Contrôle du 8 novembre 2021

Question sur le cours. Soit (E, n) un espace vectoriel normé.

- 1. Énoncer la définition d'adhérence et intérieur d'une partie de E;
- 2. Montrer que $\bar{B}(x,r) = \mathrm{Ad}(B(x,r))$ et que $\mathrm{Int}(\bar{B}(x,r)) = B(x,r)$ pour tout $x \in E$ et r > 0;
- 3. Est-ce que ce fait est vrai aussi pour un espace métrique ? Montrer ou donner un contre-exemple.

Exercice 1. Étant donné un interval fermé $I \subset \mathbb{R}$ (ce qui comprends le cas $I = \mathbb{R}$), considérons l'espace

$$C^1(I) = \{ f : I \to \mathbb{R} \mid f \text{ continue, dérivable et } f' \text{ continue} \}.$$

1. Démontrer qu'en posant

$$n(f) = |f(0)| + \int_{I} |f'(t)| dt, \qquad f \in C^{1}(I),$$

on définit une norme sur $C^1(I)$ si I = [a, b] avec $-\infty < a \le 0 \le b < +\infty$. Est-ce que le même résultat est vrai si $I = \mathbb{R}$?

2. Définit-on une norme sur $C^1(\mathbb{R})$ en posant

$$n(f) = |f(0)| + \sup_{t \in \mathbb{R}} |f'(t)|, \quad \forall f \in C^{1}(I)$$

Exercice 2. Énoncer la définition de normes équivalentes, et montrer que $\|\cdot\|_1$ n'est pas une norme équivalente à $\|\cdot\|_{\infty}$ sur l'espace des

polynômes $\mathbb{R}[x]$. Notamment, si $P(x) = a_0 + \ldots + a_N x^N \in \mathbb{R}[x]$, on pose

$$||P||_1 = \sum_{n=0}^{N} |a_n|$$
 et $||P||_{\infty} = \max_{n=0,\dots,N} |a_n|$.

Est-ce que ce normes sont équivalentes sur \mathbb{R}^n ? Montrer ou donner un contre-exemple. On rappel que, si $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ on pose

$$||x||_1 = \sum_{i=1}^N |x_i|$$
 et $||x||_\infty = \max_{i=1,\dots,N} |x_i|$.

Exercice 3. On s'intéresse à montrer que

$$\lim_{n \to \infty} \int_0^1 f(t)e^{int} dt = 0, \qquad \forall f \in C([0, 1]).$$

À cette effet, soit $\mathcal{A}([0,1]) = \{ f \in C([0,1]) \mid f \text{ est affine par intervalles} \}.$

- 1. Montrer cette rélation lorsque $f \in C^1([0,1])$, et puis $f \in \mathcal{A}([0,1])$;
- 2. Montrer que $\mathcal{A}([0,1])$ est une partie dense de $(C([0,1]), \|\cdot\|_{\infty})$, en admettant le Théorème de Heine (c-á-d que toute fonction de C([0,1]) est uniformément continue);
- 3. En déduire la relation pour toute fonction continue.

Exercice 4. Soient (X, d_X) et (Y, d_Y) deux espaces métriques et $f, g: X \to Y$ deux fonctions continues. Supposons qu'il existe $A \subset X$ telle que f(x) = g(x) pour tout $x \in A$.

1. Montrer que si A est une partie dense de X, alors f(x) = g(x) pour tout $x \in X$;

2. Montrer que s'il existe $x \in X$ tel que $f(x) \neq g(x)$ alors A n'est pas dense.

Exercice 5. Commencer par montrer que $\ell^2(\mathbb{R})$ est un sous-espace vectoriel de $\ell^{\infty}(\mathbb{R})$. On considère après la suite $(x^k)_{k\in\mathbb{N}}\subset\ell^{\infty}$, où $x^k=(x_n^k)_{n\in\mathbb{N}}$ est définie par (Attention! Elle est une suite de suites):

$$x_n^k = \begin{cases} \frac{1}{\sqrt{n}} & \text{si } 1 \le n \le k, \\ 0 & \text{sinon.} \end{cases}$$

Montrer que:

- 1. $x^k \in \ell^2$ pour tout $k \in \mathbb{N}$.
- 2. $x^k \to x^\infty$ par rapport à $\|\cdot\|_\infty$, où $x^\infty = (x_n^\infty)_{n \in \mathbb{N}}$ est définie par $x_0 = 0$ et $x_n^\infty = 1/\sqrt{n}$ pour $n \ge 1$.
- 3. Montrer que $x^{\infty} \notin \ell^2(\mathbb{R})$ et en déduire que $\ell^2(\mathbb{R})$ n'est pas fermé dans $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$.