
These are lecture notes for an introductory course on probability taught as part of the first
year’s program at École des Ponts ParisTech. This course is currently under the direction
of Aurélien Alfonsi (CERMICS) and based on the following textbook:

B. Jourdain, Probabilités et statistique, Ellipses 2009, 2nd edition 2016.

Chapter 1

Probability measures on finite spaces

1.1 Introduction

1.1.1 Definitions
Let n ∈ N∗. We consider a random experiment which consists in the realisation of a unique
outcome ω among n possibilities ω1, · · · , ωn. The set of all possible outcomes of this exper-
iment is called the sample space or universe and is usually denoted by Ω = {ω1, · · · , ωn}.
Any element ω ∈ Ω is called a realisation.

In this chapter, we will only focus on finite sample spaces, that is random experiments
that have only finitely many possible outcomes. Most of the definitions and vocabulary
introduced here will be extended in the next chapters.

Example 1.1.1. The typical sample space is:

– If you toss a coin, Ω = {head, tail} ;

– If you throw a die, Ω = {1, 2, 3, 4, 5, 6} ;

– If you throw two dice, Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.

Let N ∈ N
∗. When the random experiment is repeated N times, for 1 ≤ k ≤ n, the

frequency of ωk is defined by

FN(k) = number of realisations of ωk

N
·

When N → +∞, FN(k) varies less and less and its limit corresponds to the intuitive
notion of probability of ωk, namely a measure of the likelihood of the occurence of the
realisation ωk, expressed as a real number between 0 and 1.
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We call event any subset A ⊂ Ω. We say that A is realised if the outcome ω of the
random experiment is in A. The frequency of A is defined by

FN(A) = number of realisations of A

N
=

∑
1≤k≤n
ωk∈A

FN(k). (1.1)

Similarly, FN(A) is expected to converge when N → +∞ to the intuitive notion of
probability of A, that is a measure of the chance that A is realised. Notice that FN(Ω) = 1.

Definition 1.1.2 (Probability measure). A probability measure on a finite sample space
Ω = {ω1, · · · , ωn} is a vector (p1, · · · , pn) which satisfies

(i) For all 1 ≤ k ≤ n, pk ≥ 0 ;

(ii)
n∑

k=1
pk = 1.

To any event A ⊂ Ω we associate the real number

P(A) =
∑

1≤k≤n
ωk∈A

pk, (1.2)

called the probability of A. In particular, for 1 ≤ k ≤ n, P({ωk}) = pk.

Remark 1.1.3. – (1.1) is the statistical analogue of (1.2) ;

– The term “probability measure” can either refer to the vector (p1, · · · , pn) or the map
A ⊂ Ω 7→ P(A) ;

– (i) and (ii) imply pk ∈ [0, 1] for all 1 ≤ k ≤ n.

Example 1.1.4. Suppose you toss a coin: Ω = {head, tail}. Set P(∅) = 0, P({head}) =
P({tail}) = 1

2 and P(Ω) = 1. Then P is a probability measure which models a fair coin.

Terminology Let Ω be a sample state, A, B ⊂ Ω be two events and P be a probability
measure on Ω.

– The event realised when A is not is called complementary event of A and denoted
A{ = Ω\A ;

– The event realised when A and B are realised is called A and B and denoted A ∩B ;

– The event realised when A or B is realised is called A or B and denoted A ∪B ;

– A is negligible is P(A) = 0 ;

– A is almost sure if P(A) = 1 ;

2



– The indicator function of the event A, denoted 1A, is the function equal to 1 iff A is
realised, that is

1A :
Ω → {0, 1}

ω 7→
{

1 if ω ∈ A
0 else

.

Exercise 1.1.5. Let Ω be a sample space, A, B ⊂ Ω be two events and P be a probability
measure on Ω. Show the following assertions:

1. P(A ∪B) = P(A) + P(B)− P(A ∩B).

2. 1A∩B = 1A × 1B.

3. 1A{ = 1− 1A.

4. 1A∪B = 1A + 1B − 1A∩B.

1.1.2 Uniform distribution
In many situations, all the possible outcomes of a random experiment play similar or sym-
metric roles and are expected to be equal in likelihood. For instance, the outcomes of the
toss of a fair coin or the throw of a fair die are equally likely to happen. In order to model
this kind of situation, we assign an equal weight to each outcome.

Definition 1.1.6 (Uniform distribution). The uniform distribution on a sample space Ω =
{ω1, · · · , ωn} is the probability measure P defined for all A ⊂ Ω by

P(A) = |A|
|Ω| ,

where |A| denotes the cardinality of A.

Remark 1.1.7. The uniform distribution is the only probability measure P which satisfies
P({ωk}) = 1

n
for all 1 ≤ k ≤ n.

In the setting of the uniform distribution, the computation of a probability of an event
amounts to the computation of the cardinality of that event. It is therefore useful to recall
some basics of combinatorics.

Proposition 1.1.8. Let n, k ∈ N∗ be such that k ≤ n. Then

(i) The number of permutations of a set containing n elements is n! ;

(ii) The number of one-to-one functions from a set containing k elements to a set containing
n elements is n!

(n−k)! ;

(iii) The number of subsets containing k elements of a set containing n elements is denoted(
n
k

)
(read as “n choose k”) and equal to n!

(n−k)!k! .
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Proof. Let A = {a1, · · · , ak} be a set of k elements, B = {b1, · · · , bn} be a set of n elements
and f : A → B be a one-to-one function. There are n possibilities for the value of f(a1).
Since f is one-to-one, f(a2) belongs to B\{f(a1)}, hence n − 1 remaining possibilities for
the value f(a2). By induction, for all 1 ≤ i ≤ k, given f(a1), · · · , f(ai−1), there are n− i + 1
possibilites for the value of f(ai). This adds up to

n× (n− 1)× · · · × (n− k + 1) = n!
(n− k)!

possibilities for f , which proves (ii). The assertion (ii) implies (i) for k = n.
Let us now prove (iii). The choice of a one-to-one function from a subset of k elements of

B to B is equivalent to the choice of k distinct elements of B in a certain order. Moreover,
there are k! ways to order k distinct elements of B. Therefore, there are k! times more one-
to-one functions from a subset of k elements of B to B than subsets containing k elements
of B. By (ii) and by definition of

(
n
k

)
, this means

n!
(n− k)! = k!

(
n

k

)
,

which proves (iii).

1.2 Conditional probability and independence

1.2.1 Conditional probability
Let A and B be two events of a sample space Ω. The probability of A, P(A), models the
likelihood that A occurs. In other words, an observer would expect A to occur with chance
P(A). Suppose now that the observer knows that B occurs. Then his expectation of the
likelihood of A has no reason to remain the same. For instance, we would expect more that
it rains if we know it is cloudy than if we know nothing about the weather. The concept of
conditional probability allows the model to take into account the information we might have
and revise the likelihood of an event accordingly.

Definition 1.2.1 (Conditional probability). Let Ω be a sample space, A, B ⊂ Ω be two events
and P be a probability measure on Ω. Suppose that P(B) > 0. The conditional probability
of A given B is denoted P(A|B) and defined by

P(A|B) = P(A ∩B)
P(B) ·

The conditional probability P(A|B) models the likelihood that A occurs, knowing that
B occurs. The map A ⊂ Ω→ P(A|B) can be seen as the update of P given the information
that B occurs. In the same spirit, the next statement is a useful result known as Bayes’
theorem.
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Theorem 1.2.2 (Bayes’ theorem). Let n ∈ N
∗, Ω be a sample state, P be a probability

measure on Ω, B ⊂ Ω be an event and (Ak)1≤k≤n be a partition of Ω, that is such that Ω
is the disjoint union of (Ak)1≤k≤n. Suppose that P(B) > 0 and for 1 ≤ k ≤ n, P(Ak) > 0.
Then

∀1 ≤ k ≤ n, P(Ak|B) = P(B|Ak)P(Ak)∑n
i=1 P(B|Ai)P(Ai)

· (1.3)

Proof. Let k ∈ {1, · · · , n}. By definition of the conditional probability, P(Ak|B) = P(Ak∩B)
P(B) .

On the one hand, P(Ak ∩ B) = P(B|Ak)P(Ak). On the other hand, since (Ai)1≤i≤n is a
partition of Ω, P(B) = ∑n

i=1 P(Ai ∩B) = ∑n
i=1 P(B|Ai)P(Ai), which proves (1.3).

1.2.2 Independence
We saw in the previous section how the knowledge that an event B occurs can affect the
likelihood that another event A occurs. However, the knowledge of B might have no effect
on the likelihood of A, in which case P(A|B) = P(A). For instance, I would not expect the
likelihood that it rains to change if I know that my neighbour wears red shoes. This special
case corresponds to the concept of independence.

Definition 1.2.3 (Independence). Let Ω be a sample space. Two events A, B ⊂ Ω are said
to be independent if

P(A ∩B) = P(A)P(B).

Remark 1.2.4. If P(B) > 0, then A is independent of B iff P(A|B) = P(A).

Definition 1.2.5. Let n ∈ N
∗ and Ω be a sample space. A family (Ak)1≤k≤n of events is

said to be mutually independent if

∀k ∈ {1, · · · , n}, ∀1 ≤ i1 ≤ · · · ≤ ik ≤ n, P(Ai1 ∩ · · · ∩ Aik
) = P(Ai1)× · · · × P(Ain).

Remark 1.2.6. – If (Ak)1≤k≤n is mutually independent, then it is pairwise independent,
that is for all 1 ≤ i 6= j ≤ n, Ai is independent of Aj, but the converse is not true ;

– If (Ak)1≤k≤n is mutually independent, then P(A1 ∩ · · · ∩ An) = P(A1) × · · · × P(An),
but the converse is not true.
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