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TD 2: Sobolev spaces and 1D linear elliptic problems
Exercise 1. 1. Let I =]− 1, 1[. Are the following functions in the space H1(I) ?

(i) a(x) = |x|, (ii) b(x) = 0, if x ≤ 0, 1 otherwise, (iii) c(x) = xα if x ≥ 0, 0 otherwise, where α ∈ R.

2. Let I =]0, 1[, and 1 ≤ p ≤ +∞. For which p are the following functions in the space W 1,p(I) ?

(i) d(x) = |2x− 1|, (ii) e(x) = xβ , where β ∈ R, (iii) f(x) = | ln(x)|γ , where γ ∈ R.

Exercise 2. Let I and J be two open intervals of R and p ∈ [1,∞]. Prove that J ⊂ I ⇒W 1,p(I) ⊂W 1,p(J).

Exercise 3 (A characterization of H1(I)). Let I :=]a, b[ be an open interval of R with −∞ < a < b < +∞. For
any 0 < α < (b− a)/2, we introduce Iα :=]a+ α; b− α[.

1. (i) Prove that if u ∈ C1([a; b]), then, for any α as above,

|u(x+ h)− u(x)|2 ≤ h2
∫ 1

0

|u′(x+ sh)|2ds ∀x ∈ Iα, h ∈ R, |h| < α .

(ii) Deduce that for any function u ∈ H1(I), any interval Iα and any h ∈ R such that |h| < α, we have∥∥∥∥ τhu− uh

∥∥∥∥
L2(Iα)

≤ ‖u′‖L2(I),

where τhu(x) = u(x+ h).

2. Conversely, we assume that u ∈ L2(I) is such there exists a constant C > 0 such that for any interval Iα and
for any h ∈ R such that |h| < α, we have ∥∥∥∥ τhu− uh

∥∥∥∥
L2(Iα)

≤ C .

(i) Let φ ∈ C1c (I) and α > 0 such that φ is supported in Iα. Prove that for |h| < α, we have∫
Iα

(u(x+ h)− u(x))φ(x)dx =

∫
I

u(x)(φ(x− h)− φ(x))dx .

Deduce that ∣∣∣∣∫
I

u(x)φ′(x)dx

∣∣∣∣ ≤ C‖φ‖2 .
We denote T (φ) =

∫
I

u(x)φ′(x)dx for φ ∈ C1c (I).

(ii) Let φ ∈ L2(I). Prove that if (φn)n∈N is a sequence of C1c (I) converging to φ, then the sequence (T (φn))n∈N
converges.

(iii) By using the density of C1c (I) in L2(I), prove that there exists a unique continuous linear form Φ on L2(I)
such that

Φ(v) =

∫
I

u(x)v′(x)dx ∀v ∈ C1c (I) .

(iv) Deduce that u ∈ H1.

Exercise 4. Let I be an open interval of R, let p > 1 and p′ its conjugated exponent. Prove that for any u ∈W 1,p(I),

there exists C > 0 such that ∀(x, y) ∈ I2, we have

|u(x)− u(y)| 6 C|x− y|
1
p′ .

(such a function is called a 1/p′−Hölder function.)
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Exercise 5. Let I be an open interval of R.

1. Prove that if u ∈W 1,∞(I) then u is bounded and Lipschitz.

2. Conversely, assume that u is bounded and Lipschitz. prove that u ∈ W 1,∞(R). Hint: one may use without
proof that any Lipschitz function is differentiable almost everywhere, and study its derivative.

Exercise 6 (Dual space of H1
0 on a bounded interval). We consider two real numbers a < b and I =]a, b[. We

identify L2(a, b) with its dual. We endow H1
0 (a, b) with the norm ||u||H1

0 (a,b)
= ||u′||L2(a,b).

1. Prove that H1
0 (a, b) ⊂ L2(a, b) with continuous inclusion, and that H1

0 (a, b) is dense in L2(a, b).

2. We denote by H−1(a, b) the dual space of H1
0 (a, b) with pivot space L2(a, b). Prove that for any F ∈ H−1(a, b),

there exists a unique (almost everywhere) f ∈ L2(a, b), called the representant of F , such that F (v) =∫ b
a
fv′,∀v ∈ H1

0 (a, b). Prove that |||F ||| = ||f ||L2(a,b).

3. We endow H−1(a, b) with the following scalar product: if f1 is the representant of F1 and f2 the one of F2,
then 〈F1, F2〉H−1(a,b) =

∫ b
a
f1f2. Prove that L2(a, b) ⊂ H−1(a, b) with continuous injection,and that L2(a, b) is

dense in H−1(a, b).

Exercise 7. We consider the space H1(0,∞).

1. Prove that for any v ∈ H1(0,∞), we have v(x)→ 0 as x→∞. Hint: one can apply the Cauchy criterium for
functions at +∞.

2. We consider the application v ∈ H1(0,∞) 7→ ||v′||L2(0,∞). Prove that it is a norm. Is it equivalent to the usual
H1−norm?

Exercise 8 (Poincaré and Poincaré-Wirtinger inequalities). We consider a < b two real numbers, I =]a, b[, and
p ∈ [1,∞]. For u ∈ L1(a, b), we introduce mv(u) := 1

b−a
∫ b
a
u(t)dt.

1. For p = 2, prove the following Poincaré inequality: for any u ∈ H1
0 (0, π), we have

||u||L2(0,π) 6 ||u′||L2(0,π).

One can consider a well-chosen Hilbert basis of L2(0, π). Prove that this inequality is optimal in the sense that
there exist some functions for which this inequality is an equality, and find all functions verifying this equality.

2. Prove a similar result on the interval I =]a, b[.

3. Prove the Poincaré-Wirtinger inequality: there exists C > 0 such that for any u ∈W 1,p(I), we have

||u− vm(u)||Lp(a,b) 6 C||u′||Lp(a,b).

Exercise 9 (Nash inequality, 1958). We want to prove the Nash inequality: there exists C > 0 such that for any
f ∈ L1(R) ∩H1(R), we have

||f ||3L2(R) 6 C||f ||L1(R)||f ′||2L2(R).

We denote by f̂ the Fourier transform of f . We consider some f ∈ L1(R) ∩H1(R).

1. Prove that f̂ ∈ L∞(R) and that
||f̂ ||∞ 6 ||f ||L1(R).

2. Express ||f ′||2L2(R) by using f̂ .

3. Let R > 0. Prove that

||f̂ ||2L2(R) 6 2R||f̂ ||L∞(R) +
1

R2
||f ′||2L2(R).

4. By choosing an adequate R > 0, conclude. Hint: one can choose R as a function of ||f ||L1(R) and ||f ′||L2(R)
to some power, and adjust the powers in an adequate way.
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Exercise 10. Let p > 1.We wonder if it is possible to prove the existence of some q > 1 and some C > 0 such that
for any f ∈ C∞0 (R),we have

||f ||Lq(R) 6 C||f ′||Lq(R).

Assume that this inequality is true.
Apply this inequality to g(x) = f(λx), for some λ > 0. Deduce a necessary condition on the value of q. Conclude.

Exercise 11. Let ε > 0.We consider fε(t) :=
√
t2 + ε2 − ε for t > 0, and fε(t) = 0 otherwise.

1. Prove that fε ∈ C1(R) and f(0) = 0.

Let I an open interval of R and let u ∈ H1(I).

2. Prove that fε(u)→ u+ as ε→ 0, where u+ = max(u, 0).

3. Using the definition of the weak derivative of fε(u), prove that u+ ∈ H1(I) and that (u+)′ = 1u>0u.

4. Deduce that |u| ∈ H1(I) and compute the weak derivative of |u| as a function of the weak derivative of u.

Exercise 12. Let L2
per be the set of measurable functions from R into C, 2π-periodic and square-root integrable on

(0, 2π). We consider the Sobolev space H1
per of the functions in L2

per that admit a weak derivative in L2
per. H1

per is
then a Hilbert space for the scalar product

∀(f, g) ∈ (H1
per)

2, < f, g >H1
per

=< f, g >L2
per

+ < f ′, g′ >L2
per

=
1

2π

∫ π

−π

(
f(t)g(t) + f ′(t)g′(t)

)
dt.

We remind that the family {en}n∈Z (defined by en(t) = eint for any t ∈ R) is a Hilbert basis of L2
per. We define the

Fourier coefficients cn(f) as

∀n ∈ Z, cn(f) =
1

2π

∫ π

−π
f(t)e−intdt.

1. Let f ∈ H1
per. We remind that f admits a representant that is a continuous function on R and verifies

∀(x0, x) ∈ R2, f(x) = f(x0) +

∫ x

x0

f ′(t)dt.

a. Let P be the space of the 2π-periodic trigonometric polynomials. prove that there exists a sequence (Pn)n∈N of
P such that

Pn →
n→+∞

f ′ in L2
per.

b. Deduce that there exists a sequence (fn)n∈N of P such that

fn →
n→+∞

f in H1
per.

c. Conclude that P is dense in H1
per.

2. Let f ∈ L2
per.

a. We assume that f is in P. Prove that

∀n ∈ Z, cn(f ′) = incn(f).

b. Deduce that this formula remains true if f is in H1
per.

3. Let H = {f ∈ L2
per,

+∞∑
n=−∞

n2|cn(f)|2 < +∞}. We endow H with the following scalar product

∀(f, g) ∈ H2, < f, g >H=

+∞∑
n=−∞

(1 + n2)cn(f)cn(g).

a. Verify that H is a Hilbert space.
b. We are going to prove that H1

per and H are equal.
(i) Prove that H1

per is a closed subspace of H, and that

∀(f, g) ∈ (H1
per)

2, < f, g >H1
per

=< f, g >H .
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Hint: one may use the sequential characterization of closed sets.
(ii) Prove that the orthogonal of H1

per for the scalar product < , >H is equal to {0}.
(iii) Conclude.

Exercise 13. Let f ∈ L2(0, 1) and a(u, v) =
∫ 1

0
u′v′ + (

∫ 1

0
u)(
∫ 1

0
v).

1. Prove that there exists a unique u ∈ H1(0, 1) such that a(u, v) =
∫ 1

0
fv,∀v ∈ H1(0, 1).

2. Prove that u′ ∈ H1(0, 1) and find an interpretation of the differential problem that is solved (i.e. find the
differential equation and the boundary conditions satisfied by u).

Exercise 14. Let V = {u ∈ H1(0, 1)|u(1/2) = 0}.

1. Prove that V is a closed subspace of H1(0, 1) and that v ∈ V 7→ ||v′||L2(0,1) is a norm on V equivalent to the
H1−norm.

2. Prove that there exists a unique u ∈ V such that
∫ 1

0
u′v′ = v(0),∀v ∈ V .

3. Find an interpretation of the differential problem that is solved, and determine explicitly u. Do we have
u′ ∈ H1(0, 1)?

Exercise 15. We consider the following Dirichlet problem on ]a, b[

−u′′(x) + u(x) = f(x) in ]a, b[, u(a) = 0, u(b) = 0,

where f ∈ L∞(a, b).

1. Recall the results given in the course. Prove that u′ ∈ H1(a, b).

2. Let G ∈ C1(R) such that G = 0 on R− and G is strictly increasing on R+. We denote K = ||f ||∞. Prove that
G(u−K) ∈ H1

0 (I).

3. Deduce that ||u||L∞(a,b) 6 ||f ||L∞(a,b).

Exercise 16 (Sturm-Liouville problem with Dirichlet boundary conditions). Let I =]0, 1[. We consider p and q two
functions in L∞(I). We assume that there exists some α > 0 such that

a.e.in x ∈ I, p(x) ≥ α and q(x) ≥ 0.

1. We consider

∀(u, v) ∈ H1
0 (I)2, a(u, v) =

∫ 1

0

(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt.

a. Prove that the bilinear form a is continuous and coercive on H1
0 (I).

b. Let f ∈ L2(I). Deduce that there exists u ∈ H1
0 (I) such that

∀v ∈ H1
0 (I), a(u, v) =

∫ 1

0

f(t)v(t)dt.

2.a. Prove that the function pu′ is in the space H1(I) and that

−(pu′)′ + qu = f.

b. We consider some v in H1
0 (I), such that pv′ is in the space H1(I) and verifies

−(pv′)′ + qv = f.

Prove that
u = v.

3. We assume moreover that p is of class C1 on I, and that q and f are continuous on I. Prove that the function
u is of class C2 on I, and verifies the equation

−pu′′ − p′u′ + qu = f, u(0) = u(1) = 0.
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Exercise 17 (Neumann problem). Let I =]0, 1[. We consider p and q two functions in L∞(I). We assume that
there exists some α > 0 such that

a.e.in x ∈ I, p(x) ≥ α and q(x) ≥ 0.

1. We consider

∀(u, v) ∈ H1(I)2, a(u, v) =

∫ 1

0

(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt.

a. Prove that the bilinear form a is continuous and coercive on H1
0 (I).

b. Let f ∈ L2(I). Deduce that there exists a unique u ∈ H1(I) such that

∀v ∈ H1(I), a(u, v) =

∫ 1

0

f(t)v(t)dt.

2.a.Prove that pu′ is in the space H1
0 (I) and that

−(pu′)′ + qu = f.

b. We consider some v in H1(I), such that pv′ is in the space H1
0 (I) and verifies

−(pv′)′ + qv = f.

Prove that
u = v.

3. We assume moreover that p is of class C1 on I, and that q and f are continuous on I. Prove that the function
u is of class C2 on I, and verifies the equation

−pu′′ − p′u′ + qu = f, u′(0) = u′(1) = 0.

Exercise 18 (Non-homogeneous Neumann boundary conditions). Let I =]a, b[ be a bounded open interval of R.
We want to solve

−u′′(x) + u(x) = f(x) in ]a, b[, u′(a) = α, u′(b) = β

where f is a continuous function on [a, b] and (α, β) ∈ R2.

1. Prove that, if u is a solution of class C2, then for any function in v ∈ H1(I) we have∫
I

u′(x)v′(x) + u(x)v(x) dx =

∫
I

f(x)v(x) dx+ βv(b)− αv(a) .

2. Prove that the linear form Φ(v) =

∫
I

f(x)v(x) dx+ βv(b)− αv(a) is continuous on H1(I).

3. Deduce the existence of a unique function u ∈ H1(I) such that∫
I

u′(x)v′(x) + u(x)v(x) dx =

∫
I

f(x)v(x) dx+ βv(b)− αv(a) ∀v ∈ H1(I) .

4. Prove finally that u is of class C2 and verifies the desired equation.
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