TD 1: Espaces vectoriels, familles de vecteurs, dimension finie.

Exercice 1. Les ensembles suivants sont-ils des espaces vectoriels réels?

- 1. C.
- $2. \mathbb{R}^+.$
- 3. L'ensemble des fonctions solutions de l'équation différentielle $x'(t) + \sqrt{t^2 + e^{-t^5}}x(t) = 0$ (on admet que l'ensemble des fonctions réelles à valeurs réelles est un espace vectoriel).
- 4. L'ensemble des solutions de l'équation différentielle $x'(t) + \sqrt{t^2 + e^{-t^5}}x(t) = 1$.
- 5. L'ensemble des fonctions réelles à valeurs réelles dérivables en tout point.
- 6. L'ensemble des suites réelles convergentes.
- 7. L'ensemble des suites réelles divergentes.

Exercice 2. On se place dans \mathbb{R}^2 . Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

- 1. $\{((0,y)|y \in \mathbb{R}\}.$
- 2. $\{((0,y)|y \ge 0\}.$
- 3. $\{((0,y)|y \in \mathbb{R}\} \cup \{((x,0)|x \in \mathbb{R}\}.$
- 4. $\{((x,y)||x|=|y|\}.$
- 5. $\{((x,y)|x=y\}.$

Exercice 3. Les sous-espaces vectoriels suivants sont-ils en somme directe dans \mathbb{R}^3 ?

- 1. F = Vect((0,1,0)) et G = Vect((1,1,1)).
- 2. F = Vect((0,1,0),(1,1,0)) et G = Vect(1,0,0).

Exercice 4. Soit E l'espace vectoriel des fonctions dérivables de \mathbb{R} dans \mathbb{R} . Soit F l'ensemble des $f \in E$ vérifiant f(0) = f'(0) = 0. Montrer que F est un sous-espace vectoriel de E et déterminer un supplémentaire de F.

Exercice 5. Les familles suivantes sont-elles libres ou liées? Donner leur rang. Sont-elles génératrices de l'espace vectoriel dans lequel elles sont inclues?

- 1. $\{(1,0,0),(1,0,1),(0,0,5)\}\subset\mathbb{R}^3$.
- 2. $\{(1,0,0),(1,0,1),(0,2,5)\}\subset\mathbb{R}^3$.
- 3. $\{(1,0),(1,1),(2,5)\}\subset \mathbb{R}^2$.
- 4. $\{t \mapsto cos(t), t \mapsto sin(t)\} \subset \mathcal{F}(\mathbb{R}, \mathbb{R})$ (fonctions de \mathcal{R} dans \mathcal{R}).

Exercice 6. On considère les vecteurs $u = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} -1 \\ h \\ \frac{1}{3} \end{pmatrix}$ et $w = \begin{pmatrix} k \\ 1 \\ \frac{h}{3} \end{pmatrix}$. Déterminer pour quelles valeurs de

 $(h,k) \in \mathbb{R}^2$ la famille $\{u,v,w\}$ est libre et pour quelles valeurs elle est liée.

Exercice 7. Dans \mathbb{R}^n , donner un exemple de sous-espace vectoriel de dimension 0, de dimension 1, de dimension $2, \dots$ de dimension n-1.

Exercice 8. Les espaces vectoriels réels suivants sont-ils de dimension finie? Si oui, donner leur dimension et une base.

- 1. C
- 2. L'ensemble des solutions de x' + 2tx = 0.
- 3. L'ensemble des suites réelles.
- 4. $\{(x, y, z) \in \mathbb{R}^3 | z = 3x + 5y\}$.

Exercice 9. On considère $a_0, \ldots a_n$ n+1 nombres réels distincts et b_0, \ldots, b_n n+1 nombres réels (pas forcément distincts). On rappelle que l'ensemble des polynômes réels de dimension inférieure à n (noté $\mathbb{R}_n[X]$)est un espace vectoriel de dimension finie n+1.

- 1. Construire de manière explicite une famille de polynômes de $\mathbb{R}_n[X]$ (notée $(L_0, \ldots L_n)$) telle que pour tout $i \in [[0, n]]$ on a $L_i(a_i) = 1$ et $L_i(a_j) = 0$ si $j \neq i$.
- 2. Montrer que cette famille est une base de $\mathbb{R}_n[X]$.
- 3. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que pour tout i on ait $P(a_i) = b_i$ et l'expliciter. On pourra s'intéresser à l'application $P \in \mathbb{R}_n[x] \mapsto (P(a_0), P(a_1), \dots P(a_n))$.
- 4. Application: on considère la tableau suivant, qui donne la probabilité p qu'un piéton meure en étant écrasé par une voiture en fonction de la vitesse v de celle-ci.

$v (\mathrm{km/h})$	p
20	10%
40	30%
60	85%
80	100%

Quelle est la probabilité de mourir si la vitesse de la voiture est de 50 km/h? Et de 10 km/h? Comment expliquer ce dernier résultat?