TD 2: Sobolev spaces and 1D linear elliptic problems

Exercise 1. 1. Let I = [-1, 1]. Are the following functions in the space $H^1(I)$?

(i) a(x) = |x|, (ii) b(x) = 0, if $x \le 0, 1$ otherwise, (iii) $c(x) = x^{\alpha}$ if $x \ge 0, 0$ otherwise, where $\alpha \in \mathbb{R}$.

- 2. Let I = [0, 1], and $1 \le p \le +\infty$. For which p are the following functions in the space $W^{1,p}(I)$?
- (i) d(x) = |2x 1|, (ii) $e(x) = x^{\beta}$, where $\beta \in \mathbb{R}$, (iii) $f(x) = |\ln(x)|^{\gamma}$, where $\gamma \in \mathbb{R}$.

Exercise 2. Let I and J be two open intervals of \mathbb{R} and $p \in [1, \infty]$. Prove that $J \subset I \Rightarrow W^{1,p}(I) \subset W^{1,p}(J)$.

Exercise 3 (A characterization of $H^1(I)$). Let I :=]a, b[be an open interval of \mathbb{R} with $-\infty < a < b < +\infty$. For any $0 < \alpha < (b-a)/2$, we introduce $I_{\alpha} :=]a + \alpha; b - \alpha[$.

1. (i) Prove that if $u \in \mathcal{C}^1([a; b])$, then, for any α as above,

$$|u(x+h) - u(x)|^2 \le h^2 \int_0^1 |u'(x+sh)|^2 ds \quad \forall x \in I_\alpha, \ h \in \mathbb{R}, \ |h| < \alpha.$$

(ii) Deduce that for any function $u \in H^1(I)$, any interval I_{α} and any $h \in \mathbb{R}$ such that $|h| < \alpha$, we have

$$\left\| \frac{\tau_h u - u}{h} \right\|_{L^2(I_\alpha)} \le \|u'\|_{L^2(I)},$$

where $\tau_h u(x) = u(x+h)$.

2. Conversely, we assume that $u \in L^2(I)$ is such there exists a constant C > 0 such that for any interval I_{α} and for any $h \in \mathbb{R}$ such that $|h| < \alpha$, we have

$$\left\| \left\| \frac{\tau_h u - u}{h} \right\|_{L^2(I_\alpha)} \le C$$

(i) Let $\phi \in \mathcal{C}^1_c(I)$ and $\alpha > 0$ such that ϕ is supported in I_{α} . Prove that for $|h| < \alpha$, we have

$$\int_{I_{\alpha}} (u(x+h) - u(x))\phi(x)dx = \int_{I} u(x)(\phi(x-h) - \phi(x))dx$$

Deduce that

$$\left|\int_{I} u(x)\phi'(x)dx\right| \leq C \|\phi\|_2 .$$

We denote $T(\phi) = \int_{I} u(x)\phi'(x)dx$ for $\phi \in \mathcal{C}^{1}_{c}(I)$.

- (ii) Let $\phi \in L^2(I)$. Prove that if $(\phi_n)_{n \in \mathbb{N}}$ is a sequence of $\mathcal{C}_c^1(I)$ converging to ϕ , then the sequence $(T(\phi_n))_{n \in \mathbb{N}}$ converges.
- (iii) By using the density of $C_c^1(I)$ in $L^2(I)$, prove that there exists a unique continuous linear form Φ on $L^2(I)$ such that

$$\Phi(v) = \int_{I} u(x)v'(x)dx \qquad \forall v \in \mathcal{C}^{1}_{c}(I)$$

(iv) Deduce that $u \in H^1$.

Exercise 4. Let I be an open interval of \mathbb{R} , let p > 1 and p' its conjugated exponent. Prove that for any $u \in W^{1,p}(I)$, there exists C > 0 such that $\forall (x, y) \in \overline{I}^2$, we have

$$|u(x) - u(y)| \leqslant C|x - y|^{\frac{1}{p'}}.$$

(such a function is called a 1/p'-Hölder function.)

Exercise 5. Let *I* be an open interval of \mathbb{R} .

- 1. Prove that if $u \in W^{1,\infty}(I)$ then u is bounded and Lipschitz.
- 2. Conversely, assume that u is bounded and Lipschitz. prove that $u \in W^{1,\infty}(\mathbb{R})$. Hint: one may use without proof that any Lipschitz function is differentiable almost everywhere, and study its derivative.

Exercise 6 (Dual space of H_0^1 on a bounded interval). We consider two real numbers a < b and I =]a, b[. We identify $L^2(a, b)$ with its dual. We endow $H_0^1(a, b)$ with the norm $||u||_{H_0^1(a, b)} = ||u'||_{L^2(a, b)}$.

- 1. Prove that $H_0^1(a,b) \subset L^2(a,b)$ with continuous inclusion, and that $H_0^1(a,b)$ is dense in $L^2(a,b)$.
- 2. We denote by $H^{-1}(a, b)$ the dual space of $H^1_0(a, b)$ with pivot space $L^2(a, b)$. Prove that for any $F \in H^{-1}(a, b)$, there exists a unique (almost everywhere) $f \in L^2(a, b)$, called the representant of F, such that $F(v) = \int_a^b fv', \forall v \in H^1_0(a, b)$. Prove that $|||F||| = ||f||_{L^2(a, b)}$.
- 3. We endow $H^{-1}(a, b)$ with the following scalar product: if f_1 is the representant of F_1 and f_2 the one of F_2 , then $\langle F_1, F_2 \rangle_{H^{-1}(a,b)} = \int_a^b f_1 f_2$. Prove that $L^2(a,b) \subset H^{-1}(a,b)$ with continuous injection, and that $L^2(a,b)$ is dense in $H^{-1}(a,b)$.

Exercise 7. We consider the space $H^1(0, \infty)$.

- 1. Prove that for any $v \in H^1(0,\infty)$, we have $v(x) \to 0$ as $x \to \infty$. Hint: one can apply the Cauchy criterium for functions at $+\infty$.
- 2. We consider the application $v \in H^1(0, \infty) \mapsto ||v'||_{L^2(0,\infty)}$. Prove that it is a norm. Is it equivalent to the usual H^1 -norm?

Exercise 8 (Poincaré and Poincaré-Wirtinger inequalities). We consider a < b two real numbers, I =]a, b[, and $p \in [1, \infty]$. For $u \in L^1(a, b)$, we introduce $mv(u) := \frac{1}{b-a} \int_a^b u(t) dt$.

1. For p = 2, prove the following Poincaré inequality: for any $u \in H_0^1(0,\pi)$, we have

$$||u||_{L^2(0,\pi)} \leq ||u'||_{L^2(0,\pi)}$$

One can consider a well-chosen Hilbert basis of $L^2(0, \pi)$. Prove that this inequality is optimal in the sense that there exist some functions for which this inequality is an equality, and find all functions verifying this equality.

- 2. Prove a similar result on the interval I =]a, b[.
- 3. Prove the Poincaré-Wirtinger inequality: there exists C > 0 such that for any $u \in W^{1,p}(I)$, we have

$$||u - vm(u)||_{L^{p}(a,b)} \leq C||u'||_{L^{p}(a,b)}.$$

Exercise 9 (Nash inequality, 1958). We want to prove the Nash inequality: there exists C > 0 such that for any $f \in L^1(\mathbb{R}) \cap H^1(\mathbb{R})$, we have

$$||f||_{L^{2}(\mathbb{R})}^{3} \leq C||f||_{L^{1}(\mathbb{R})}||f'||_{L^{2}(\mathbb{R})}^{2}$$

We denote by \widehat{f} the Fourier transform of f. We consider some $f \in L^1(\mathbb{R}) \cap H^1(\mathbb{R})$.

1. Prove that $\widehat{f} \in L^{\infty}(\mathbb{R})$ and that

$$||f||_{\infty} \leq ||f||_{L^1(\mathbb{R})}$$

- 2. Express $||f'||_{L^2(\mathbb{R})}^2$ by using \widehat{f} .
- 3. Let R > 0. Prove that

$$||\widehat{f}||_{L^{2}(\mathbb{R})}^{2} \leq 2R||\widehat{f}||_{L^{\infty}(\mathbb{R})} + \frac{1}{R^{2}}||f'||_{L^{2}(\mathbb{R})}^{2}$$

4. By choosing an adequate R > 0, conclude. *Hint: one can choose* R *as a function of* $||f||_{L^1(\mathbb{R})}$ *and* $||f'||_{L^2(\mathbb{R})}$ *to some power, and adjust the powers in an adequate way.*

Exercise 10. Let $p \ge 1$. We wonder if it is possible to prove the existence of some $q \ge 1$ and some C > 0 such that for any $f \in C_0^{\infty}(\mathbb{R})$, we have

$$|f||_{L^q(\mathbb{R})} \leqslant C||f'||_{L^q(\mathbb{R})}.$$

Assume that this inequality is true.

Apply this inequality to $g(x) = f(\lambda x)$, for some $\lambda > 0$. Deduce a necessary condition on the value of q. Conclude.

Exercise 11. Let $\varepsilon > 0$. We consider $f_{\varepsilon}(t) := \sqrt{t^2 + \varepsilon^2} - \varepsilon$ for $t \ge 0$, and $f_{\varepsilon}(t) = 0$ otherwise.

1. Prove that $f_{\varepsilon} \in C^1(\mathbb{R})$ and f(0) = 0.

Let I an open interval of \mathbb{R} and let $u \in H^1(I)$.

- 2. Prove that $f_{\varepsilon}(u) \to u^+$ as $\varepsilon \to 0$, where $u^+ = \max(u, 0)$.
- 3. Using the definition of the weak derivative of $f_{\varepsilon}(u)$, prove that $u^+ \in H^1(I)$ and that $(u^+)' = 1_{u>0}u$.
- 4. Deduce that $|u| \in H^1(I)$ and compute the weak derivative of |u| as a function of the weak derivative of u.

Exercise 12. Let L^2_{per} be the set of measurable functions from \mathbb{R} into \mathbb{C} , 2π -periodic and square-root integrable on $(0, 2\pi)$. We consider the Sobolev space H^1_{per} of the functions in L^2_{per} that admit a weak derivative in L^2_{per} . H^1_{per} is then a Hilbert space for the scalar product

$$\forall (f,g) \in (H^1_{\rm per})^2, < f,g >_{H^1_{\rm per}} = < f,g >_{L^2_{\rm per}} + < f',g' >_{L^2_{\rm per}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Big(f(t)\overline{g(t)} + f'(t)\overline{g'(t)} \Big) dt.$$

We remind that the family $\{e^n\}_{n\in\mathbb{Z}}$ (defined by $e^n(t) = e^{int}$ for any $t\in\mathbb{R}$) is a Hilbert basis of L^2_{per} . We define the Fourier coefficients $c_n(f)$ as

$$\forall n \in \mathbb{Z}, c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

1. Let $f \in H^1_{per}$. We remind that f admits a representant that is a continuous function on \mathbb{R} and verifies

$$\forall (x_0, x) \in \mathbb{R}^2, f(x) = f(x_0) + \int_{x_0}^x f'(t) dt$$

a. Let \mathcal{P} be the space of the 2π -periodic trigonometric polynomials. prove that there exists a sequence $(P_n)_{n \in \mathbb{N}}$ of \mathcal{P} such that

$$P_n \xrightarrow[n \to +\infty]{} f' \text{ in } L^2_{\text{per}}$$

b. Deduce that there exists a sequence $(f_n)_{n \in \mathbb{N}}$ of \mathcal{P} such that

$$f_n \xrightarrow[n \to +\infty]{} f \text{ in } H^1_{\text{per}}.$$

- c. Conclude that \mathcal{P} is dense in H^1_{per} . 2. Let $f \in L^2_{\text{per}}$.
- a. We assume that f is in \mathcal{P} . Prove that

$$\forall n \in \mathbb{Z}, c_n(f') = inc_n(f).$$

b. Deduce that this formula remains true if f is in H_{per}^1 .

3. Let $H = \{f \in L^2_{\text{per}}, \sum_{n=-\infty}^{+\infty} n^2 |c_n(f)|^2 < +\infty\}$. We endow H with the following scalar product

$$\forall (f,g) \in H^2, \langle f,g \rangle_H = \sum_{n=-\infty}^{+\infty} (1+n^2)c_n(f)\overline{c_n(g)}.$$

a. Verify that H is a Hilbert space.

- b. We are going to prove that H_{per}^1 and H are equal.
- (i) Prove that H^1_{per} is a closed subspace of H, and that

$$\forall (f,g) \in (H^1_{\text{per}})^2, \langle f,g \rangle_{H^1_{\text{per}}} = \langle f,g \rangle_H.$$

Hint: one may use the sequential characterization of closed sets.

(ii) Prove that the orthogonal of H^1_{per} for the scalar product \langle , \rangle_H is equal to $\{0\}$.

(iii) Conclude.

Exercise 13. Let $f \in L^2(0,1)$ and $a(u,v) = \int_0^1 u'v' + (\int_0^1 u)(\int_0^1 v)$.

- 1. Prove that there exists a unique $u \in H^1(0,1)$ such that $a(u,v) = \int_0^1 fv, \forall v \in H^1(0,1)$.
- 2. Prove that $u' \in H^1(0,1)$ and find an interpretation of the differential problem that is solved (i.e. find the differential equation and the boundary conditions satisfied by u).

Exercise 14. Let $V = \{u \in H^1(0,1) | u(1/2) = 0\}.$

- 1. Prove that V is a closed subspace of $H^1(0,1)$ and that $v \in V \mapsto ||v'||_{L^2(0,1)}$ is a norm on V equivalent to the H^1 -norm.
- 2. Prove that there exists a unique $u \in V$ such that $\int_0^1 u'v' = v(0), \forall v \in V$.
- 3. Find an interpretation of the differential problem that is solved, and determine explicitly u. Do we have $u' \in H^1(0, 1)$?

Exercise 15. We consider the following Dirichlet problem on]a, b[

$$-u''(x) + u(x) = f(x)$$
 in $]a, b[, u(a) = 0, u(b) = 0]$

where $f \in L^{\infty}(a, b)$.

- 1. Recall the results given in the course. Prove that $u' \in H^1(a, b)$.
- 2. Let $G \in C^1(\mathbb{R})$ such that G = 0 on \mathbb{R}^- and G is strictly increasing on \mathbb{R}^+ . We denote $K = ||f||_{\infty}$. Prove that $G(u K) \in H^1_0(I)$.
- 3. Deduce that $||u||_{L^{\infty}(a,b)} \leq ||f||_{L^{\infty}(a,b)}$.

Exercise 16 (Sturm-Liouville problem with Dirichlet boundary conditions). Let I =]0, 1[. We consider p and q two functions in $L^{\infty}(I)$. We assume that there exists some $\alpha > 0$ such that

a.e.in
$$x \in I, p(x) \ge \alpha$$
 and $q(x) \ge 0$.

1. We consider

$$\forall (u,v) \in H_0^1(I)^2, a(u,v) = \int_0^1 \left(p(t)u'(t)v'(t) + q(t)u(t)v(t) \right) dt.$$

- a. Prove that the bilinear form a is continuous and coercive on $H_0^1(I)$.
- b. Let $f \in L^2(I)$. Deduce that there exists $u \in H^1_0(I)$ such that

$$\forall v \in H_0^1(I), a(u, v) = \int_0^1 f(t)v(t)dt.$$

2.a. Prove that the function pu' is in the space $H^1(I)$ and that

$$-(pu')' + qu = f.$$

b. We consider some v in $H_0^1(I)$, such that pv' is in the space $H^1(I)$ and verifies

$$-(pv')' + qv = f.$$

Prove that

$$u = v$$
.

3. We assume moreover that p is of class C^1 on I, and that q and f are continuous on I. Prove that the function u is of class C^2 on I, and verifies the equation

$$-pu'' - p'u' + qu = f, \ u(0) = u(1) = 0.$$

Exercise 17 (Neumann problem). Let I =]0, 1[. We consider p and q two functions in $L^{\infty}(I)$. We assume that there exists some $\alpha > 0$ such that

a.e.in
$$x \in I, p(x) \ge \alpha$$
 and $q(x) \ge 0$.

1. We consider

$$\forall (u,v) \in H^1(I)^2, a(u,v) = \int_0^1 \left(p(t)u'(t)v'(t) + q(t)u(t)v(t) \right) dt.$$

a. Prove that the bilinear form a is continuous and coercive on $H_0^1(I)$. b. Let $f \in L^2(I)$. Deduce that there exists a unique $u \in H^1(I)$ such that

$$\forall v \in H^1(I), a(u, v) = \int_0^1 f(t)v(t)dt$$

2.a. Prove that pu' is in the space $H_0^1(I)$ and that

$$-(pu')' + qu = f.$$

b. We consider some v in $H^1(I)$, such that pv' is in the space $H^1_0(I)$ and verifies

$$-(pv')' + qv = f.$$

Prove that

u = v.

3. We assume moreover that p is of class C^1 on I, and that q and f are continuous on I. Prove that the function u is of class C^2 on I, and verifies the equation

$$-pu'' - p'u' + qu = f, \ u'(0) = u'(1) = 0.$$

Exercise 18 (Non-homogeneous Neumann boundary conditions). Let I =]a, b[be a bounded open interval of \mathbb{R} . We want to solve

$$-u''(x) + u(x) = f(x)$$
 in $]a, b[, \qquad u'(a) = \alpha, \ u'(b) = \beta$

where f is a continuous function on [a, b] and $(\alpha, \beta) \in \mathbb{R}^2$.

1. Prove that, if u is a solution of class \mathcal{C}^2 , then for any function in $v \in H^1(I)$ we have

$$\int_{I} u'(x)v'(x) + u(x)v(x) \, dx = \int_{I} f(x)v(x) \, dx + \beta v(b) - \alpha v(a)$$

2. Prove that the linear form $\Phi(v) = \int_I f(x)v(x) dx + \beta v(b) - \alpha v(a)$ is continuous on $H^1(I)$.

3. Deduce the existence of a unique function $u \in H^1(I)$ such that

$$\int_{I} u'(x)v'(x) + u(x)v(x) \ dx = \int_{I} f(x)v(x) \ dx + \beta v(b) - \alpha v(a) \qquad \forall v \in H^{1}(I) \ .$$

4. Prove finally that u is of class C^2 and verifies the desired equation.