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Abstract

This paper is devoted to studying the null and approximate controllability of two linear
coupled parabolic equations posed on a smooth domain Ω of RN (N > 1) with coupling terms of
zero and first orders and one control localized in some arbitrary nonempty open subset ω of the
domain Ω. We prove the null controllability under a new sufficient condition and we also provide
the first example of a not approximately controllable system in the case where the support of
one of the nontrivial coupling terms intersects the control domain ω.
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1 Introduction

1.1 Presentation of the problem and main results

Let T > 0, let Ω be a bounded domain of RN (N ∈ N∗) of class C2 and let ω be an arbitrary
nonempty open subset of Ω. Let QT := (0, T ) × Ω, qT := (0, T ) × ω and ΣT := (0, T ) × ∂Ω. We
consider the following system of two parabolic linear equations with variable coefficients and coupling
terms of order zero and one

∂ty1 = div(d1∇y1) + g11 · ∇y1 + g12 · ∇y2 + a11y1 + a12y2 + 1ωu in QT ,
∂ty2 = div(d2∇y2) + g21 · ∇y1 + g22 · ∇y2 + a21y1 + a22y2 in QT ,
y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

(1.1)

where y0 ∈ L2(Ω)2 is the initial condition and u ∈ L2(QT ) is the control.
The zero and first order coupling terms (aij)16i,j62 and (gij)16i,j62 are assumed (for the moment)

to be in L∞(QT ) and in L∞(QT )N , respectively. For l ∈ {1, 2}, the second order elliptic self-adjoint
operator div(dl∇) is given by

div(dl∇) =

N∑
i,j=1

∂i(d
ij
l ∂j),
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with {
dijl ∈ L∞(QT ),

dijl = djil in QT ,

where the coefficients dijl satisfy the uniform ellipticity condition

N∑
i,j=1

dijl ξiξj > d0|ξ|2 in QT , ∀ξ ∈ RN ,

for a constant d0 > 0.
It is well-known (see for instance [25, Th. 3-4, p. 356-358]) that for every initial data y0 ∈ L2(Ω)2

and every control u ∈ L2(QT ), System (1.1) admits a unique solution y in W (0, T )2, where

W (0, T ) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ↪→ C0([0, T ];L2(Ω)).

In this article, we are concerned with the approximate or null controllability of System (1.1). Let
us recall the precise definitions of these notions. We say that System (1.1) is

• approximately controllable on (0, T ) if for every initial condition y0 ∈ L2(Ω)2, every target
y1 ∈ L2(Ω)2 and every ε > 0, there exists a control u ∈ L2(QT ) such that the corresponding
solution y to System (1.1) satisfies

‖y(T, ·)− y1‖L2(Ω)2 6 ε.

• null controllable on (0, T ) if for every initial condition y0 ∈ L2(Ω)2, there exists a control
u ∈ L2(QT ) such that the corresponding solution y to System (1.1) satisfies

y(T, ·) = 0 in Ω.

It is well-known that if a parabolic system like (1.1) is null controllable on (0, T ), then it is
also approximately controllable on (0, T ) (this is an easy consequence of usual results of backward
uniqueness for parabolic equations as given for example in [11]).

We recall that the case a21 6= 0 and g21 = 0 in (t0, t1)× ω0 ⊂ qT has already been studied in [27].
In the present paper, we study the following case: There exists t0, t1 ∈ (0, T ) satisfying t0 < t1 and
a nonempty open subset ω0 of ω such that

g21 6= 0 in (t0, t1)× ω0. (1.2)

As we will see in Section 2, it is possible, with the help of appropriate change of variable and unknown
(we lose a little bit of regularity on the coefficients though, see Section 2), to replace the coupling
operator g21 ·∇+a21 by the simpler coupling operator ∂x1

(where x1 is the first direction in space), at
least locally on some subset of qT . Hence, without loss of generality, we will work under the following
condition:

Condition 1.1. There exists t0, t1 ∈ (0, T ) satisfying t0 < t1 and a nonempty open subset O of ω0

such that
g21 · ∇+ a21 = ∂x1

on OT := (t0, t1)×O.

For a nonempty open set ωT ⊂ RN+1, let us denote by C0
t,x2,...,xN

(ωT ) the subset of C0(ωT )
composed by the functions depending only on the variables t, x2, x3, ..., xN . For some functions
a0, ..., aR : RN ×R→ R, we denote by 〈a1, ..., aR〉C0t,x2,...,xN

(ωT ) the C0
t,x2,...,xN

(ωT )-module generated

by a1, ..., aR, i.e. the set composed by the functions
∑R
i=1 αiai with αi ∈ C0

t,x2,...,xN
(ωT ).

Additionally to Condition 1.1, we will assume the following condition:
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Condition 1.2. We assume that dkli ∈ CN
2+3(ωT )∩W 1

∞(QT ), gkij ∈ CN
2+3(ωT )∩L∞(0, T ;W 1

∞(Ω))

and aij ∈ CN
2+2(ωT ) for every i, j ∈ {1, 2} and k, l ∈ {1, ..., N}. Moreover, there exists a nonempty

open set ωT ⊂ (t0, t1)×O such that{
ã22 is not an element of the C0

t,x2,...,xN
(ωT )-module〈

1, g̃2
22, ..., g̃

N
22, d

22
2 , ..., d

NN
2

〉
C0t,x2,...,xN

(ωT )
,

(1.3)

where  g̃i22 := gi22 −
N∑
j=1

∂xj
dij2 ,

ã22 := −a22 + div(g22).

(1.4)

Remark 1. Condition 1.2 will be crucial in our following results, but is closely related to the particular
form for the coupling term given in Condition 1.1. We assume Condition 1.1, since the general form
(1.2) would make Condition 1.2 impossible to write down explicitly.

Our main result is the following:

Theorem 1. Assume that Conditions 1.1 and 1.2 hold. Then System (1.1) is null controllable on
(0, T ). Moreover, the corresponding control u satisfies

‖u‖L2(QT ) 6 C‖y0‖L2(Ω)2 , (1.5)

where C > 0 does not depend on y0.

Remark 2. Condition 1.2 is a generalization to the N -dimensional case of Theorem 2 in [24]. More
precisely, the condition in Item (e) of Remark 1 in [24] is exactly (1.3) in the one dimensional case.
Condition 1.2 is clearly technical since it does not even cover the case of constant coefficients studied
in [24], the result proved in [12] under some assumption on the control domain or the one-dimensional
result given in [23].

Remark 3. For some studies of control problems (see for instance [24, Th. 2] or [21]), the application
of the fictitious control method combined with the algebraic solvability requires the use of a computer,
so that the obtained coupling conditions cannot be written with a general form available for any space
dimension (see [21]). This remark has already be done in Item (f) of Remark 1 in [24]. In the present
paper, we propose an explicit strategy without these constraints, that seems to the authors to be
sharp with respect to the technique used (see the proof of Theorem 1).

Remark 4. Theorem 1 is stated and will be proved in the case of two coupled parabolic equations
and one control. However, as in [24], it is possible to extend Theorem 1 to systems of n parabolic
equations controlled by n− 1 controls for arbitrary n > 2. More precisely, consider the system

∂ty1 = div(d1∇y1) +
∑n
i=1 g1i · ∇yi +

∑n
i=1 a1iyi + 1ωu1 in QT ,

∂ty2 = div(d2∇y2) +
∑n
i=1 g2i · ∇yi +

∑n
i=1 a2iyi + 1ωu2 in QT ,

...
∂tyn−1 = div(dn−1∇yn−1) +

∑n
i=1 g(n−1)i · ∇yi +

∑n
i=1 a(n−1)iyi + 1ωun−1 in QT ,

∂tyn = div(dn∇yn) +
∑n
i=1 gni · ∇yi +

∑n
i=1 aniyi in QT ,

y1 = . . . = yn = 0 on ΣT ,

y1(0, ·) = y0
1 , . . . , yn(0, ·) = y0

n in Ω,

(1.6)

where y0 := (y0
1 , . . . , y

0
n) ∈ L2(Ω)n is the initial data and u := (u1, . . . , un−1) ∈ L2(QT )n−1 is the

control. Let us suppose that there exists i ∈ {1, ..., n}, t0, t1 ∈ (0, T ) satisfying t0 < t1 and a
nonempty open subset ω0 of ω such that gni(t, x) 6= 0 on (t0, t1)× ω0. As explained in Section 2, we
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can suppose that the operator gni · ∇ + ani is equal to ∂x1 in (t0, t1) × O with O ⊂⊂ ω0. Assume
that there exists an open set ωT ⊂ (t0, t1)×O such that{

ãnn is not an element of the C0
t,x2,...,xN

(ωT )-module〈
1, g̃2

nn, ..., g̃
N
nn, d

22
2 , ..., d

NN
2

〉
C0t,x2,...,xN

(ωT )
,

where  g̃inn := ginn −
N∑
j=1

∂xj
dijnn,

ãnn := −ann + div(gnn).

Then we can adapt the proof of Theorem 1 to prove that System (1.6) is null controllable on (0, T )
under suitable regularity conditions on the coefficients.

One question that naturally arises is whether we can expect the null controllability to be true in
general that is without the extra Condition 1.2 on the coefficients or not. The next result explains
that null controllability may fail in some particular cases when Condition 1.2 is not satisfied. Hence,
the establishment of a simple necessary and sufficient condition on the coupling terms for the null
controllability of System (1.1) remains an open problem.

Theorem 2. Consider the following system
∂ty1 = ∂xxy1 + 1ωu in (0, T )× (0, π),

∂ty2 = ∂xxy2 + ay2 + ∂xy1 in (0, T )× (0, π),

y(·, 0) = y(·, π) = 0 on (0, T ),

y(0, ·) = y0 in (0, π).

(1.7)

There exists a coefficient a ∈ C∞([0, π]) such that:

1. There exists an open interval ω ⊂⊂ (0, π) such that, for all T > 0, System (1.7) is null
controllable (then approximatively controllable) on (0, T ).

2. There exists an open interval ω ⊂⊂ (0, π) such that, for all T > 0, System (1.7) is not approx-
imatively controllable (then not null controllable) on (0, T ).

Remark 5. Let us mention that Theorem 2 is the first negative result for the controllability of System
(1.1) when the support of the coupling term intersects the control domain in the case of distributed
controls (concerning boundary controls, a complete characterization in the case of cascade coupling
terms of order 0 or 1 has already been obtained in [31, Theorem 3.3] in the one-dimensional case).

Remark 6. Theorem 2 tells us that for some well-constructed potential a, that there exists one control
domain on which System (1.7) is not approximately controllable (hence not null controllable) and an-
other control domain on which System (1.7) is null controllable (hence approximatively controllable),
highlighting the fact that some geometrical conditions on the control domain has to be imposed in
order to obtain a controllability result, as already remarked in [31] and [17]. The authors want to
emphasize the fact that the coupling operator is different of zero (constant) in the whole domain and
nevertheless the system can be controllable or not following the localisation of the control domain,
which is an unexpected phenomenon.

Remark 7. The proof of Theorem 2 can be adapted to construct, in the N dimensional case, not
approximately controllable systems with a non empty intersection of the support of the coupling
terms and the control region. An example of such systems is given in Proposition 4.1.
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1.2 State of the art
Many models of interest involve (linear or non-linear) coupled equations of parabolic systems,

notably in medicine (see e.g. [26]), chemistry (see e.g. [16]), ecology (see e.g. [18]), etc., and this
explains why during the past years, the study of the controllability properties of linear or nonlinear
parabolic systems has been an increasing subject of interest (see for example the survey [7]). The
main issue is what is called the indirect controllability, that is to say one wants to control many
equations with less controls than equations, by acting indirectly on the equations where no control
term appears thanks to the coupling terms appearing in the system. This notion is fundamental, since
in some complex systems only some quantities can be effectively controlled. Here, we will concentrate
on the previous results concerning the null or approximate controllability of linear parabolic systems
with distributed controls, but there are also results concerning boundary controls or other classes of
systems like hyperbolic systems.

First of all, in the case of zero order coupling terms, the case of constant coefficients is now com-
pletely treated and we refer to [5] and [6] for parabolic systems having constant coupling coefficients
(with diffusion coefficients that may depend on the space variable though) and for some results in the
case of time-dependent coefficients. In the case of zero and one order coupling terms and constant
coefficients, a necessary and sufficient condition in the case of m equations and m − 1 controls for
constant coefficients is provided in [24] by the authors.

The case of space-varying coefficients remains still widely open despite many new partial results
these last years. In the case where the support of the coupling terms intersects the control domain,
a general result is proved in [27] for parabolic systems in cascade form with one control force (and
possibly one order coupling terms). We also mention [4], where a result of null controllability is
proved in the case of a system of two equations with one control force, with an application to the
controllability of a nonlinear system of transport-diffusion equations. In the situation where the
coupling regions do not intersect the control domain, the situation is still not very well-understood
and there are only partial results. Some general results in one dimension has been obtained in [17]
and [8]. Partial results has also been obtained under some strong technical conditions on the coupling
terms (see [1] and [3]) or geometrical conditions, notably on the control domain (see [32]).

Let us mention that in this case, there might appear a minimal time for the null controllability
of System (1.1) (see [9]), which is a very surprising phenomenon for parabolic equations, because of
the infinite speed of propagation of the information.

Concerning the case of first order coupling terms, we mention [27] which gives some controllability
results when the coefficient g21 is equal to zero on the control domain. Let us also mention the
recent work [12], which concerns 2 × 2 and 3 × 3 systems. The authors of [12] suppose that the
control domain contains a part of the boundary ∂Ω. Recently, in [23], the first author studied a
particular cascade system with space dependent coefficients and in dimension one thanks to the
moment method, and obtained necessary and sufficient conditions on the coupling terms of order 0
and 1 for the null controllability. To conclude, let us also mention another result given in [24] by the
authors, which provides a sufficient condition for null controllability in dimension one for space and
time-varying coefficients under some technical conditions on the coefficients, which turns out to be
exactly equivalent to Condition 1.2 under Condition 1.1 (but with more regularity than in Condition
(1.2)). Hence, Theorem 1 can be seen as a generalization in the multi-dimensional case of the one-
dimensional result given in [24]. For a more detailed state of the art concerning this problem, we
refer to [24].

Hence, the present paper improves the previous results in the following sense:

• Contrary to [12, 30, 23, 24], we prove in Theorem 1 the null controllability of System (1.1)
with a condition on a22 but for space/time dependent coefficients, in any space dimension and
without any condition on the control domain.

• In the previous results, it was surprising to have some very different sufficient conditions for the
null controllability of System (1.1) in the case of first order coupling terms, for example on one
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hand constant coupling coefficients and on the other hand a region of control which intersects
the boundary of the domain. Through the example of a not approximately controllable system
given in Proposition 4.1 and Theorem 2, we can now better understand why such different
conditions appeared since the expected general condition for the null controllability of System
(1.1) with space and time-varying coefficients (i.e. it is sufficient that the control and coupling
region intersect) may be false in general if ω ⊂⊂ Ω.

This paper is organized as follows: in the first section, we explain how to replace (1.2) by Condition
1.1 thanks to an appropriate change of variable. The second section is devoted to the proof of Theorem
1. Finally, in the last section, we prove Theorem 4.1 and give an example of N dimensional system
which is not approximately controllable and with a non empty intersection of the support of the
coupling terms and the control region.

2 Simplification of the coupling term

In this section, we will prove that it is possible to replace locally the coupling operator g21 · ∇+ a21

by ∂x1
, where x1 is the first direction in space. Let us remark that the regularities stated in Lemma

2.1 are higher than the one stated in Theorem 1 due to technical reasons appearing in the proofs of
Lemmas 2.1 and 2.2.

Lemma 2.1. Let dkli , gkij , aij ∈ CN
2+4([t0, t1] × ω0) for every i, j ∈ {1, 2} and k, l ∈ {1, ..., N}.

Suppose that Condition (1.2) is verified. Then, there exist a nonempty open subset U of RN−1, a
positive real number ε and a CN2+3-diffeomorphism Λ from Uε := (t0, t1) × (0, ε) × U to an open
set (t0, t1) × O ⊂ (t0, t1) × ω0 that keeps t invariant and such that if we call ỹ1 := y1 ◦ Λ and
ỹ2 := y2 ◦ Λ, then there exist a matrix d̃2 ∈ MN (CN2+3(Uε)), a vector g̃22 ∈ (CN2+3(Uε))

N and
coefficients ã21, ã22 ∈ CN

2+3(Uε) such that locally on Uε one has

∂tỹ2 = div(d̃2∇ỹ2) + g̃22 · ∇ỹ2 + ã22ỹ2 + ∂x1
ỹ1 + ã21ỹ1 in Uε. (2.1)

This kind of simplification has already been used in [12, Lemma 2.6] for example, and we refer to
this article for a more detailed proof (see also [23]).

Proof of Lemma 2.1
Let us consider some open hyper-surface γ of class C∞ included in ω0 on which g21 · ν < 0, where ν
is the normalized outward normal on γ (this can always be done since g21 6= 0 on (t0, t1)× ω0 and is
at least continuous), small enough such that it can be parametrized by a local diffeomorphism

F : s0 := (s2, . . . , sN ) ∈ U ⊂ RN−1 7→ F (s0) ∈ γ,

where U is a nonempty open set. We call γT := (t0, t1) × γ. Let us consider some CN2+4 extension
of g21 (that exists thanks to the regularity of γ and g21) that we denote by gT21 : (t, x) ∈ RN+1 7→
(0, g21(t, x)) ∈ RN+1. Using the Cauchy-Lipschitz Theorem, we infer that for every (t, σ) ∈ γT , there
exists a unique global solution to the Cauchy Problem{

d
dsΦ(t, s, σ) = gT21(Φ(t, s, σ)),

Φ(t, 0, σ) = (t, σ).

Since Φ is continuous and g21 · ν < 0 on γT , we deduce that there exists some ε > 0 such that
Φ(t, s, σ) ∈ (t0, t1)× ω0 for every s ∈ (0, ε) and every (t, σ) ∈ γT . We define

Λ : (t, s, z) ∈ (t0, t1)× (0, ε)× U 7→ Φ(t, s, F (z)).
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Then, by the inverse mapping theorem, Λ is a CN2+4-diffeomorphism from Uε to (t0, t1)×O := Λ(Uε)
with O ⊂ ω0. Let us call ỹ1(t, s, z) := y1(Λ(t, s, z)) and ỹ2(t, s, z) := y2(Λ(t, s, z)), then it is clear
that

∂tỹi(t, s, z) = (∂tyi) ◦ Λ(t, s, z) for i = 1, 2 and ∂sỹ2(t, s, z) = (g21 · ∇y2) ◦ Λ(t, s, z),

and hence we obtain (2.1) and the regularities wished for the new coefficients by writing down the
equation verified by ỹ.

Let us now perform a second useful reduction.

Lemma 2.2. There exists an open subset OT of Uε and a function θ ∈ CN2+4(Ω) such that |θ(x)| > C
for some constant C > 0 and if

y1(t, x) := θ−1(t, x)ỹ1(t, x)

and
y2(t, x) := θ−1(t, x)ỹ2(t, x),

then there exists some coefficients a22 ∈ CN
2+2(OT ) and g22 ∈ CN

2+3(OT )N such that locally on OT
one has

∂ty2 = div(d̃2∇y2) + ∂x1
y1 + g22 · ∇y2 + a22y2 in OT . (2.2)

Proof of Lemma 2.2
Let us consider a function θ ∈ CN2+4(Ω) such that |θ(x)| > C for some constant C > 0, and consider
the change of unknowns {

y1(t, x) := θ−1(x)ỹ1(t, x),

y2(t, x) := θ−1(x)ỹ2(t, x).

Using equation (2.1), we infer that y2 verifies

∂ty2 = div(d̃2∇y2) + g22 · ∇y2 + a22y2 + ∂x1
y1 + θ−1(∂x1

θ + ã21θ)y1,

where g22 := 2θ−1d̃2∇θ + g̃22 and a22 := θ−1 div(d̃2∇θ) + θ−1g̃22∇θ + ã22. Hence, if we choose
θ ∈ CN2+4(Ω) satisfying ∂x1θ+ ã21θ = 0 and |θ(x)| > C in QT , which is always possible, then y1 and
y2 verify (2.2) and we have a22 ∈ CN

2+2(OT ) and g22 ∈ CN
2+3(OT )N .

3 Proof of Theorem 1
The goal here is to prove Theorem 1. We first explain in Section 3.1 the global strategy. Then, in
Section 3.2, we solve the algebraic problem which is the key point of the proof of Theorem 1. Finally,
we conclude in Section 3.3. During all these Sections, we always assume that Conditions 1.1 and 1.2
are satisfied.

3.1 Strategy : Fictitious control method
The fictitious control method, which was introduced in [19] in the context of affine control systems
of ordinary differential equations without drift, has already been used for instance in [28], [21], [2],
[20] and [24]. Roughly, the method is the following: we first control the equations with two controls
(one on each equation) and we try to eliminate the control on the last equation thanks to algebraic
manipulations locally on the control domain. For more details, see for example [24, Section 1.3]. Let
us be more precise and decompose the problem into three different steps:
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(i) Analytic Problem: Null controllability by two forces
Find a solution (ŷ, û) in an appropriate space to the control problem by two controls

∂tŷ1 = div(d1∇ŷ1) + g11 · ∇ŷ1 + g12 · ∇ŷ2 + a11ŷ1 + a12ŷ2 + û1 in QT ,
∂tŷ2 = div(d2∇ŷ2) + g21 · ∇ŷ1 + g22 · ∇ŷ2 + a21ŷ1 + a22ŷ2 + û2 in QT ,
ŷ = 0 on ΣT ,

ŷ(0, ·) = y0, ŷ(T, ·) = 0 in Ω,

(3.1)

where the controls û1 and û2 are regular enough and with a support strongly included in ωT
(remind that ωT was introduced in Condition 1.2). Solving Problem (3.1) is easier than solving
the null controllability on (0, T ) of System (1.1), because we control System (3.1) with one
control on each equation. The important point is that the control has to be regular enough, so
that it can be differentiated a certain amount of times with respect to the space and/or time
variables (see the next section about the algebraic resolution).

Proposition 3.1. Let s ∈ N∗. Suppose that dkli , gkij ∈ Cs+2(ωT ) and aij ∈ Cs+1(ωT ) for
every i, j ∈ {1, 2} and k, l ∈ {1, ..., N}. Then there exists a constant Cs > 0 such that for
every initial condition y0 ∈ L2(Ω)2, one can find a control u ∈ Cs(QT )2 verifying moreover
Supp(u) ⊂⊂ ωT for which the solution to System (3.1) is equal to zero at time T and the
following estimate holds:

‖u‖Cs(QT )2 6 Cs‖y0‖L2(Ω)2 .

The controllability of parabolic systems with regular controls is nowadays well-known. For a
proof of Proposition 3.1, one can adapt the strategy developed in [13, 14, 15, 28] where the
authors prove the controllability of parabolic systems with L∞ controls thanks to the fictitious
control method and the local regularity of parabolic equations. For more details, we refer to
[22, Chap. I, Sec. 2.4]. It is also possible to use the Carleman estimates (see for instance [10]
and [24, Section 2.3]), however this will impose the coefficients of System (3.1) to be regular in
the whole space QT (and would require higher regularity on Ω).

(ii) Algebraic Problem: Null controllability by one force
For given û1, û2 with Supp(û1, û2) strictly included in ωT , find (z, v), in an appropriate space,
satisfying the following control problem:{

∂tz1 = div(d1∇z1) + g11 · ∇z1 + g12 · ∇z2 + a11z1 + a12z2 + û1 + v in ωT ,
∂tz2 = div(d2∇z2) + ∂x1

z1 + g22 · ∇z2 + a22z2 + û2 in ωT ,
(3.2)

with Supp(z, v) strictly included in ωT , so that z(0, ·) = (T, ·) = 0 on Ω and z = 0 on ∂Ω.
We recall that g21 ·∇+a21 is equal to ∂x1

in ωT . We will solve this problem using the notion of
algebraic resolvability of differential systems, which is based on ideas coming from [29, Section
2.3.8] and was already used in some different contexts in [21], [2], [24] or [20]. The idea is to
write System (3.2) as an underdetermined system in the variables z and v and to see û as a
source term. More precisely, we remark that System (3.2) can be rewritten as

L(z, v) = f, (3.3)

where f := û and

L(z, v) :=

(
∂tz1 − div(d1∇z1)− g11 · ∇z1 − g12 · ∇z2 − a11z1 − a12z2 − v

∂tz2 − div(d2∇z2)− ∂x1
z1 − g22 · ∇z2 − a22z2

)
.

The goal in Section 3.2 will be then to find a partial differential operatorM satisfying

L ◦M = Id in ωT . (3.4)

8
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Thus to solve control problem (3.2), it suffices to take

(z, v) :=M(f).

When (3.4) is satisfied, we say that System (3.3) is algebraically solvable.

(iii) Conclusion
If we are able to solve the analytic and algebraic problems, then it is easy to check that
(y, u) := (ŷ − z,−v) will be a solution to System (1.1) in an appropriate space and will satisfy
y(T, ·) ≡ 0 in Ω (for more explanations, see [21, Prop. 1] and the proof of Theorem 1 in the
next section).

3.2 Algebraic solvability of the control problem

The goal of this section is to solve algebraic problem (3.3). We will use the following lemma:

Lemma 3.1. Let ω be a nonempty open subset of Rn (n > 1) and let R ∈ N∗. Consider two differential
operators L1 and L2 defined for every ϕ ∈ C∞(ω) by

L1ϕ := ∂x1
ϕ and L2ϕ := a0ϕ+

R∑
i=1

aiD
αiϕ,

where, for αi = (α2
i , ..., α

n
i ), Dαi := ∂

α2
i

x2 · · · ∂
αn

i
xn . If ai ∈ CM (ω) for every i ∈ {0, ..., R} where

M :=

R∑
j=1

βj with βj the order of the operator
R∑
i=j

aiD
αi

and, for a nonempty open subset ω̃ of ω, a0 is not an element of the C0
x2,...,xn

(ω̃)-module generated
by a1, ..., aR, i.e.

a0 ∈ 〈a1, ..., aR〉C0x2,...,xn
(ω̃) , (3.5)

then there exists two differential operatorsM1 andM2 such that

M1 ◦ L1 +M2 ◦ L2 = Id in C∞(ω̃). (3.6)

We refer to the introduction for the definition of a module.
Proof of Lemma 3.1

The proof is divided into two steps:

• In a first step, we will build two differential operators M̃1 and M̃2 and a function f ∈ C0(ω)
such that

M̃1 ◦ L1 + M̃2 ◦ L2 = fId. (3.7)

• In a second step, we will prove that f is invertible in a subset ω̃ of ω under condition (3.5).
Thus, multiplying (3.7) by f−1, we will obtain (3.6).

Step 1:
The goal is to apply some differential operators M̃1 and M̃2 to L1ϕ and L2ϕ in order to obtain fϕ,
with f a function in C0(ω). So, since ϕ is not appearing in L1ϕ, we would like to eliminate all the
derivatives Dαiϕ in the expression of L2ϕ by differentiations and linear combinations. If a0 6= 0 and
ai = 0 in ω for every i ∈ {1, ...., R}, then we obtain (3.7) with M̃1 = 0, M̃2 = Id and

f := a0.

9
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If not, let k1 be the smallest number of {1, ...., R} such that there exists a nonempty open subset ω1

of ω where |ak1 | > δ > 0. Then we consider L3 the commutator of L1 and a−1
k1
L2:

L3ϕ := [L1, a
−1
k1
L2]ϕ = ∂x1

(
a0

ak1

)
ϕ+

R∑
i=k1+1

∂x1

(
ai
ak1

)
Dαiϕ.

Again, if for every i ∈ {1, ..., k1}, we have ∂x1

(
ai
ak1

)
= 0 in ω, then we obtain (3.7) with M̃1 = −L2,

M̃2 = L1 and

f := ∂x1

(
a0

ak1

)
.

If not, let k2 be the smallest number of {1, ..., k1} such that there exists a nonempty open subset ω2

of ω1 where |∂x1

(
ak2

ak1

)
| > δ > 0. Then we consider L4 the commutator of L1 and

[
∂x1

(
ak2

ak1

)]−1

L3:

L4ϕ := [L1,

[
∂x1

(
ak2
ak1

)]−1

L3]ϕ = ∂x1

∂x1

(
a0
ak1

)
∂x1

(
ak2

ak1

)
ϕ+

R∑
i=k2+1

∂x1

∂x1

(
ai
ak1

)
∂x1

(
ak2

ak1

)
Dαiϕ.

Again, if, for every i ∈ {1, ..., k2}, we have ∂x1

∂x1

(
ai

ak1

)
∂x1

(
ak2
ak1

)
 = 0 in ω2, then we obtain (3.7) with

f := ∂x1

∂x1

(
a0
ak1

)
∂x1

(
ak2

ak1

)
 .

If not, we continue the same reasoning that will stop at some point since there is only a finite order of
derivatives R. Hence, we obtain, for a m ∈ {1, ..., R}, the equality (3.7) for a nonempty open subset
ω̃ of ω and

f := ∂x1


∂x1

· · · ∂x1

(
a0
ak1

)
...


∂x1

· · · ∂x1

(
akm
ak1

)
...



 . (3.8)

Moreover, f is obtained by making iterated commutators of operators involving only L1 and L2.
Hence it is clear that there exists two linear partial differential operators M̃1 and M̃2 such that (3.7)
holds.

Step 2:
In view of (3.8), we will have the desired conclusion as soon as the coefficient in the right-hand side
in (3.8) is different from zero. Let us explain into more details what this condition exactly means.
For the sake of clarity, let us assume that m = 3 (but the following reasoning can be extended to any
m ∈ {1, . . . , R}). We remark that

∂x1


∂x1

∂x1

(
a0
ak1

)
∂x1

(
ak2
ak1

)


∂x1

∂x1

(
ak3
ak1

)
∂x1

(
ak2
ak1

)


 = 0 (3.9)

10
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holds only if, for some λ3 ∈ C0
x2,...,xn

(ω̃), we have

∂x1

∂x1

(
a0
ak1

)
∂x1

(
ak2
ak1

)


∂x1

∂x1

(
ak3
ak1

)
∂x1

(
ak2
ak1

)
 = λ3.

The last expression can be rewritten as

∂x1

∂x1

(
a0−λ3ak3

ak1

)
∂x1

(
ak2

ak1

)
 = 0. (3.10)

Again, (3.10) holds only if, for some λ2 ∈ C0
x2,...,xn

(ω̃), we have

∂x1

(
a0−λ3ak3

ak1

)
∂x1

(
ak2

ak1

) = λ2,

or, equivalently,

∂x1

(
a0 − λ3ak3 − λ2ak2

ak1

)
= 0.

Thus (3.9) is satisfied only if, for some λ1, λ2, λ3 ∈ C0
x2,...,xn

(ω̃), we have

a0 = λ3ak3 + λ2ak2 + λ1ak1 .

Hence, we find back condition (1.2) and the proof of Lemma 3.1 is achieved.

We are now able to prove the algebraic solvability of (3.3).

Proposition 3.2. Suppose that dkli , gkij , aij ∈ CN
2

(ωT ) for every i, j ∈ {1, 2} and k, l ∈ {1, ..., N}.
Then, under Condition 1.2, System (3.3) is algebraically solvable with an operatorM of order N2.

Proof of Proposition 3.2
Let us remark that the first equation of System (3.3) can be rewritten locally on ωT as

v = ∂tz1 − div(d1∇z1)− g11 · ∇z1 − g12 · ∇z2 − a11z1 − a12z2 − f1,

hence one can always solve algebraically first the second equation of System (3.3), v will then be
given with respect to z1, z2 and f1. Hence, solving (3.3) is equivalent to solving

L0z = f2,

where
L0z := ∂tz2 − div(d2∇z2)− ∂x1

z1 − g22 · ∇z2 − a22z2 in ωT .

Hence, finding a differential operator M such that (3.4) is satisfied is now equivalent to finding a
differential operatorM0 such that

L0 ◦M0 = Id. (3.11)

We can remark that equality (3.11) is formally equivalent to

M∗0 ◦ L∗0 = Id,

11
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where the formal adjoint L∗0 of the operator L0 is given for every ϕ ∈ C∞(ωT ) by

L∗0ϕ :=

(
L1ϕ

R2ϕ

)
=

(
∂x1ϕ

−∂t(ϕ)− div(d2∇(ϕ)) + div(g22ϕ)− a22ϕ

)
.

Operator R2 can be rewritten as

R2ϕ = −∂tϕ−
N∑

i,j=1

dij2 ∂xixj
ϕ+

N∑
i=1

g̃i22∂xi
ϕ+ ã22ϕ,

where g̃i22 and ã22 are given in (1.4). Let us first consider the following linear combination of L1 and
R2:

L2ϕ = R2ϕ− [−d11
2 ∂x1 − 2

N∑
i=2

di12 ∂xi + g̃1
22]L1ϕ

= −∂tϕ−
N∑

i,j=2

dij2 ∂xixj
ϕ+

N∑
i=2

g̃i22∂xi
ϕ+ ã22ϕ.

Lemma 3.1 leads to the algebraic resolvability of System (3.3) under Condition 1.2.
Concerning the order ofM, if we follow the proof of Lemma 3.1 step by step, we apply at most

N × (N − 1)/2 operators of order two to eliminate the terms dij2 ∂xixj
with i, j ∈ {2, ..., N} (thanks

to the symmetry property of d2), then at most N − 1 operators of order one for the term g̃i22∂xi
with

i ∈ {2, ..., N} and finally an operator of order at most one for ∂t. Thus the operatorM is of order at
most N × (N − 1) + (N − 1) + 1 = N2.

3.3 Conclusion
We have now all the tools to prove Theorem 1. We can follow the strategy described in Section 3.1.

Proof of Theorem 1.
We apply Proposition 3.1 with k := N2 +1 and obtain the existence of a constant C > 0 such that for
every initial condition y0 ∈ L2(Ω)2 one can find a control û ∈ CN2+1(QT )2 verifying Supp(û) ⊂⊂ ωT
for which the solution ŷ to System (3.1) is equal to zero at time T and the following estimate holds:

‖û‖CN2+1(QT )2 6 C‖y0‖L2(Ω)2 , (3.12)

where C > 0 does not depend on y0.
Now, using Proposition 3.2, locally on ωT there exists a solution (z, v) ∈ C1(QT )3 ⊂ W (0, T )2 ×

L2(QT ) to the following control problem:{
∂tz1 = div(d1∇z1) + g11 · ∇z1 + g12 · ∇z2 + a11z1 + a12z2 + û1 + v in ωT ,
∂tz2 = div(d2∇z2) + ∂x1z1 + g22 · ∇z2 + a22z2 + û2 in ωT ,

with (û1, û2) := û. Moreover, since Supp(z) ⊂⊂ ωT , we have z(0, ·) = z(T, ·) = 0 in Ω.
We conclude by remarking that (y, u) := (ŷ − z,−v) is a solution to System (1.1) which satisfies

y(T, ·) ≡ 0 in Ω and estimate (3.12) leads to (1.5).

4 Negative results
In this section, we first give an example of N dimensional system which is not approximately control-
lable (hence not null controllable) and with a non empty intersection of the support of the coupling
terms and the control region. We then prove Theorem 2.

12
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Proposition 4.1. Let us assume that ω ⊂⊂ Ω. Let ω1 be a nonempty regular open set satisfying
ω ⊂⊂ ω1 ⊂⊂ Ω. and consider a function θ ∈ C∞(Ω) satisfying

θ = 1 in ω,
Supp(θ) ⊂ ω1,

θ > 0 in ω1.

Then there exists a ∈ C∞(Ω) such that the system
∂ty1 = ∆y1 + 1ωu in QT ,
∂ty2 = ∆y2 + ay2 + ∂x1

(θy1) in QT ,
y = 0 on ΣT ,

y(0, ·) = y0 in Ω

is not approximately controllable (hence not null controllable) on (0, T ).

Proof of Proposition 4.1.
Let ω1 be a nonempty regular open set satisfying ω ⊂⊂ ω1 ⊂⊂ Ω. Let θ be a function of C∞(Ω)
satisfying 

θ = 1 in ω,
Supp(θ) ⊂ ω1,

θ > 0 in ω1.

Consider the following system
∂ty1 = ∆y1 + 1ωu in QT ,
∂ty2 = ∆y2 + ay2 + ∂x1(θy1) in QT ,
y = 0 on ∂Ω,

y(0, ·) = y0 in Ω,

(4.1)

where u ∈ L2(QT ) is the control and a ∈ L∞(Ω) will be specified later. If we can control approx-
imately System (4.1), then it implies that we are also able to control approximately the following
equation: 

∂tz = ∆z + az + ∂x1
(θv) in QT ,

z = 0 on ∂Ω,

z(0, ·) = y0
2 in Ω,

(4.2)

where v ∈ L2((0, T ), H1(Ω)) is the control. We recall that θ > 0 on ω1. It is well known that
the approximate controllability of System (4.1) on (0, T ) implies the following property, called the
Fattorini-Hautus test: for every s ∈ C and every ϕ ∈ D(∆),

−∆ϕ− aϕ = sϕ in Ω

∂x1
ϕ = 0 in ω1

}
⇒ ϕ = 0. (4.3)

In the rest of the proof, we will construct a coefficient a ∈ C∞(Ω), a complex number s and a function
ϕ ∈ D(∆) for which implication (4.3) does not hold.

Since ω1 ⊂⊂ Ω, then there exists an open set ω2 such that ω1 ⊂⊂ ω2 ⊂⊂ Ω. The first eigenfunction
ϕ1 of −∆ is well-known to be positive in Ω, so we can define a function ϕ ∈ C∞(Ω) satisfying

ϕ = ϕ1 in Ω\ω2,

ϕ = 1 in ω1,

ϕ > δ > 0 in ω2.

(4.4)

13
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For instance, in the one dimensional case, if Ω := (0, π), ω1 := (2π/5, 3π/5) and ω2 := (π/5, 4π/5),
as in Figure 1, we may construct a function ϕ ∈ C2([0, π]) satisfying

ϕ(x) = sin(x) for every x ∈ Ω\ω2 = [0, π/5] ∪ [4π/5, π],

ϕ(x) = 1 for every x ∈ ω1 = [2π/5, 3π/5],

ϕ > δ > 0 in ω2 = [π/5, 4π/5].

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1 sin(x)
1

Figure 1: Example of function ϕ on [0, π]

Consider

a :=
−∆ϕ− ϕ

ϕ
. (4.5)

Thanks to the definition of ϕ, a is well defined in Ω and is an element of C∞(Ω). We remark that ϕ
satisfies 

−∆ϕ− aϕ = ϕ in Ω,

∂x1
ϕ = 0 in ω1,

ϕ 6= 0.

For s := 1, ϕ given in (4.4) and a given in (4.5), implication (4.3) is not satisfied. Thus System (4.2)
is not approximately controllable on (0, T ).

Remark 8. Let us emphasize that in this case, as expected, Condition 1.2 is not verified: on ω we have
by definition a22 = 1, g22 = 0 and dij2 = δij for every i, j ∈ {1, . . . , N}, which implies that ã22 = −1
on ω and g̃22 = 0, hence{

ã22 is an element of the C0
t,x2,...,xN

(ωT )-module〈
1, g̃2

22, ..., g̃
N
22, d

22
2 , ..., d

NN
2

〉
C0t,x2,...,xN

(ωT )
.

This will also be the case for the potential constructed in the first part of the proof of Proposition 2.

Let us now prove Theorem 2.

14
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Proof of Theorem 2.
Let Ω := (0, π) and ω := (7π/15, 8π/15). Consider the following system

∂ty1 = ∂xxy + 1ωu in QT ,
∂ty2 = ∂xxy2 + ay2 + ∂xy1 in QT ,
y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

(4.6)

where u ∈ L2(QT ) is the control and a ∈ C∞(Ω) will be specified later.
As in the previous section, it is well-known that the approximate controllability on (0, T ) of System

(4.2) implies the following property: for every s ∈ C and every ϕ ∈ D(∂xx),

−∂xxϕ− ∂xψ = sϕ in Ω

−∂xxψ − aψ = sψ in Ω

ϕ = 0 in ω

⇒ (ϕ,ψ) = (0, 0).

The rest of the present proof involves constructing three functions ϕ, ψ, a ∈ C∞(Ω) satisfying

−∂xxϕ− ∂xψ = 9ϕ in Ω,

−∂xxψ − aψ = 9ψ in Ω,

ϕ(0) = ϕ(π) = ψ(0) = ψ(π) = 0,

ϕ = 0 in ω,
ϕ 6= 0, ψ 6= 0 in Ω.

(4.7)

The idea will be to construct the function ψ as a perturbation of x 7→ sin(3x). Consider ψ a function
of C∞(Ω) ∩D(∂xx) satisfying

ψ(x) = sin(3x) + C1θ1 + C2θ2 + C3θ3 for all x ∈ Ω,

ψ(x) = sin(7π/5) for all x ∈ ω,
|ψ(x)− sin(3x)| < ε for all x ∈ [6π/15, 7π/15] ∪ [8π/15, 9π/15],

(4.8)

where θ1, θ2, θ3 are three nontrivial functions of C∞(Ω) satisfying
Supp(θ1) ⊂ (π/12, π/6),

Supp(θ2) ⊂ (9π/12, 5π/6),

Supp(θ3) ⊂ (5π/6, 11π/12),

θ1, θ2, θ3 > 0 in Ω,

ε > 0 small enough and C1, C2, C2 are three positive constants to determined (See Figure 2 for
some examples of function ψ). Let us remark that, for a constant α ∈ R to determined, the function
ϕ ∈ C∞(Ω) defined for all x ∈ Ω by

ϕ(x) := α sin(3x)− 1
3

∫ x

0

sin(3(x− y))∂xψ(y)dy

is solution to the first equation of (4.7). In order to satisfy (4.7), let us first prove that C1 and α can
be chosen such that ϕ = 0 in ω. Since ψ = sin(7π/5) in ω,

ϕ(x) =

[
α− 1

3 cos(7π/5) sin(7π/5)−
∫ 7π/15

0

sin(3y)ψ(y)dy

]
sin(3x)

+

[
1
3 sin(7π/5)2 −

∫ 7π/15

0

cos(3y)ψ(y)dy

]
cos(3x),
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for all x ∈ ω. Since cos(3x) > 0, sin(3x) > 0 for all x in (π/12, π/6) and

1

3
sin(7π/5)2 −

∫ 7π/15

0

cos(3y) sin(3y)dy > 0,

then, according to the last line of (4.8), for ε small enough, it is possible to choose C1 > 0 in order
to obtain

1

3
sin(7π/5)2 −

∫ 7π/15

0

cos(3y)ψ(y)dy = 0.

Thus, for α given by

α :=
1

3
cos(7π/5) sin(7π/5) +

∫ 7π/15

0

sin(3y)ψ(y)dy,

we obtain ϕ = 0 in ω. By definition of ϕ, we have ϕ(0) = 0. Let us now prove that for some
appropriate C2 and C3, we have ϕ(π) = 0. We remark that

ϕ(π) =
1

3

∫ π

0

cos(3y)ψ(y)dy.

Let us distinguish two cases:

1. If
1

3

∫ 2π/3

0

cos(3y)ψ(y)dy +
1

3

∫ π

2π/3

cos(3y) sin(3y)dy (4.9)

is negative, then, using the fact that sin(3x), cos(3x) > 0 for all x ∈ (9π/12, 5π/6), one can
choose C3 := 0 and find some C2 > 0 such that ϕ(π) = 0.

2. If now the quantity (4.9) is positive, since sin(3x) > 0 and cos(3x) < 0 for all x ∈ (5π/6, 11π/12),
one can choose C2 := 0 and find some C3 > 0 such that ϕ(π) = 0.

The function ψ will have one of the two following forms

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

sin(3x)

sin(7π/5)

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

sin(3x)

sin(7π/5)

Figure 2: Examples of function ψ on [0, π]

To satisfy the second equality in (4.7), we define the function a ∈ C∞(Ω) as follows

a :=
−∂xxψ − 9ψ

ψ
.
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This function a is bounded since at each point where ψ is null, i.e. at 0, π/3, 2π/3 and π, there exists
a neighbourhood in which ψ(x) is equal to sin(3x). The constructed ϕ, ψ and a verify (4.7). Thus
System (4.6) is not approximately controllable on (0, T ).

Let us now prove the second item of Theorem 2. We remark that it is possible to chose θ1 = exp
in ω1 ⊂⊂ (π/12, π/6) with ω1 small enough. Then a is defined in ω1 for all x ∈ ω1 by

a(x) =
−10C1 exp(x)

sin(3x) + C1 exp(x)
.

Thus a satisfies
∂xa 6= 0 in ω1.

Item (ii) of Theorem 2 in [24] applies for ω := ω1 (see Item (e) of Remark 1 in [24]). Theorem 1 of the
present paper can also be used in the particular case N := 1. Thus System (1.7) is null controllable
on (0, T ) for ω := ω1 and the coefficient a built above.
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