Examen du 4 juillet 2018

Les documents, calculatrices et téléphones sont interdits. Il sera tenu compte de la présentation de la copie et de la précision de la rédaction. Le barème est donné à titre indicatif et pourra éventuellement être légèrement modifié.

Durée: 2 heures

Question de cours. (2 points) Soit (H, \langle, \rangle) un espace de Hilbert. Soit F un sous-espace vectoriel fermé. Démontrer que $F \bigoplus F^{\perp} = H$, $Id = \Pi_F + \Pi_{F^{\perp}}$ (où Π_E désigne la projection orthogonale sur le convexe E), et pour tout $x \in H$, $||x||^2 = ||\Pi_F(x)||^2 + ||x - \Pi_F(x)||^2$.

Vrai ou faux? (2 points) Les énoncés suivants sont-ils vrais ou faux (sans justification)? 0.5 point par réponse bonne, -0.5 point par réponse fausse, 0 point si non répondu.

- 1. On munit $H^1(0,1)$ de la norme suivante: $||f|| = \int_0^1 |f| + \int_0^1 |f'|$. Pour cette norme, $H^1(0,1)$ est un espace de Banach qui n'est pas un espace de Hilbert, dont la norme (et donc la topologie, i.e. les ouverts, fermés,...) est équivalente à l'espace de Hilbert $H^1(0,1)$ muni de son produit scalaire usuel.
- 2. Si $f \in C^{\infty}(]0,1[)$, alors $f \in H^1(0,1)$.
- 3. On se place sur l'intervalle]0,1[et on considère la fonction f suivante:

$$f(x) = x \text{ si } x \in]0, 1/2[\text{ et } f(x) = 1/2 \text{ si } x \in [1/2, 1[.$$

Alors $f \in H_0^1(0,1)$ et sa dérivée au sens des distributions vaut

$$f'(x) = 1 \text{ si } x \in]0, 1/2[\text{ et } f'(x) = 0 \text{ si } x \in [1/2, 1[.$$

4. Soit L > 0. $\left\{ \sqrt{\frac{2}{L}} \cos\left(\frac{k\pi x}{L}\right) | k \in \mathbb{N} \right\}$ est une base hilbertienne de $L^2(0, L)$.

Exercice 1 (Itérés d'un certain opérateur, 9 points). Soit $(H, \langle \rangle)$ un espace de Hilbert réel. On rappelle qu'une partie C de H est dite compacte si de toute suite d'éléments de C, on peut extraire une sous-suite convergente dans C. On rappelle qu'une partie compacte est notamment une partie fermée et bornée (i.e. inclus dans une boule fermée) de H. Soit $T: H \to H$ un opérateur linéaire continu vérifiant les propriétés suivantes:

- (i) $\forall (x, y) \in H \times H, \langle Tx, y \rangle = \langle x, Ty \rangle.$
- (ii) $\forall x \in H \setminus \{0\}, ||Tx|| < ||x||.$
- (iii) I T est compact (ici, I désigne l'opérateur identité de H dans H), au sens que $\overline{(I T)(B_f(0, 1)}$ (l'adhérence de l'image de la boule fermée unité par I T) est une partie compacte de H.
 - 1. Soit B une partie bornée de H. Montrer que $\overline{(I-T)(B)}$ est une partie compacte de H.

Soit $x \in H$, on définit la suite $(x_n)_{n \in \mathbb{N}}$ comme suit: $x_0 = x$ et $x_{n+1} = Tx_n$.

- 2. Montrer que la suite $(||x_{n+1}-x_n||)_{n\in\mathbb{N}}$ est décroissante. Qu'en déduire sur cette suite?
- 3. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est bornée. En déduire qu'il existe une sous suite $(x_{n_k+1}-x_{n_k})_{k\in\mathbb{N}}$ de $(x_{n+1}-x_n)_{n\in\mathbb{N}}$ qui est convergente. On note y sa limite.
- 4. Montrer que y vérifie ||y|| = ||Ty||. En déduire que y = 0.

- 5. Montrer que la suite $(x_{n+1} x_n)_{n \in \mathbb{N}}$ converge vers 0.
- 6. On suppose $x \in Im(I-T)$. Montrer que $x_n \to 0$ quand $n \to \infty$.
- 7. Montrer que $Ker(I-T) = Im(I-T)^{\perp}$. En déduire que Im(I-T) est dense dans H.
- 8. On suppose $x \in H$. Montrer que $x_n \to 0$ quand $n \to \infty$.

Exercice 2 (Un problème elliptique d'ordre 4,8 points). Soit I =]a, b[un intervalle ouvert, borné de \mathbb{R} . On cherche à résoudre le problème

$$u''''(x) = f(x)$$
 dans $[a, b]$, $u(a) = u'(a) = u(b) = u'(b) = 0$,

où f est une application continue sur [a, b]. Dans toute la suite, on introduit les espaces suivants:

$$\begin{split} H^2(I) &= \{u \in H^1(I) | u' \in H^1(I)\}, \\ H^2_0(I) &= \{u \in H^2(I) | u(a) = u'(a) = u(b) = u'(b) = 0\}, \\ H^3(I) &= \{u \in H^2(I) | u'' \in H^1(I)\}, \\ H^4(I) &= \{u \in H^2(I) | u''' \in H^1(I)\}. \end{split}$$

ainsi que les normes suivantes, toutes issues d'un produit scalaire facile à expliciter:

$$\begin{split} ||u||_{H^2(I)} &= \sqrt{||u||_{L^2(I)}^2 + ||u'||_{L^2(I)}^2 + ||u''||_{L^2(I)}^2}, \\ ||u||_{H^3(I)} &= \sqrt{||u||_{L^2(I)}^2 + ||u'||_{L^2(0,1)}^2 + ||u''||_{L^2(I)}^2 + ||u'''||_{L^2(I)}^2}, \\ ||u||_{H^4(I)} &= \sqrt{||u||_{L^2(I)}^2 + ||u'||_{L^2(I)}^2 + ||u''||_{L^2(I)}^2 + ||u'''||_{L^2(I)}^2}, \end{split}$$

On admet que les espaces $H^{i}(a,b)$, pour i=2,3,4, sont des espaces de Hilbert.

- 1. Montrer que si $u \in H^2(I)$, alors $u \in C^1([a,b])$. En déduire que l'espace $H^2_0(I)$ est bien défini. Montrer que $H^2_0(I)$ est fermé dans $H^2(I)$.
- 2. Montrer qu'il existe C>0 tel que pour tout $u\in H_0^2(I)$, on ait

$$||u'||_{L^2(I)} \leq C||u''||_{L^2(I)} \text{ et } ||u||_{L^2(I)} \leq C||u''||_{L^2(I)}.$$

3. Montrer que, si u est une solution de classe C^4 sur [a,b], alors pour toute fonction $v \in H_0^2(I)$ on a

$$\int_{I} u''(x)v''(x) \ dx = \int_{I} f(x)v(x) \ dx.$$

4. Montrer l'existence d'une unique fonction $u \in H_0^2(I)$ telle que

$$\int_{I} u''(x)v''(x) = \int_{I} f(x)v(x) \ dx, \qquad \forall v \in H_0^2(I) \ .$$

- 5. Exprimer le problème précédent comme un problème de minimisation.
- 6. On admet que $u \in H^3(I)$. Montrer que $u \in H^4(I)$, puis finalement que u est de classe C^4 et vérifie l'équation demandée.