TD 2: Sobolev spaces and $1 D$ linear elliptic problems

Exercise 1. 1. Let $I=]-1,1\left[\right.$. Are the following functions in the space $H^{1}(I)$?
(i) $a(x)=|x|$, (ii) $b(x)=0$, if $x \leq 0,1$ otherwise, (iii) $c(x)=x^{\alpha}$ if $x \geq 0,0$ otherwise, where $\alpha \in \mathbb{R}$.
2. Let $I=] 0,1\left[\right.$, and $1 \leq p \leq+\infty$. For which p are the following functions in the space $W^{1, p}(I)$?
(i) $d(x)=|2 x-1|$, (ii) $e(x)=x^{\beta}$, where $\beta \in \mathbb{R}$, (iii) $f(x)=|\ln (x)|^{\gamma}$, where $\gamma \in \mathbb{R}$.

Exercise 2. Let I and J be two open intervals of \mathbb{R} and $p \in[1, \infty]$. Prove that $J \subset I \Rightarrow W^{1, p}(I) \subset W^{1, p}(J)$.
Exercise 3 (A characterization of $H^{1}(I)$). Let $\left.I:=\right] a, b[$ be an open interval of \mathbb{R} with $-\infty<a<b<+\infty$. For any $0<\alpha<(b-a) / 2$, we introduce $\left.I_{\alpha}:=\right] a+\alpha ; b-\alpha[$.

1. (i) Prove that if $u \in \mathcal{C}^{1}([a ; b])$, then, for any α as above,

$$
|u(x+h)-u(x)|^{2} \leq h^{2} \int_{0}^{1}\left|u^{\prime}(x+s h)\right|^{2} d s \quad \forall x \in I_{\alpha}, h \in \mathbb{R},|h|<\alpha
$$

(ii) Deduce that for any function $u \in H^{1}(I)$, any interval I_{α} and any $h \in \mathbb{R}$ such that $|h|<\alpha$, we have

$$
\left\|\frac{\tau_{h} u-u}{h}\right\|_{L^{2}\left(I_{\alpha}\right)} \leq\left\|u^{\prime}\right\|_{L^{2}(I)}
$$

where $\tau_{h} u(x)=u(x+h)$.
2. Conversely, we assume that $u \in L^{2}(I)$ is such there exists a constant $C>0$ such that for any interval I_{α} and for any $h \in \mathbb{R}$ such that $|h|<\alpha$, we have

$$
\left\|\frac{\tau_{h} u-u}{h}\right\|_{L^{2}\left(I_{\alpha}\right)} \leq C
$$

(i) Let $\phi \in \mathcal{C}_{c}^{1}(I)$ and $\alpha>0$ such that ϕ is supported in I_{α}. Prove that for $|h|<\alpha$, we have

$$
\int_{I_{\alpha}}(u(x+h)-u(x)) \phi(x) d x=\int_{I} u(x)(\phi(x-h)-\phi(x)) d x
$$

Deduce that

$$
\left|\int_{I} u(x) \phi^{\prime}(x) d x\right| \leq C\|\phi\|_{2}
$$

We denote $T(\phi)=\int_{I} u(x) \phi^{\prime}(x) d x$ for $\phi \in \mathcal{C}_{c}^{1}(I)$.
(ii) Let $\phi \in L^{2}(I)$. Prove that if $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ is a sequence of $\mathcal{C}_{c}^{1}(I)$ converging to ϕ, then the sequence $\left(T\left(\phi_{n}\right)\right)_{n \in \mathbb{N}}$ converges.
(iii) By using the density of $\mathcal{C}_{c}^{1}(I)$ in $L^{2}(I)$, prove that there exists a unique continuous linear form Φ on $L^{2}(I)$ such that

$$
\Phi(v)=\int_{I} u(x) v^{\prime}(x) d x \quad \forall v \in \mathcal{C}_{c}^{1}(I)
$$

(iv) Deduce that $u \in H^{1}$.

Exercise 4. Let I be an open interval of \mathbb{R}, let $p>1$ and p^{\prime} its conjugated exponent. Prove that for any $u \in W^{1, p}(I)$, there exists $C>0$ such that $\forall(x, y) \in \bar{I}^{2}$, we have

$$
|u(x)-u(y)| \leqslant C|x-y|^{\frac{1}{p^{\prime}}}
$$

(such a function is called a $1 / p^{\prime}-\mathrm{Höld}$ der function.)

Exercise 5. Let I be an open interval of \mathbb{R}.

1. Prove that if $u \in W^{1, \infty}(I)$ then u is bounded and Lipschitz.
2. Conversely, assume that u is bounded and Lipschitz. prove that $u \in W^{1, \infty}(\mathbb{R})$. Hint: one may use without proof that any Lipschitz function is differentiable almost everywhere, and study its derivative.

Exercise 6 (Dual space of H_{0}^{1} on a bounded interval). We consider two real numbers $a<b$ and $\left.I=\right] a, b[$. We identify $L^{2}(a, b)$ with its dual. We endow $H_{0}^{1}(a, b)$ with the norm $\|u\|_{H_{0}^{1}(a, b)}=\left\|u^{\prime}\right\|_{L^{2}(a, b)}$.

1. Prove that $H_{0}^{1}(a, b) \subset L^{2}(a, b)$ with continuous inclusion, and that $H_{0}^{1}(a, b)$ is dense in $L^{2}(a, b)$.
2. We denote by $H^{-1}(a, b)$ the dual space of $H_{0}^{1}(a, b)$ with pivot space $L^{2}(a, b)$. Prove that for any $F \in H^{-1}(a, b)$, there exists a unique (almost everywhere) $f \in L^{2}(a, b)$, called the representant of F, such that $F(v)=$ $\int_{a}^{b} f v^{\prime}, \forall v \in H_{0}^{1}(a, b)$. Prove that $\left|\|F \mid\|=\|f\|_{L^{2}(a, b)}\right.$.
3. We endow $H^{-1}(a, b)$ with the following scalar product: if f_{1} is the representant of F_{1} and f_{2} the one of F_{2}, then $\left\langle F_{1}, F_{2}\right\rangle_{H^{-1}(a, b)}=\int_{a}^{b} f_{1} f_{2}$. Prove that $L^{2}(a, b) \subset H^{-1}(a, b)$ with continuous injection, and that $L^{2}(a, b)$ is dense in $H^{-1}(a, b)$.
Exercise 7. We consider the space $H^{1}(0, \infty)$.
4. Prove that for any $v \in H^{1}(0, \infty)$, we have $v(x) \rightarrow 0$ as $x \rightarrow \infty$. Hint: one can apply the Cauchy criterium for functions at $+\infty$.
5. We consider the application $v \in H^{1}(0, \infty) \mapsto\left\|v^{\prime}\right\|_{L^{2}(0, \infty)}$. Prove that it is a norm. Is it equivalent to the usual H^{1}-norm?

Exercise 8 (Poincaré and Poincaré-Wirtinger inequalities). We consider $a<b$ two real numbers, $I=] a, b[$, and $p \in[1, \infty]$. For $u \in L^{1}(a, b)$, we introduce $m v(u):=\frac{1}{b-a} \int_{a}^{b} u(t) d t$.

1. For $p=2$, prove the following Poincaré inequality: for any $u \in H_{0}^{1}(0, \pi)$, we have

$$
\|u\|_{L^{2}(0, \pi)} \leqslant\left\|u^{\prime}\right\|_{L^{2}(0, \pi)}
$$

One can consider a well-chosen Hilbert basis of $L^{2}(0, \pi)$. Prove that this inequality is optimal in the sense that there exist some functions for which this inequality is an equality, and find all functions verifying this equality.
2. Prove a similar result on the interval $I=] a, b[$.
3. Prove the Poincaré-Wirtinger inequality: there exists $C>0$ such that for any $u \in W^{1, p}(I)$, we have

$$
\|u-v m(u)\|_{L^{p}(a, b)} \leqslant C\left\|u^{\prime}\right\|_{L^{p}(a, b)}
$$

Exercise 9 (Nash inequality, 1958). We want to prove the Nash inequality: there exists $C>0$ such that for any $f \in L^{1}(\mathbb{R}) \cap H^{1}(\mathbb{R})$, we have

$$
\|f\|_{L^{2}(\mathbb{R})}^{3} \leqslant C\|f\|_{L^{1}(\mathbb{R})}\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2}
$$

We denote by \widehat{f} the Fourier transform of f. We consider some $f \in L^{1}(\mathbb{R}) \cap H^{1}(\mathbb{R})$.

1. Prove that $\widehat{f} \in L^{\infty}(\mathbb{R})$ and that

$$
\|\widehat{f}\|_{\infty} \leqslant\|f\|_{L^{1}(\mathbb{R})}
$$

2. Express $\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2}$ by using \widehat{f}.
3. Let $R>0$. Prove that

$$
\|\widehat{f}\|_{L^{2}(\mathbb{R})}^{2} \leqslant 2 R\|\widehat{f}\|_{L^{\infty}(\mathbb{R})}+\frac{1}{R^{2}}\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2}
$$

4. By choosing an adequate $R>0$, conclude. Hint: one can choose R as a function of $\|f\|_{L^{1}(\mathbb{R})}$ and $\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}$ to some power, and adjust the powers in an adequate way.

Exercise 10. Let $p \geqslant 1$. We wonder if it is possible to prove the existence of some $q \geqslant 1$ and some $C>0$ such that for any $f \in C_{0}^{\infty}(\mathbb{R})$, we have

$$
\|f\|_{L^{q}(\mathbb{R})} \leqslant C\left\|f^{\prime}\right\|_{L^{q}(\mathbb{R})}
$$

Assume that this inequality is true.
Apply this inequality to $g(x)=f(\lambda x)$, for some $\lambda>0$. Deduce a necessary condition on the value of q. Conclude.
Exercise 11. Let $\varepsilon>0$. We consider $f_{\varepsilon}(t):=\sqrt{t^{2}+\varepsilon^{2}}-\varepsilon$ for $t \geqslant 0$, and $f_{\varepsilon}(t)=0$ otherwise.

1. Prove that $f_{\varepsilon} \in C^{1}(\mathbb{R})$ and $f(0)=0$.

Let I an open interval of \mathbb{R} and let $u \in H^{1}(I)$.
2. Prove that $f_{\varepsilon}(u) \rightarrow u^{+}$as $\varepsilon \rightarrow 0$, where $u^{+}=\max (u, 0)$.
3. Using the definition of the weak derivative of $f_{\varepsilon}(u)$, prove that $u^{+} \in H^{1}(I)$ and that $\left(u^{+}\right)^{\prime}=1_{u>0} u$.
4. Deduce that $|u| \in H^{1}(I)$ and compute the weak derivative of $|u|$ as a function of the weak derivative of u.

Exercise 12. Let $L_{\text {per }}^{2}$ be the set of measurable functions from \mathbb{R} into $\mathbb{C}, 2 \pi$-periodic and square-root integrable on $(0,2 \pi)$. We consider the Sobolev space $H_{\text {per }}^{1}$ of the functions in $L_{\text {per }}^{2}$ that admit a weak derivative in $L_{\text {per }}^{2} . H_{\text {per }}^{1}$ is then a Hilbert space for the scalar product

$$
\forall(f, g) \in\left(H_{\mathrm{per}}^{1}\right)^{2},<f, g>_{H_{\mathrm{per}}^{1}}=<f, g>_{L_{\mathrm{per}}^{2}}+<f^{\prime}, g^{\prime}>_{L_{\mathrm{per}}^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f(t) \overline{g(t)}+f^{\prime}(t) \overline{g^{\prime}(t)}\right) d t
$$

We remind that the family $\left\{e^{n}\right\}_{n \in \mathbb{Z}}$ (defined by $e^{n}(t)=e^{i n t}$ for any $t \in \mathbb{R}$) is a Hilbert basis of $L_{\text {per }}^{2}$. We define the Fourier coefficients $c_{n}(f)$ as

$$
\forall n \in \mathbb{Z}, c_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t
$$

1. Let $f \in H_{\text {per }}^{1}$. We remind that f admits a representant that is a continuous function on \mathbb{R} and verifies

$$
\forall\left(x_{0}, x\right) \in \mathbb{R}^{2}, f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} f^{\prime}(t) d t
$$

a. Let \mathcal{P} be the space of the 2π-periodic trigonometric polynomials. prove that there exists a sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{P} such that

$$
P_{n} \underset{n \rightarrow+\infty}{\rightarrow} f^{\prime} \text { in } L_{\text {per }}^{2}
$$

b. Deduce that there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{P} such that

$$
f_{n} \underset{n \rightarrow+\infty}{\rightarrow} f \text { in } H_{\mathrm{per}}^{1}
$$

c. Conclude that \mathcal{P} is dense in $H_{\text {per }}^{1}$.
2. Let $f \in L_{\text {per }}^{2}$.
a. We assume that f is in \mathcal{P}. Prove that

$$
\forall n \in \mathbb{Z}, c_{n}\left(f^{\prime}\right)=i n c_{n}(f)
$$

b. Deduce that this formula remains true if f is in H_{per}^{1}.
3. Let $H=\left\{f \in L_{\mathrm{per}}^{2}, \sum_{n=-\infty}^{+\infty} n^{2}\left|c_{n}(f)\right|^{2}<+\infty\right\}$. We endow H with the following scalar product

$$
\forall(f, g) \in H^{2},<f, g>_{H}=\sum_{n=-\infty}^{+\infty}\left(1+n^{2}\right) c_{n}(f) \overline{c_{n}(g)}
$$

a. Verify that H is a Hilbert space.
b. We are going to prove that $H_{\text {per }}^{1}$ and H are equal.
(i) Prove that $H_{\text {per }}^{1}$ is a closed subspace of H, and that

$$
\forall(f, g) \in\left(H_{\text {per }}^{1}\right)^{2},<f, g>_{H_{\text {per }}^{1}}=<f, g>_{H}
$$

Hint: one may use the sequential characterization of closed sets.
(ii) Prove that the orthogonal of H_{per}^{1} for the scalar product $<,>_{H}$ is equal to $\{0\}$.
(iii) Conclude.

Exercise 13. Let $f \in L^{2}(0,1)$ and $a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime}+\left(\int_{0}^{1} u\right)\left(\int_{0}^{1} v\right)$.

1. Prove that there exists a unique $u \in H^{1}(0,1)$ such that $a(u, v)=\int_{0}^{1} f v, \forall v \in H^{1}(0,1)$.
2. Prove that $u^{\prime} \in H^{1}(0,1)$ and find an interpretation of the differential problem that is solved (i.e. find the differential equation and the boundary conditions satisfied by u).

Exercise 14. Let $V=\left\{u \in H^{1}(0,1) \mid u(1 / 2)=0\right\}$.

1. Prove that V is a closed subspace of $H^{1}(0,1)$ and that $v \in V \mapsto\left\|v^{\prime}\right\|_{L^{2}(0,1)}$ is a norm on V equivalent to the H^{1}-norm.
2. Prove that there exists a unique $u \in V$ such that $\int_{0}^{1} u^{\prime} v^{\prime}=v(0), \forall v \in V$.
3. Find an interpretation of the differential problem that is solved, and determine explicitly u. Do we have $u^{\prime} \in H^{1}(0,1) ?$

Exercise 15. We consider the following Dirichlet problem on $] a, b[$

$$
\left.-u^{\prime \prime}(x)+u(x)=f(x) \text { in }\right] a, b[, \quad u(a)=0, u(b)=0
$$

where $f \in L^{\infty}(a, b)$.

1. Recall the results given in the course. Prove that $u^{\prime} \in H^{1}(a, b)$.
2. Let $G \in C^{1}(\mathbb{R})$ such that $G=0$ on \mathbb{R}^{-}and G is strictly increasing on \mathbb{R}^{+}. We denote $K=\|f\|_{\infty}$. Prove that $G(u-K) \in H_{0}^{1}(I)$.
3. Deduce that $\|u\|_{L^{\infty}(a, b)} \leqslant\|f\|_{L^{\infty}(a, b)}$.

Exercise 16 (Sturm-Liouville problem with Dirichlet boundary conditions). Let $I=] 0,1[$. We consider p and q two functions in $L^{\infty}(I)$. We assume that there exists some $\alpha>0$ such that

$$
\text { a.e.in } x \in I, p(x) \geq \alpha \text { and } q(x) \geq 0
$$

1. We consider

$$
\forall(u, v) \in H_{0}^{1}(I)^{2}, a(u, v)=\int_{0}^{1}\left(p(t) u^{\prime}(t) v^{\prime}(t)+q(t) u(t) v(t)\right) d t
$$

a. Prove that the bilinear form a is continuous and coercive on $H_{0}^{1}(I)$.
b. Let $f \in L^{2}(I)$. Deduce that there exists $u \in H_{0}^{1}(I)$ such that

$$
\forall v \in H_{0}^{1}(I), a(u, v)=\int_{0}^{1} f(t) v(t) d t
$$

2.a. Prove that the function $p u^{\prime}$ is in the space $H^{1}(I)$ and that

$$
-\left(p u^{\prime}\right)^{\prime}+q u=f
$$

b. We consider some v in $H_{0}^{1}(I)$, such that $p v^{\prime}$ is in the space $H^{1}(I)$ and verifies

$$
-\left(p v^{\prime}\right)^{\prime}+q v=f
$$

Prove that

$$
u=v
$$

3. We assume moreover that p is of class \mathcal{C}^{1} on I, and that q and f are continuous on I. Prove that the function u is of class \mathcal{C}^{2} on I, and verifies the equation

$$
-p u^{\prime \prime}-p^{\prime} u^{\prime}+q u=f, u(0)=u(1)=0
$$

Exercise 17 (Neumann problem). Let $I=] 0,1\left[\right.$. We consider p and q two functions in $L^{\infty}(I)$. We assume that there exists some $\alpha>0$ such that

$$
\text { a.e.in } x \in I, p(x) \geq \alpha \text { and } q(x) \geq 0
$$

1. We consider

$$
\forall(u, v) \in H^{1}(I)^{2}, a(u, v)=\int_{0}^{1}\left(p(t) u^{\prime}(t) v^{\prime}(t)+q(t) u(t) v(t)\right) d t
$$

a. Prove that the bilinear form a is continuous and coercive on $H_{0}^{1}(I)$.
b. Let $f \in L^{2}(I)$. Deduce that there exists a unique $u \in H^{1}(I)$ such that

$$
\forall v \in H^{1}(I), a(u, v)=\int_{0}^{1} f(t) v(t) d t
$$

2.a.Prove that $p u^{\prime}$ is in the space $H_{0}^{1}(I)$ and that

$$
-\left(p u^{\prime}\right)^{\prime}+q u=f
$$

b. We consider some v in $H^{1}(I)$, such that $p v^{\prime}$ is in the space $H_{0}^{1}(I)$ and verifies

$$
-\left(p v^{\prime}\right)^{\prime}+q v=f
$$

Prove that

$$
u=v
$$

3. We assume moreover that p is of class \mathcal{C}^{1} on I, and that q and f are continuous on I. Prove that the function u is of class \mathcal{C}^{2} on I, and verifies the equation

$$
-p u^{\prime \prime}-p^{\prime} u^{\prime}+q u=f, u^{\prime}(0)=u^{\prime}(1)=0
$$

Exercise 18 (Non-homogeneous Neumann boundary conditions). Let $I=] a, b[$ be a bounded open interval of \mathbb{R}. We want to solve

$$
\left.-u^{\prime \prime}(x)+u(x)=f(x) \text { in }\right] a, b\left[, \quad u^{\prime}(a)=\alpha, u^{\prime}(b)=\beta\right.
$$

where f is a continuous function on $[a, b]$ and $(\alpha, \beta) \in \mathbb{R}^{2}$.

1. Prove that, if u is a solution of class \mathcal{C}^{2}, then for any function in $v \in H^{1}(I)$ we have

$$
\int_{I} u^{\prime}(x) v^{\prime}(x)+u(x) v(x) d x=\int_{I} f(x) v(x) d x+\beta v(b)-\alpha v(a)
$$

2. Prove that the linear form $\Phi(v)=\int_{I} f(x) v(x) d x+\beta v(b)-\alpha v(a)$ is continuous on $H^{1}(I)$.
3. Deduce the existence of a unique function $u \in H^{1}(I)$ such that

$$
\int_{I} u^{\prime}(x) v^{\prime}(x)+u(x) v(x) d x=\int_{I} f(x) v(x) d x+\beta v(b)-\alpha v(a) \quad \forall v \in H^{1}(I)
$$

4. Prove finally that u is of class \mathcal{C}^{2} and verifies the desired equation.
