∫

ω

ea,j(x)2 dx. (87)

Taking now αj = (δkj)k∈IN∗ and βj = (δk′j)k′∈IN∗ in (86) where δkj denotes the Kronecker delta,
we obtain

CT,obs(ω) 6
T

2
inf
j∈IN∗

∫

ω

ea,j(x)2 dx. (88)

Combining (87), (88) with the asymptotic of optimal constant C1(T, γ) in Ingham’s inequalities
stated in Proposition 6 leads to the desired result. Let us now prove point ii. According to (85),
(87) and (88), there holds

0 <
C1(T, γ)

2
6

CT,obs(ω)

infj∈IN∗
∫
ω
ea,j(x)2 dx

6
T

2
(89)

with C1(T, γ) > 2
(
T
π − 4π

γ2T

)
. To conclude, it remains to provide an estimate of the spectral gap

γ.
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Lemma 12. Let a ∈ AM (0, L) with M ∈ (0, 3π2/L2). There holds

∀j ∈ IN∗, λa,j+1 − λa,j >
3π2

L2 −M
2π
L +

√
π2

L2 +M
.

Proof. The Courant-Fischer minimax principle writes

λ2
a,j = min

V⊂H1
0 (0,π)

dimV=j

max
u∈V \{0}

∫ π
0

(u′(x)2 + a(x)u(x)2)dx∫ π
0
u(x)2 dx

. (90)

Using that 0 6 a(x) 6 M for almost every x ∈ (0, L) yields jπ
L 6 λa,j 6

√(
jπ
L

)2
+M , for every

j ∈ IN∗. It suffices indeed to compare λ2
a,j with the j-th eigenvalue of a Sturm-Liouville operator

with constant coefficients. We infer

λa,j+1 − λa,j >
(j + 1)π

L
−
√(

jπ

L

)2

+M =
(1 + 2j) π

2

L2 −M

(j + 1) πL +

√(
j2π2

L2

)
+M

for every j ∈ IN∗. The sequence j 7→ (1+2j) π
2

L2−M

(j+1) πL+

√(
j2π2

L2

)
+M

being increasing, the expected estimate

follows.

Therefore, according to Lemma 12, one has γ > γM . Hence, choosing γ = γM in (89) for all
T > T (M) = 2π

γM
yields the expected conclusion.
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[35] Yannick Privat, Emmanuel Trélat and Enrique Zuazua, Optimal location of controllers for the one-dimensional
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