Corrigé Partiel du 29 octobre 2018

Vrai ou faux? (3 points)

- 1. VRAI: il suffit d'appliquer l'inégalité de Cauchy-Schwarz dans l'espace \mathbb{R}^n aux suites $(1,\ldots,1)$ et (x_1,\ldots,x_n) .
- 2. FAUX: une projection orthogonale n'est jamais (sauf si C=H) injective. En effet, si $x \notin C$, sa projection orthogonale $P_C(x)$ est par définition dans C, donc notamment $P_C(P_C(x)) = P_C(x)$, mais puisque $x \notin C$, on a bien $P_C(x) \neq x$, ce qui nie l'injectivité. En fait, on pourrait même démontrer que dans ce cas, il existe une infinité de y tels que $P_C(y) = P_C(x)$ (faire un dessin pour s'en convaincre).
- 3. VRAI: tout élément x de H sous la forme $x = \sum_{k=1}^{\infty} x_k e_k = x_1 e_1 + y$ avec $y \in \overline{Vect(\{e_k\}_{k \geqslant 2})}$. De plus, la somme est bien orthogonale (et donc directe) car e_1 est orthogonal à tous les éléments de $\overline{Vect(\{e_k\}_{k \geqslant 2})}$.
- 4. FAUX: il est impossible d'écrire e_1 comme une série des e_k avec $k \ge 2$. En effet, par le point précédent e_1 est orthogonal à $\overline{Vect}(\{e_k\}_{k\ge 2})$.
- 5. VRAI. Il suffit d'appliquer la formule du cours sur la projection sur un espace vectoriel de dimension finie , une base hilbertienne de Vect(a) est $e_1 = a/||a||$, de telle sorte que la projection orthogonale est donnée par $\langle x, e_1 \rangle e_1 = \frac{\langle x, a \rangle}{||a||^2} a$.
- 6. VRAI: l'orthogonal de F est par définition l'ensemble des $f \in L^2(]0,1[)$ tels que pour tout $g \in Vect(1)$, $\int_0^1 f(x)g(x)dx = 0$. Comme tout $g \in Vect(1)$ s'écrit sous la forme α avec $\alpha \in \mathbb{R}$, cela revient à dire que l'on a $\int_0^1 f(x)dx = 0$, ce qui est le résultat voulu.
- **Exercice 1** (5 points). 1. On raisonne par double inclusion. Soit $x \in (E+F)^{\perp}$. Alors par définition, on a, pour tout $e \in E$ et $f \in F$, $\langle x, e+f \rangle = 0$. En prenant f = 0 on obtient $\langle x, e \rangle = 0$ pour tout $e \in E$, et en prenant e = 0 on obtient $\langle x, f \rangle = 0$, pour tout $f \in F$. Donc $x \in E^{\perp}$ et $x \in F^{\perp}$, autrement dit $x \in E^{\perp} \cap F^{\perp}$. Inversement, si $x \in E^{\perp} \cap F^{\perp}$, alors $\langle x, e \rangle = 0$ pour tout $e \in E$ et $\langle x, f \rangle = 0$, pour tout $f \in F$, donc pour tout $e \in E$ et $f \in F$, $\langle x, e+f \rangle = 0$, i.e. $x \in (E+F)^{\perp}$.
 - 2. On applique la première question en replaçant E par E^{\perp} et F par F^{\perp} , qui sont toujours des sev fermés de H. On obtient $(E^{\perp} + F^{\perp})^{\perp} = E^{\perp \perp} \cap F^{\perp \perp} = \overline{E} \cap \overline{F} = E \cap F$. En passant à l'orthogonal, on obtient bien $(E \cap F)^{\perp} = \overline{E^{\perp} + F^{\perp}}$.
 - 3. Soit $x \in \overline{E+F}$. Alors il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de E+F tels que $x_n \to x$. pour $n \in \mathbb{N}$, on peut écrire $x_n = y_n + z_n$ avec $y_n \in E$ et $z_n \in F$. On pose P_E (resp. P_F) la projection orthogonale sur E (resp. F). Alors par linéarité, $P_E(x_n) = P_E(y_n) + P_E(z_n) = y_n + 0$, puisque $y_n \in E$ et z_n est orthogonal à E. De même, $P_F(x_n) = z_n$. Or les applications P_E et P_F sont lipschitiziennes dont continues, donc $P_E(x_n) \to P_E(x)$ et $P_F(x_n) \to P_F(x)$. Or $x_n = y_n + z_n$ donc $x_n \to P_E(x) + P_F(x) \in E + F$ par définition de la projection orthogonale.
 - 4. \Leftarrow : on suppose E et F orthogonaux. Soit P_{E+F} la projection orthogonale sur E+F qui est bien un (sous-espace vectoriel) fermé par la question précédente. Soit $x \in H$. Alors x = y + e + f, avec $y \in (E+F)^{\perp} = E^{\perp} \cap F^{\perp}$ par la première question, $e \in E$ et $f \in F$. On a alors $P_{E+F}(x) = e + f$. De plus, $P_E(x) = e$ (car x et f sont orthogonaux à E) et $P_F(x) = f$ (car x et e sont orthogonaux à F). Donc $P_{E+F}(x) = P_E(x) + P_F(x)$, et $P_E + P_F$ est la projection orthogonale sur E + F.
 - \Rightarrow : le sens direct est plus difficile. Inversement, supposons que $P_E + P_F$ est une projection orthogonale. On suppose que E et F sont non orthogonaux. Alors il existe un $f \in F$ tel que $P_E(f) \neq 0$. En effet, sinon, on aurait que pour tout $f \in F$, $P_E(f) = 0$, ce qui signifierait que pour tout $f \in F$, f est orthogonal à E, i.e. que E et F sont orthogonaux. On a alors $||f||^2 = ||P_E(f)||^2 + ||f P_E(f)||^2$, mais aussi $||f||^2 = ||P_E(f)||^2$

 $||P_E(f)+P_F(f)||^2+||f-P_E(f)-P_F(f)||^2$. Compte tenu du fait que $P_E(f)+P_F(f)=P_E(f)+f$, on obtient $||f||^2=||P_E(f)+f||^2+||P_E(f)||^2$. On en déduit que $||f-P_E(f)||^2=||P_E(f)+f||^2$, ce qui donne en développant que $\langle f,P_E(f)\rangle=0$. De l'égalité $\langle f-P_E(f),P_E(f)\rangle=0$, on tire $\langle f,P_E(f)\rangle=||P_E(f)||^2=0$, ce qui aboutit à une contradiction.

Exercice 2 (3 points). On pose $H = L^2(]0, 2\pi[)$, muni du produit scalaire usuel. C'est un espace de Hilbert. On pose F = Vect(1,x). C'est un sous-espace vectoriel de H de dimension finie 2, il est donc fermé. Le problème peut donc se réécrire sous la forme $\int_{f \in F} ||sin - f||_H^2$, autrement dit on recherche la distance au carré de la fonction sin au sous-espace vectoriel F. Par le cours, on sait que ce minimum est atteint en une unique fonction de F, qui est justement la projection orthogonale du sinus sur le sous-espace F, que l'on notera $P_F(\sin)$. Calculons cette projection. Pour ce faire, on utilise la formule du cours

$$P_F(\sin) = \langle \sin, e_1 \rangle e_1 + \langle \sin, e_2 \rangle e_2,$$

où e_1 et e_2 forme une base orthonormale de F. Pour e_1 , il suffit de normaliser la fonction 1, dont la norme est $\sqrt{2\pi}$. On pose donc

$$e_1 = \frac{1}{\sqrt{2\pi}}.$$

Pour trouver e_2 , on utilise le procédé d'orthonormalisation de Schmidt. On pose donc un vecteur intérmédiaire

$$v_2 = x - \frac{\int_0^{2\pi} x}{2\pi} = x - \frac{4\pi^2}{4\pi} = x - \pi,$$

que l'on renormalise. Sa norme au carré vaut

$$||v_2||^2 = \int_0^{2\pi} (x - \pi)^2 dx = \int_{-\pi}^{\pi} y^2 dx = \frac{2\pi^3}{3}.$$

On pose donc

$$e_2 = \frac{\sqrt{3}(x-\pi)}{\sqrt{2\pi^3}}.$$

On remarque que le sinus est d'intégrale nulle. Ainsi, sa projection sur e_1 (qui est une fonction constante) vaut 0. On a donc aussi seulement besoin de garder "la partie en x" du produit scalaire avec e_2 , et on en déduit en utilisant une intégration par parties que

$$P_F(\sin) = \langle \sin, e_2 \rangle e_2 = \left(\frac{3}{2\pi^3} \int_0^{2\pi} x \sin(x) dx\right) (x - \pi) = \frac{3}{2\pi^3} (-2\pi(x - \pi)) = \frac{3(\pi - x)}{\pi^2}.$$

L'infimum est donc atteint en cette unique fonction $P_F(\sin)$ et la valeur du minimum est (après quelques calculs et en utilisant la formule donnée)

$$\int_0^{2\pi} \left(\sin(x) - \frac{3(\pi - x)}{\pi^2} \right)^2 dx = \pi - \frac{6}{\pi}.$$

Exercice 3. 1. F est un sous-espace vectoriel fermé d'un espace de Hilbert. C'est donc lui-même un espace de Hilbert. On en déduit donc en appliquant le théorème de représentation de Riesz qu'il existe un unique $x \in F$ tel que pour tout $y \in F$, on ait $f(y) = \langle x, y \rangle$. Il est alors très tentant de prolonger f en posant $\tilde{f}(z) = \langle x, z \rangle$ pour $z \in H$. C'est bien un prolongement car \tilde{f} coïncide avec f sur F, qui plus est linéaire par linéarité du produit scalaire par rapport à une variable. De plus, F est encore une forme linéaire continue par l'inégalité de Cauchy-Schwartz: pour tout $z \in H$, on a

$$|\tilde{f}(z)| \leqslant ||x||.||z||.$$

De plus, la norme d'opérateur de \tilde{f} est inférieur à ||x||. En fait, il est même égal car $\frac{|\tilde{f}(x)|}{||x||} = ||x||$. Il reste à démontrer que |||f||| = ||x||, mais c'est encore une fois une conséquence de l'inégalité de Cauchy-Schwartz sur F, et du fait que $\frac{|f(x)|}{||x||} = ||x||$ avec $x \in F$.

2. Il est très tentant de prolonger f en la posant égale à 0 sur l'orthogonal. Ainsi, pour tout $z \in H$ que l'on décompose de manière unique comme z = x + y avec $x \in F$ et $y \in F^{\perp}$, on pose $\overline{f}(z) = f(x)$. Il est clair que \overline{f} reste une forme linéaire, et qu'elle prolonge f. Elle est de plus continue puisque par Pythagore,

$$\frac{|\overline{f}(z)|}{||z||} = \frac{|f(x)|}{||z||} \leqslant \frac{|||f|||.||x||}{\sqrt{||x||^2 + ||y||^2}} \leqslant |||f|||.$$

On déduit de plus que $|||\overline{f}||| \le |||f|||$, mais cette inégalité est une égalité puisqu'il existe une suite d'éléments $(x_n)_{n\in\mathbb{N}}$ de F (et donc de H) de norme 1 tels que $|f(x_n)| \to |||f|||$, par définition de la norme d'opérateur |||f||| sur F.

3. Cette question est assez difficile. On suit l'indication. On considère $(g(x + \lambda z))^2$, pour $x \in F$ avec ||x|| = 1, $\lambda \in \mathbb{R}$ et $z \in F^{\perp}$ tel que g(z) > 0 et ||z|| = 1. On utilise la linéarité et on développe, on obtient alors

$$(g(x+\lambda z))^2 = (g(x))^2 + \lambda^2(g(z))^2 + 2\lambda g(x)g(z) = (f(x))^2 + \lambda^2(g(z))^2 + 2\lambda f(x)g(z).$$

Soit $\varepsilon > 0$. Il existe un certain $x \in F$ vérifiant ||x|| = 1 tel que $|f(x)| > |||f||| - \varepsilon$. De plus, quitte à remplacer x par -x, on peut supposer que $f(x) \ge 0$ et donc supposer que $f(x) > |||f||| - \varepsilon$. On obtient donc, en se restreignant à $\lambda \ge 0$, que

$$(g(x + \lambda z))^2 > (|||f||| - \varepsilon)^2 + \lambda^2 (g(z))^2 + 2\lambda (|||f||| - \varepsilon)g(z).$$

On se demande si on peut trouver $\lambda \geqslant 0$ tel que

$$(|||f||| - \varepsilon)^2 + \lambda^2(g(z))^2 + 2\lambda(|||f||| - \varepsilon)g(z) > |||f||^2 ||x + \lambda z||^2 = |||f||^2 (1 + \lambda^2),$$

ce qui permettra de conclure que |||g||| > |||f|||. Cette dernière inégalité est équivalente à

(1)
$$\lambda^2((g(z))^2 - |||f|||^2) + 2\lambda(|||f||| - \varepsilon)g(z) + (\varepsilon^2 + 2\varepsilon|||f|||) > 0.$$

Si l'on arrive à trouver $\lambda \geqslant 0$ indépendant de $\varepsilon > 0$ tel que

$$\lambda^{2}((g(z))^{2} - |||f|||^{2}) + 2\lambda(|||f|||)g(z) > 0,$$

alors c'est gagné: il suffira de prendre $\varepsilon > 0$ assez petit de telle sorte que l'inégalité stricte (1) soit toujours vérifiée. En prenant $\lambda > 0$, cette inégalité est équivalente à

$$\lambda((g(z))^{2} - |||f|||^{2}) + 2(|||f|||)g(z) > 0$$

pour un certain $\lambda > 0$. C'est évidemment toujours possible, quitte à prendre $\lambda > 0$ suffisamment petit, puisque l'on a |||f|||g(z)>0 dès que $f\neq 0$ (mais le cas f=0 est trivial puisqu'on a alors |||g|||>0=|||f||L.). Remarquons que ce choix de λ ne dépend que de |||f||| et de g(z), et ne dépend donc pas de $\varepsilon > 0$, de telle sorte que notre raisonnement est bien valide.

- 4. Le prolongement construit à la question 2 est forcément unique. En effet, on ne peut pas poser autre chose que $\overline{f} = 0$ sur F^{\perp} sous peine d'augmenter la norme d'opérateur par la question précédente.
- 5. Soient n et m deux entiers. On a

$$|f(x_n) - f(x_m)| \le |||f|||.||x_n - x_m||.$$

La suite $(x_n)_{n\in\mathbb{N}}$ étant convergente, elle est de Cauchy, de telle sorte qu'automatiquement la suite $(f(x_n))_{n\in\mathbb{N}}$ aussi (il suffit de revenir à la définition d'une suite de Cauchy). On note y sa limite. En faisant $m\to\infty$ dans la question précédente, on en déduit

$$|f(x_n) - y| \le |||f|||.||x_n - x||.$$

6. Comme à la question précédente, on a

$$|f(z_n) - y'| \le |||f|||.||z_n - x||.$$

On en déduit alors

$$|y - y'| \le |y - f(x_n)| + |f(x_n) - f(z_n)| + |f(z_n) - y'|.$$

Or comme $x_n \to x$ et $z_n \to x$ quand $n \to \infty$, on en déduit par les inégalités précédentes que $|f(x_n) - y| \to 0$ et $|f(z_n) - y'| \to 0$. Quant à $|f(x_n) - f(z_n)|$, il tend aussi vers 0 puisque

$$|f(x_n) - f(z_n)| \le |||f|||.||x_n - z_n||| \to 0.$$

On a donc bien |y - y'| = 0, i.e. y = y'.

7. Soit $x \in \overline{F}$. On prend n'importe quelle suite $(x_n)_{n \in \mathbb{N}}$ convergeant vers x, et on pose $\tilde{f}(x) = \lim_{n \to \infty} f(x_n)$. Par les question précédentes, cette limite existe et ne dépend pas de la suite choisie, de telle sorte que \tilde{f} est bien définie.

On démontre très facilement que \tilde{f} est linéaire. Soit $\lambda \in \mathbb{R}$, soient $x, y \in \overline{F}$. Avec des notations évidentes et par linéarité sur F,

$$f(x_n + \lambda y_n) = f(x_n) + \lambda f(y_n).$$

Le membre de gauche converge vers $\tilde{f}(x + \lambda y)$ et celui de droite converge vers $\tilde{f}(x) + \lambda \tilde{f}(y)$, d'où la linéarité par unicité de la limite. \tilde{f} reste continue, en effet on a avec les mêmes notations et en utilisant la première question,

$$|\tilde{f}(x)| \le |\tilde{f}(x-x_n)| + |\tilde{f}(x_n)| \le |y-f(x_n)| + |f(x_n)| \le |||f|||(||x_n-x||) + |||f|||.||x_n||.$$

En faisant $n \to \infty$, on obtient bien $|\tilde{f}(x)| \le |||f|||.||x||$, de telle sorte que \tilde{f} est continue de norme plus petite que |||f|||. Mais cette norme est en fait exactement égale à |||f||| puisqu'il existe une suite d'éléments $(a_n)_{n \in \mathbb{N}}$ de F (et donc de \overline{F}) tels que $||x_n|| = 1$ convergeant vers |||f|||.