TD 4: Spectre, adjoint, opérateurs compacts.

Exercice 1. On munit $\mathbb{R}[X]$ du produit scalaire $\langle P, Q \rangle = \int_0^1 PQ$. Montrer que l'opérateur $P \in \mathbb{R}[X] \mapsto P' \in \mathbb{R}[X]$ n'admet pas d'adjoint.

Exercice 2 (Opérateurs de shift sur l^2 .). On considère $H = l^2(\mathbb{N}^*, \mathbb{C})$ et l'opérateur de shift à gauche

$$A: (x_n)_{n \in \mathbb{N}^*} \mapsto (x_{n+1})_{n \in \mathbb{N}^*}.$$

- 1. Montrer que A est un opérateur linéaire continu et calculer sa norme. Calculer A^* .
- 2. A est-il compact? A est-il autoadjoint?
- 3. Montrer que $\sigma(A) \subset \overline{B}(0,1)$.
- 4. Montrer que $\sigma_p(A) = B(0,1)$.
- 5. En déduire $\sigma(A)$ et $\sigma(A^*)$.
- 6. Calculer $\sigma_p(A^*)$. En déduire que $\sigma_r(A) = \emptyset$. Que vaut $\sigma_c(A)$?
- 7. Calculer $\sigma_r(A^*)$ et en déduire $\sigma_c(A^*)$. Résumer les résultats obtenus dans un tableau.

Exercice 3 (Opérateurs diagonaux sur l^2). Soit $H = L^2(\mathbb{N}^*, \mathbb{R})$ muni du produit scalaire canonique. On considère une suite de réels $(\lambda_n)_{n \in \mathbb{N}^*}$ et l'opérateur suivant: $T : (x_n)_{n \in \mathbb{N}^*} \mapsto (\lambda_n x_n)_{n \in \mathbb{N}^*}$.

- 1. Donner une CNS sur $(\lambda_n)_{n\in\mathbb{N}^*}$ pour que cet opérateur soit borné. Dans ce cas, donner sa norme d'opérateur et son adjoint.
- 2. Donner une CNS sur $(\lambda_n)_{n\in\mathbb{N}^*}$ pour que cet opérateur soit compact.
- 3. On suppose T borné. Déterminer $\sigma_p(T)$, $\sigma_r(T)$, $\sigma_c(T)$ et $\sigma(T)$. A-t-on nécessairement $\sigma(T) = B(0, ||T|||)$?
- 4. En déduire le résultat suivant: soit C un compact de \mathbb{R} et $\{\lambda_n\}_{n\in\mathbb{N}^*}$ une suite dense de C. Alors il existe un opérateur $T \in \mathcal{L}_c(H)$ tel que $C = \sigma(T)$, $\{\lambda_n\}_{n\in\mathbb{N}^*} = \sigma_p(T)$ et $\sigma_r(T) = \emptyset$. Ce résultat se généralise-t-il à un compact de \mathbb{C} ?

Exercice 4 (Noyaux intégraux). Soit (X, Ω, μ) un espace mesuré et $k: X \times X \to \mathbb{C}$ une fonction mesurable. On suppose qu'il existe deux constantes $c_1 \geqslant 0$ et $c_2 \geqslant 0$ telles que

$$\int_X |k(x,y)| d\mu(y) \leqslant c_1, \ \mu\text{-p. p. en } x, \quad \int_X |k(x,y)| d\mu(x) \leqslant c_2, \ \mu\text{-p. p. en } y.$$

On considère l'opérateur

$$K: f \in L^2(X) \mapsto (x \in \int_X k(x,y) f(y) d\mu(y) \in L^2(X).$$

- 1. Montrer que K est bien définie, continue, et estimer sa norme.
- 2. Calculer K^* . A quelle condition sur le noyau k l'opérateur K est-il autoadjoint?
- 3. On suppose que X = [0,1] muni de la mesure de Lebesgue et on suppose k continu sur $[0,1] \times [0,1]$. Montrer que K est compact. Indication: on pourra utiliser le théorème d'Ascoli.

Exercice 5. Soit H un espace de Hilbert réel ou complexe. Soit $T \in \mathcal{L}_c(H)$ et $(T_n)_{n \in \mathbb{N}}$ une suite d'éléments de $\mathcal{L}_c(H)$ qui converge en norme d'opérateur vers T.

1. Pour tout $n \in \mathbb{N}$, on considère $\lambda_n \in \sigma(T_n)$ et on suppose que $\lambda_n \to \lambda$. A-t-on $\lambda \in \sigma(T)$?

- 2. La propriété suivante est-elle vérifiée: on considère $\lambda_n \in \sigma_p(T_n)$ et on suppose que $\lambda_n \to \lambda$. A-t-on $\lambda \in \sigma_p(T)$?
- **Exercice 6.** Soit H un espace de Hilbert réel ou complexe. Soit $S \in \mathcal{L}_c(H)$ et $T \in \mathcal{L}_c(H)$.
 - 1. A l'aide d'un développement formel en en série entière, donner une formule reliant $(Id-ST)^{-1}$ et $(Id-TS)^{-1}$ dans le cas où ces deux quantités existent.
 - 2. Montrer que $\sigma(ST) \cup \{0\} = \sigma(TS) \cup \{0\}$.
 - 3. A-ton nécessairement $\sigma(ST) = \sigma(TS)$?

Exercice 7 (Opérateur de Volterra). Soit $H = L^2(0,1)$. Soit $f \in L^2(0,1)$. $T: f \in H \mapsto \int_0^x f(t)dt$.

- 1. Montrer que T est bien défini et à valeurs dans H.
- 2. Montrer que T est un opérateur compact.
- 3. Montrer que T n'a pas de valeurs propres.
- 4. Montrer que $\sigma(T) = \{0\}$ mais que T n'est pas nilpotente.
- 5. Calculer T^* . Quel est l'image de $T + T^*$?

Exercice 8 (Opérateur de multiplication). On considère $H = L^2((0,1),\mathbb{R})$ muni du produit scalaire canonique. Soit $\phi \in L^{\infty}(0,1)$. On considère l'opérateur $T: f \in L^2(0,1) \mapsto \phi f \in L^2(0,1)$.

- 1. Montrer que T est borné et calculer |||T|||.
- 2. Calculer l'adjoint de T.
- 3. Donner une CNS sur ϕ pour que T soit injectif.
- 4. Donner une CNS sur ϕ pour que T soit surjectif.
- 5. Montrer que λ est une valeur propre de T si et seulement si $f^{-1}(\{\lambda\})$ est de mesure non nulle.
- 6. On suppose dorénavant que ϕ est continue sur [0,1]. Calculer $\sigma(T)$.
- 7. On ne suppose plus que ϕ est continue sur [0,1]. Calculer $\sigma(T)$. On pourra introduire

$$Im_{ess}(\phi) = \{\lambda \in \mathbb{R} | \forall \varepsilon > 0, \mu(|\phi(x) - \lambda| < \varepsilon) > 0\},\$$

où μ désigne la mesure de Lebesgue.

Exercice 9. Soit H un espace de Hilbert complexe et $T \in \mathcal{L}_c(H)$. Soit $\lambda \in \partial \sigma(T)$. On pose $S = \lambda Id - T$. On souhaite montrer qu'il existe une suite $(x_n)_{n \in \mathbb{N}^*}$ d'éléments de H de norme 1 telle que $Sx_n \to 0$. Raisonnons par l'absurde et supposons qu'une telle suite n'existe pas.

- 1. Montrer que $0 \in \sigma(S)$. En raisonnant par l'absurde, montrer qu'il existe c > 0 tel que pour tout $x \in H$, on ait $||Sx|| \ge c||x||$.
- 2. Montrer que S(H) est fermé et distinct de H.
- 3. Soit $y \notin S(H)$. Montrer qu'il existe une suite $(\mu_n)_{n \in \mathbb{N}^*}$ d'éléments de $\mathbb{C} \setminus \sigma(S)$ tel que $\mu_n \to 0$. Montrer que pour tout $n \in \mathbb{N}^*$, il existe $z_n \in H$ tel que $(\mu_n Id S)z_n = y$. Montrer que (z_n) n'est pas bornée. En déduire l'existence d'une suite $(x_n)_{n \in \mathbb{N}^*}$ tel que $||x_n|| = 1$ et $Sx_n \to 0$.
- 4. Conclure que tout élément de $\partial \sigma(T)$ est une "valeur propre approchée" (en un sens à définir).
- 5. Application: montrer que si $T \in \mathcal{L}_c(H)$ est autoadjoint, on a $\sigma(T) \subset \mathbb{R}$. Indication: on considérera $\lambda = a + ib \in \sigma(T)$ avec |b| maximum.
- 6. Application: montrer que si $T \in \mathcal{L}_c(H)$ est autoadjoint positif, on a $\sigma(T) \subset \mathbb{R}^+$.
- 7. Application: montrer que si $T \in \mathcal{L}_c(H)$ est unitaire (cf Exercice 13), on a $\sigma(T) \subset \mathbb{S}_1$ (le cercle unité).

8. On considère l'exemple de l'opérateur de shift A de l'exercice 2. Pour tout élément de $\partial \sigma(A)$, donner explicitement une suite de valeurs propres et de vecteurs propres approchés.

Exercice 10. Soit $E = C^0([0,1], \mathbb{R})$ $h \in C^0([0,1], [0,1])$. On considère l'opérateur $T : f \in E \mapsto f \circ h \in E$.

- 1. Montrer que T est un opérateur borné et calculer |||T|||.
- 2. Donner une CNS sur h pour que T soit compact.
- 3. Calculer le spectre de T.

Exercice 11. Soit H un espace de Hilbert réel ou complexe et $A \in \mathcal{L}_c(H)$. Montrer que $\sigma(A)$ et $\sigma_p(A)$ sont invariant par conjugaison: pour tout $B \in \mathcal{L}_c(H)$ inversible, on a $\sigma(A) = \sigma(BAB^{-1})$ et $\sigma_p(A) = \sigma_p(BAB^{-1})$.

Exercice 12. Soit H un espace de Hilbert réel ou complexe et F un sous-espace vectoriel fermé. Déterminer le spectre du projecteur orthogonal sur F.

Exercice 13. Soient H_1 et H_2 deux espaces de Hilbert réels. Soit $A \in \mathcal{L}_c(E, F)$.

- 1. Montrer que A est une isométrie si et seulement si $A^*A = Id_{H_1}$.
- 2. Montrer que A est une isométrie surjective si et seulement s'il est unitaire, i.e. $A^*A = Id_{H_1}$ et $AA^* = Id_{H_2}$.

Exercice 14. Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert réel et $A \in \mathcal{L}_c(H)$. On suppose que A est de rang 1.

- 1. Montrer qu'il existe x et y dans H tels que pour tout $h \in H$, on ait $A(h) = \langle h, y \rangle x$.
- 2. Calculer A^* .

Exercice 15 (Lemme de Douglas). Soient H_1, H_2, H_3 trois espaces de Hilbert réels. Soient $T \in \mathcal{L}_c(H_1, H_3)$ et $S \in \mathcal{L}_c(H_2, H_3)$. Montrer les équivalences suivantes.

- (i) $Im(T) \subset Im(S)$.
- (ii) Il existe C > 0 tel que pour tout $u \in H_3$, on ait

$$||T^*u||_{H_1} \leq C||S^*u||_{H_2}.$$

(iii) Il existe $C \in \mathcal{L}_c(H_1, H_2)$ tel que $T = S \circ C$.

Que retrouve-t-on quand $H_1 = H_3$ et T = Id?

Exercice 16. Soit H_1 et H_2 deux espaces de Hilbert réels ou complexes. Soit $A \in \mathcal{L}_c(H_1, H_2)$. Montrer que Im(A) est fermée si et seulement s'il existe une constance C > 0 tel que pour tout $u \in H_1$, on ait

$$d(u, Ker(A)) \leq C||Au||.$$

Exercice 17. Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert réel et $A \in \mathcal{L}_c(H)$. Montrer que A est de rang fini si et seulement si A^* est de rang fini.

Exercice 18. Soit $E = C^0([0,1],\mathbb{R})$. Pour $f \in E$, on introduit

$$T(f) = x \mapsto \int_0^1 \min(x, t) f(t) dt.$$

- 1. Montrer que T est bien définie et continue sur E.
- 2. Calculer les vecteurs propres et les valeurs propres de T.

Exercice 19. On considère deux espaces de Banach E et F, et $A \in \mathcal{L}_c(E, F)$. On suppose A compact est d'image fermée. Montrer que A est de rang fini. Indication: on pourra utiliser le théorème de l'application ouverte.

Exercice 20 (Opérateurs de Hilbert-Schmidt). Soit H un espace de Hilbert réel de dimension infinie, $\{e_n\}_{n\in\mathbb{N}^*}$, $\{f_n\}_{n\in\mathbb{N}^*}$, $\{g_n\}_{n\in\mathbb{N}^*}$ trois bases hilbertiennes de H, et T un opérateur linéaire continu sur H.

1. Montrer que, dans $\mathbb{R}^+ \cup \{+\infty\}$, $\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{p=0}^{+\infty} ||T^*g_p||^2$.

2. En déduire que $\sum_{n=0}^{+\infty} ||Te_n||^2 = \sum_{n=0}^{+\infty} ||Tf_n||^2$. On fixe désormais une base hilbertienne (e_n) de H. On dira que $T \in \mathcal{L}_c(H)$ est un opérateur de Hilbert-Schmidt si

$$\sum_{n=0}^{+\infty} ||Te_n||^2 < +\infty.$$

Par la question précédente, cette propriété ne dépend pas de la base hilbertienne choisie. On note HS(H) l'ensemble des opérateurs de Hilbert-Schmidt sur H, et pour $T \in HS(H)$, on note

$$||T||_2 = \left(\sum_{n=0}^{+\infty} ||Te_n||^2\right)^{1/2}.$$

- 3. Montrer que $|||T||| \le ||T||_2$, et que $HS(H) \ne \mathcal{L}_c(H)$.
- 4. Montrer que HS(H) muni de la norme $\|.\|_2$ est un espace de Hilbert (on précisera le produit scalaire associé).
- 5. Soit $T \in HS(H)$. On note P_n le projecteur orthogonal sur $Vect(e_0, \ldots, e_n)$. Montrer que, pour tout n, $T \circ P_n \in HS(H)$ et que $||T T \circ P_n||_2 \to 0$. En déduire que les opérateurs de rang fini sont denses dans HS(H). Que vient-on entre autres de montrer sur HS(H)?

Exercice 21 (Expression du rayon spectral). Soit E un espace de Banach complexe. Soit $A \in \mathcal{L}_c(E)$ et r(A) son rayon spectral. On appelle que $R_{\lambda}(A)$ la résolvante de A. Par convention, on posera $R_{\infty}(A) = 0$. Soit $f(z) = \sum_{n=1}^{\infty} a_n z^n$ une série entière de rayon de convergence R > 0 à valeurs dans un espace de Banach X. On rappelle que R est donné par la formule suivante:

$$R = \liminf_{n \to \infty} |a_n|^{-\frac{1}{n}}.$$

1. Montrer que

$$r(A) = \inf\{r \in A \in \sigma(A) \mapsto R_{\lambda}(A) \text{ est holomorphe sur } \mathbb{C} \setminus B(0,r)\}.$$

2. En déduire que

$$\frac{1}{r(A)} = \sup\{s \in \mathbb{R} | , z \mapsto \forall h \in H, \, R_{\frac{1}{z}}(A)(h) \text{ est holomorphe sur } B(0,s)\}.$$

3. Montrer que

$$r(A) = \limsup_{n \to \infty} |||T^n||^{\frac{1}{n}}.$$

Le but de la suite de l'exercice est de démontrer que la limite supérieure est en fait une limite.

- 4. On pose $a_n = \log(||T^n||)$. Montrer que $(a_n)_{n \in \mathbb{N}}$ st sous-additive pour tout $(n, m) \in \mathbb{N}$, on a $a_{n+m} \leq a_n + a_m$. On pose $\beta = \inf_{n \in \mathbb{N}^*} \frac{a_n}{n}$.
 - 5. On suppose dans un premier temps que $\beta > -\infty$. Soit $\varepsilon > 0$. Montrer qu'il existe $N \in \mathbb{N}^*$ tel que pour tout $n \ge N$, on ait

$$\frac{a_n}{n} \leqslant \beta + \varepsilon + \frac{a_r}{n},$$

où r est le reste de la division euclidienne de n par N. En déduire que

$$\limsup_{n \to \infty} \frac{a_n}{n} \leqslant \beta + \varepsilon,$$

puis que $\frac{a_n}{n} \to \beta$ quand $n \to \infty$.

- 6. On suppose que $\beta = -\infty$. Montrer que $\frac{a_n}{n} \to -\infty$ quand $n \to \infty$.
- 7. En déduire que

$$r(A) = \lim_{n \to \infty} |||T^n||^{\frac{1}{n}}.$$

8. Application: on suppose que H est un espace de Hilbert complexe et que A est autoadjoint. Montrer que r(A) = |||A|||.