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TD 1: Hilbert Spaces and Applications

Generalities

Exercise 1 (Generalized Parallelogram law). Let (H, 〈, 〉) be a Hilbert space. Let n ∈ [|2,+∞|[. Let (x1, . . . xn) ∈
Hn. Prove that

n∑
i=1

||xi||2 =
1

2n

∑
(ε1,...,εn)∈{−1,1}n

||ε1x1 + . . .+ εnxn||2.

Exercise 2. We consider R[X], endowed with the following scalar product: 〈P,Q〉 =
∫ 1

0
P (x)Q(x)dx.

1. Prove that this is indeed a scalar product.

2. Find a sequence of polynomials (Pn)n∈N that converges uniformly to exp on [0, 1].

3. Deduce that (Pn)n∈N → exp for the norm associated to the scalar product 〈, 〉.

4. What can we deduce on (R[X], 〈, 〉)?

Exercise 3 ( Fréchet-von Neumann-Jordan Theorem). Let E be a real Banach space endowed with a norm || · ||
that verifies the parallelogram law

||x+ y||2 + ||x− y||2 = 2
(
||x||2 + ||y||2

)
, ∀(x, y) ∈ E2.

We introduce
〈x, y〉 :=

1

2

(
||x+ y||2 − ||x||2 − ||y||2

)
, ∀(x, y) ∈ E2.

We propose to verify that this expression defines a scalar product that verifies moreover 〈x, x〉 = ||x||2.

1. Prove that 〈x, y〉 = 〈y, x〉, 〈−x, y〉 = −〈x, y〉, and 〈x, 2y〉 = 2〈x, y〉, ∀(x, y) ∈ E2.

2. Prove that 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, ∀(x, y, z) ∈ E3.

3. Prove that 〈λx, y〉 = λ〈x, y〉, ∀(λ, x, y) ∈ (R×E2). One may first treat the case λ ∈ N, then λ ∈ Z and λ ∈ Q.

4. Conclude.

Exercise 4 (Complexification of a real Hilbert space). Let (H, 〈, 〉) be a Hilbert space. We consider the product
linear space HC := H ×H, where we define, for (x, y) ∈ H ×H, i.(x, y) := (−y, x).

1. Find an addition and an extern multiplication law that enable to endow HC with structure of complex linear
space. Prove that the restriction of this structure for real numbers coincide with the usual structure of product
linear space on H ×H.

2. We identify H and H × {0}. Identifty iH to a real subspace of HC. Prove that as a real linear space, HC is
the direct sum of H and iH.

3. Let (z1, z2) ∈ HC ×HC, that we decompose in a unique way as zj = xj + iyj , j = 1, 2. We define

〈z1, z2〉HC := 〈x1, x2〉+ 〈y1, y2〉+ i (〈x1, y2〉 − 〈x2, y1〉) .

Prove that it is the unique hermitian product that extend the scalar product on H.

The space HC is called the complexified linear space of H.
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Projection on a closed convex set.

Exercise 5. We consider the space E = (C0([−1, 1],R), || · ||∞), and F be the linear subspace of odd functions
whose integral is zero on [0, 1]. Let ϕ : t ∈ [−1, 1] 7→ t.

1. Prove that F is closed.

2. Prove that d(ϕ, F ) > 1/2.

3. Does there exist some ψ ∈ F such that ||ϕ− ψ||∞ = 1/2?

4. Prove that d(ϕ, F ) = 1/2. Hint: try to “approximate” t− 1/2 by some appropriate functions in F .
Comment.

Exercise 6. We consider the space E = (C0([−1, 1],R), || · ||∞) and D the straight line generated by x 7→ 1 − x.
Prove that the distance between D and the function x 7→ 1 is reached at several points. Comment.

Exercise 7. Let (H, 〈, 〉) be a Hilbert space. Compute the projection on the closed unit ball.

Exercise 8. Let (H, 〈, 〉) be a Hilbert space. Prove that any closed convex set admits a unique element of minimal
norm.

Exercise 9. Let H = l2(N,R), endowed with the canonical scalar product. We introduce C := {(xn)n∈N|xn > 0}.
Prove that C is a closed convex set and compute the orthogonal projection on C.

Exercise 10 (Nested closed convex sets and projection, I). Let (Ci)i∈N∗ be a sequence of closed convex sets (H, 〈, 〉)
such that C1 ⊃ C2 . . . ⊃ Cn ⊃ . . .. We introduce C∞ =

⋂∞
n=1 Cn and we assume that C∞ 6= 0. We denote by Pi the

orthogonal projection on Ci.

1. Prove that C∞ is a closed convex set.Let P∞ denote the orthogonal projection on C∞.

2. We fix some h ∈ H, and we introduce ai = Pi(h). Prove that the sequence ||h − ai||i∈N∗ is increasing and
bounded from above.

3. Prove that ai → P∞(h) as i→∞. Hint: first prove that (ai)∈N is a Cauchy sequence by using question 2.

Exercise 11 (Nested closed convex sets and projection, II). Let (Ci)i∈N∗ be a sequence of nonempty closed convex
sets (H, 〈, 〉) such that C1 ⊂ C2 . . . ⊂ Cn ⊂ . . .. We introduce C∞ =

⋃∞
n=1 Cn and we assume that C∞ 6= 0.We

denote by Pi the orthogonal projection on Ci.

1. Prove that C∞ is a closed convex set.Let P∞ denote the orthogonal projection on C∞.

2. We fix some h ∈ H, and we introduce ai = Pi(h). Prove that ai → P∞(h) asi → ∞. One may begin with
proving that (ai)∈N is a Cauchy sequence.

Exercise 12 (Geometric Hahn-Banach Theorem, Hilbert version). Let C be a closed convex set of a real Hilbert
space (H, 〈, 〉).

1. Let x ∈ H. Prove that there exists f ∈ H ′ and α ∈ R such that

f(x) < α < f(y),∀y ∈ C.

What does it mean from a geometrical point of view?

2. Deduce that any proper closed convex set (i.e. different from H) can be written as an intersection of closed
half-spaces.

3. Prove that any proper linear subspace can be written as an intersection of closed hyperplanes.

4. Let Ĉ another closed convex set, assumed to be compact, such that C ∩ Ĉ = ∅. Prove that there exists f ∈ H ′
such that

sup
x∈C

f(x) < inf
y∈Ĉ

f(y).

What does it mean from a geometrical point of view?
Does this property still hold true if Ĉ is assumed to be only closed?
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Exercise 13 (Conditional expectation). Let (Ω,A, P ) be a probability space and G a sub σ−algebra of A. Let
X ∈ L1(Ω,R). Prove the following properties of the conditional expectation:

1. If Z is G−measurable and essentially bounded, then E[ZE[X|G]] = ZE[X|G].

2. E[E[X|G]] = E[X].

3. If H a sub σ−algebra G, alors E[E[X|G]|H] = E[X|H].

4. If Z is G−measurable and essentially bounded, then E[XZ|G] = ZE[X|G].

5. If X is G−measurable, then E[X|G] = X.

6. If ϕ is a convex function such that ϕ(X) is integrable, then E[ϕ(X)|G] > ϕ(E[X|G]).

Riesz Representation Theorem.

Exercise 14. Let E be the space of complex sequences (un)n∈N∗ that vanishes identically after some index, endowed
with the usual hermitian product.

1. Prove that the following application ϕ : u = (un) ∈ E 7→
∑∞
n=1

un

n is a linear continuous form on E.

2. Does there exists an element a ∈ E such that ϕ(u) = 〈a, u〉? What can we deduce on E?

Exercise 15 (Radon-Nykodym Theorem, weak version). Let (X, T ) be a measurable space, let µ and ν two finite
measures on X. We assume that for any measurable set A, we have ν(A) 6 µ(A).

1. Prove that for any non-negative measurable function h, we have
∫
X
h(x)dν(x) 6

∫
X
h(x)dµ(x).

2. Deduce that L2(µ) ⊂ L2(ν) and that for g ∈ L2(µ), we have ||g||L2(ν) 6 ||g||L2(µ).

3. Prove that ϕ : g ∈ L2(µ) 7→
∫
X
g(x)dν(x) is a linear continuous form.

4. Deduce that there exists a measurable function f such that ν is the density measure of f with respect to µ,
i.e. for any measurable set A, we have ν(A) =

∫
A
f(x)dµ(x).

Exercise 16 (Universality of the convolution). Let f a function from RN (N ∈ N∗) with real values. For x ∈ RN , we
introduce τxf : y 7→ f(y− x). An operator T acting on the function of L2(RN ) is said to be invariant by translation
if T (τxf) = τx(Tf).

We now consider T : L2(RN )→ Cb(RN ) a linear continuous operator, assumed to be invariant by translation.

1. Prove that f 7→ Tf(0) ∈ L2(RN )′.

2. Writing Tf(x) = τ−x(Tf)(0), deduce the existence of some g ∈ L2(RN ) such that Tf(x) = f ∗ g(x).

Exercise 17 (Adjoint operator). Let u be a continuous linear endomorphism on a real or complex Hilbert space
H, 〈, 〉, and let y ∈ H.

1. Prove that there exists a unique z ∈ H such that for any x ∈ H, we have 〈u(x), y〉 = 〈x, z〉.

We consider u∗ : y 7→ z for z defined as in the previous question. u∗ is called the adjoint operator of u.

2. Prove that u∗ is a linear continuous operator such that |||u∗||| 6 |||u|||.

3. Prove that u∗∗ = u.

4. Prove that u ∈ Lc(U) 7→ u∗ ∈ Lc(U) is anti-linear, continous, bijective with continuous inverse.

5. Let v ∈ Lc(H). Prove that (u ◦ v)∗ = v∗ ◦ u∗.

6. Prove that |||u∗||| = |||u|||.

7. Prove that |||u∗ ◦ u||| = |||u|||2 = |||u ◦ u∗|||.

8. Prove that Ker(u∗) = Im(u)⊥. Describe also Ker(u∗)⊥.
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Exercise 18 (Computation of adjoint operators). 1. We consider H = l2(N,C) and (an)n∈N a bounded sequence
of complex numbers. We consider T : (un)n∈N 7→ (anun)n∈N. Prove that T is linear continuous from H to H
and compute its adjoint operator.

2. We consider H = l2(N,C). We consider S : (un)n∈N = (u0, u1, . . .) 7→ (vn)n∈N := (0, u0, u1, . . .). Prove that S
is linear continuous from H to H and compute its adjoint operator.

3. We consider H = L2([0, 1], C) and K : [0, 1] × [0, 1] → C a continuous function. We consider U : f ∈ H 7→(
x 7→

∫ 1

0
K(x, y)f(y)dy

)
. Prove that U is linear continuous from H to H and compute its adjoint operator.

Exercise 19 (Canonical Gelfand triple). Let (Ω, T , µ) be a measure space.
We consider H = L2(Ω,R). Let m be some measurable function with real values such that there exists

δ > 0 such that for any x ∈ Ω, one has m(x) > δ, and m(x) < ∞ almost everywhere. We consider V :=
{f measurable function |

∫
Ω
mf2dµ <∞}.

1. Prove that V ⊂ H with continuous inclusion, and that V is dense in H.

2. Identify V ′ with a simple space.

Orthogonality and Hilbert basis.

Exercise 20. Let E be the space of complex sequences (un)n∈N∗ that vanishes identically after some index, endowed
with the usual hermitien product. We consider ϕ : u = (un) ∈ E 7→

∑∞
n=1

un

n , which is a linear continuous form on
E.

1. Prove that Ker(ϕ) is a close hyperplane, and that Ker(ϕ)⊥ = {0}.

2. More generally, if (H, 〈, 〉) is a (real or complex) non-complete pre-Hilbert space, prove that there exists some
closed hyperplane whose orthogonal is reduced to {0}. Hint: we admit that H can be included in a Hilbert
space (Ĥ, 〈, 〉), and that H is dense in Ĥ.

Exercise 21. Let H = l2(N,C). We fix some n ∈ N∗ and we consider M = {(xk)k∈N ∈ H|
∑n
k=0M = 0}.

1. Prove that M is a closed subspace of H.

2. Find the orthogonal complement of M .

3. Compute the distance between (1, 0, 0, . . .) and M .

Exercise 22 (Characterization of orthogonal projections). Let (H, 〈, 〉) be a Hilbert space and p ∈ Lc(H) a projection
on H, i.e. a linear continuous operator verifying p ◦ p = p.

1. Prove that H can be written as the direct sum of Range(p) and Ker(p).

2. Prove that p is an orthogonal projection ⇔ p is 1-Lipschitz. Hint: for ⇐, make a picture and consider some
x ∈ (Ker(p))⊥.

Exercise 23. Let E = C0([0, 1],R), endowed with the L2-scalar product. Let C = {f ∈ E|f(0) = 0}. Prove that
F⊥ = {0}. Comment.

Exercise 24. let (H, 〈, 〉) be a separable Hilbert space. Prove that any orthonormal family can be extended as a
Hilbert basis of H.

Exercise 25. 1. Compute

min
a,b,c

∫ 1

−1

|x3 − ax2 − bx− c|2dx,

and find

max

∫ 1

−1

x3g(x)dx

amongst all g ∈ L2(−1, 1) satisfying the constraints∫ 1

−1

g(x)dx =

∫ 1

−1

xg(x)dx =

∫ 1

−1

g(x)dx = 0;

∫ 1

−1

|g(x)|2dx = 1.
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2. Let (H, 〈, 〉) a Hilbert space. let x0 ∈ H andM a closed subspace of H, find a maximization problem associated
to the minimization problem minx∈M ||x0 − x|| as in the previous question.

Exercise 26. Let H = L2(R), and V = {f ∈ C∞c (R)/
∫
R f(t)dt = 0}.

Recall that C∞c (R) is the set of C∞ functions with compact support (i.e. vanishing identically outside of their
support), that L2(R) is a Hilbert space for the usual scalar product and that C∞c (R) is dense in L2(R).

1. let φ ∈ C∞c (R) such that
∫
R φ(t)dt = 1. Let

∀(n, t) ∈ N∗ × R, φn(t) =
1

n
φ
( t
n

)
.

(a) Prove that
φn →

n→+∞
0 in H.

(b) Let g ∈ C∞c (R). Let

h = g −
(∫

R
g(t)dt

)
φn.

Prove that h is in the subspace V .

2. Deduce that
V ⊥ ⊂ C∞c (R)⊥.

3. Conclude that V is dense is H.

Exercise 27 (Shannon Sampling Theorem). Let

BL2 = {f ∈ L2(R)|f̂ = 0 on R \ [−1/2, 1/2]}.

1. Prove that BL2 is a closed subspace of L2. We will now consider that BL2 is a Hilbert space for the L2 scalar
product.

2. Prove that any f ∈ BL2 is continuous and that ||f ||∞ 6 ||f ||2.

3. Compute the Fourier transform of the characteristic function of [−1/2, 1/2]. We will call this function sinc.

4. Let τxf : y 7→ f(y − x). Prove that {τk(sinc)|k ∈ Z} is a Hilbert basis of BL2. Give an interpretation of this
result. In this case, what gives the Parseval identity?

5. We decompose f ∈ BL2 as f(x) =
∑
k∈Z fkτk(sinc)(x). Prove that the convergence is uniform.

6. Prove that any f ∈ BL2 is en entire function.

Exercise 28 (Orthogonal polynomials). Let I be an interval of R. We call weight function a measurable function
ρ, positive, such that

∫
I
|x|nρ(x) <∞, ∀n ∈ N. We denote by L2(I, ρ) the space of square integrable functions with

density measure ρ, endowed with the canonical scalar product

〈f, g〉 :=

∫
I

ρ(x)f(x)ḡ(x)dx.

Recall that it is a Hilbert space.

1. Prove that L2(I, ρ) contains all polynomials.

2. Prove that there exists a unique unitary family of orthogonal polynomials (Pn)n∈N such that for every n ∈ N,
deg(Pn) = n.

3. Prove that the zeros of Pn are distinct, reals, and all in the interval I. One can introduce the polynomials
S(x) =

∏m
i=1(x− xi), where xi are the points in I where Pn changes sign.

4. Prove that for any n > 1 we have the following induction formula Pn+1 = (X −An)Pn −BnPn−1, where

An =
〈XPn, Pn〉
〈Pn, Pn〉

and Bn =
〈XPn, Pn−1〉
〈Pn−1, Pn−1〉

.
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5. Prove by induction that for any n ∈ N, we have

P ′n+1(x)Pn(x)− P ′n(x)Pn+1(x) > 0.

Deduce that between (in a strict sense) each root of Pn, there is exactly one root of Pn+1.

6. Example (Hermite polynomials): let I = R and ρ(x) = e−x
2

(it is a weight function).

(a) Compute P0, P1, P2, P3.

(b) Prove that for any n ∈ N∗, we have

Pn(X) =
(−1)n

2n
ex

2

(
dn

dxn
e−x

2

)
.

(c) Prove that ||Pn||2 = π1/4
√
n!.

Let ξ ∈ R, n ∈ N and

∀x ∈ R, P ξn(x) :=

n∑
k=0

(−iξx)k

k!
.

(d) Prove that ∀x ∈ R, P ξn(x) →
n→+∞

e−iξx.

(e) Prove that ∀(n, x) ∈ N× R, |P ξn(x)| ≤ e|ξx|.

(f) Let f ∈ L2(R). We assume that : ∀n ∈ N, 〈Pn, f〉 = 0. Let g(x) = e−
x2

2 f(x). Prove that g ∈ L1(R).

(g) Prove that

∀ξ ∈ R, ĝ(ξ) =

∫
R
e−iξxg(x)dx = 0.

Hint. One can compute the integrals
∫
R P

ξ
n(x)g(x)dx.

(h) Deduce that f identically vanishes.

(i) Give a Hilbert basis of L2(R, e−x2

).

7. Deduce from the above example a Hilbert basis of L2(R).

Other applications.

Exercise 29. letH = `2(N,R). Recall that H is a Hilbert space for the scalar product

∀(x, y) ∈ H2, < x, y >H=

+∞∑
n=0

xnyn.

Are the following bilinear forms continuous and coercive?

(i) a(x, y) =
+∞∑
n=0

xnyn+1, (ii) b(x, y) =
+∞∑
n=0

xn+1yn+1,

(iii) c(x, y) = x0y0 +
+∞∑
n=0

(xn+1 − xn)(yn+1 − yn), (iv) d(x, y) =
+∞∑
n=0

(
xn+1yn+1 + 2xnyn+1 + 2xnyn

)
.

Exercise 30 (Babuska-Lax-Milgram Theorem, 1971). We consider two real Hilbert spaces (U, 〈, 〉) and (V, (|)), and
a : U×V a bilinear continuous form, i.e. ∃β > 0 such that for all (u, v) ∈ U×V , we have |a(u, v)| 6 β||u||U ||v||V .We
assume moreover that a is weakly coercive in the following sense: there exists α > 0 such that sup||v||=1 |a(u, v)| >
c||u|| and for all v 6= 0 ∈ H, one has sup||u||=1 |a(u, v)| > 0. Let l ∈ V ′.

Prove that there exists a unique u ∈ U such that a(u, v) = l(v),∀v ∈ V .
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Exercise 31 (Schrödinger equation). Let L > 0. We consider the following equation, called Schrödinger equation
with Dirichlet boundary conditions

i∂tu+ ∂xxu = 0 in ]0,+∞[×]0, L[,

u(0, x) = u0(x) ∈ C2[0, L],

u(t, x = 0) = u(t, x = L) = 0 on [0,∞[.

(1)

A solution (1) is a function u ∈ C1([0, T ] × [0, L] such that for every t > 0, we have x 7→ u(t, x) ∈ C2([0, L]),
verifying (1).

1. Find the solutions of this equation that have separated variables.

2. Prove the existence of a solution.

3. Prove that any solution u to (1) is such that the energy is conserved:∫ L

0

u2(t)dt =

∫ L

0

u2
0(x)dx.

One can multiply the first line of (1) by ū, integrate on [0, L], then do an integration by parts.

4. Deduce the uniqueness of the solution.

5. Prove that u is in fact defined in R× [0, L]. This property is called reversibility in time.

Exercise 32 (2D heat equation). Let L1 > 0 and L2 > 0. We consider the following equation, called heat equation
on a rectangle with Dirichlet boundary conditions

∂tu− ∂xxu− ∂yyu = 0 in ]0,+∞[×]0, L1[×]0, L1[,

lim
t→0+

u(0, x) = u0(x) ∈ L2([0, L1]× [0, L2]),

u(t, 0, y) = u(t, L1, y) = 0 in ]0,∞[×[0, L2],

u(t, x, 0) = u(t, x, L2) = 0 in ]0,∞[×[0, L2].

Mimicking what was done during the course, prove that there exists a unique solution (in appropriate class) of
this equation. Hint: prove that functions with separated variables x and y are dense in L2(]0, L1[×]0, L2]).

Exercise 33 (Orthonormal basis of Haar wavelets). Let

ψ(x) :


x ∈ [0, 1/2[ 7→ 1

x ∈ [−1/2, 1] 7→ −1

x 6∈ [0, 1] 7→ 0.

For j ∈ Z and k ∈ Z, we introduce

ψj,k(x) :=
1

2
j
2

ψ(
x− 2jk

2j
).

The goal of this exercise is to prove that the ψj,k form a Hilbert basis of L2(R). In what follows, Wj denotes the
space of functions of L2(R) that are constants on intervals of the form 2j + z with z ∈ Z and of null mean value.

1. Prove that the ψj,k form an orthonormal family of L2(R).

2. Find a base of Wj .

3. Prove that the functions in L1(R) ∩ L2(R) with null mean value are dense in L2(R).

Hint: for f ∈ L1(R) ∩ L2(R), one can consider, for R > 0, the function f −
∫
R f

R χ[0,R].

4. Deduce that the ψj,k form an orthonormal basis of L2(R).
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